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Abstract. This paper deals with a method of designing PID
controllers. Generalized Laguerre functions were used for
this task. Generalized Laguerre functions generate an or-
thogonal base in the time domain and the operator domain.
This property of generalized Laguerre functions is benefi-
cially used for the design of the PID controller. Parameters
for generalized Laguerre function PID controllers are com-
puted from the Laguerre series of the open loop and the
Laguerre series of the ideal open loop. To satisfy this goal,
the plant transfer function, the controller transfer function,
and the ideal open loop transfer function are transformed
into a generalized Laguerre functions base. Three examples
are shown to present this method.
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1. Introduction
Great development of modern approaches in control

theory such as adaptive or robust control has been made re-
cently. A summary and current developments can be found in
a recently published summary article [1]. Despite these great
advances in modern control theory the traditional approach
to control using proportional-integral-derivative (PID) con-
trollers still has its place in theoretical and practical appli-
cations. PID controllers are widely used in industrial appli-
cations. This is mainly due to the simple control structure
while using PID controller and clear physical meaning of its
parameters. Due to the long history of their application in
the industry, their users have much experience in tuning up
their parameters. A comprehensive discussion of PID con-
trollers can be found, for example, in the book [2]. Due to the
properties of PID controllers, their research is still a actual
topic and many new publications can be found in the control
theory literature, e.g. [3–6].

The history of using the Laguerre orthonormal func-
tions in system modeling and identification since their in-
troduction in [7] and [8] is rather long, with many papers
documenting the differing theoretical approaches.

Simple Laguerre functions (SLFs) have some proper-
ties which could be beneficial in control applications. These
SLFs have found application mainly in the system model-
ing and the system identification, as can be seen for exam-
ple in [9–13]. However, they could also be used for the
PID controllers design, as shown in [14], [15]; this usage
of SLFs is not that common. Generalized Laguerre func-
tions (GLFs) [16–18] generalize SLFs and offer one extra
free parameter that could be used to obtain better results.

The application of GLFs with generalization parameter
𝛼 instead of SLFs in system control theory is quite a new
topic. The applications of GLFs can be found in the field
of theoretical mathematics, see [19], [20], but these func-
tions definitely deserve more attention in the control theory
field. The identification method based on GLFs was in-
troduced in [21]. This method was further compared with
least squares based identification with state variable filters
(LSSVF) in [22]. The advantage of the optimal choice of
the free parameters in GLFs and its influence on the qual-
ity of identification was presented. Another example of
the generalization of the SLFs method is the application of
GLFs to the dead time estimation problem in [23]. This ap-
proach is an extension of SLFs based dead time estimation,
which can be found in [24]. It was shown that thanks to
the optimal choice of free parameters, it is possible to use
a smaller number of members of the Laguerre approximation
series for dead times. There is still much space for improve-
ment of SLFs based algorithms in control theory with GLFs
based approach.

This paper deals with employing GLFs to design PID
controllers. This method utilizes the GLFs property to gen-
erate the orthogonal base. The open loop transfer function is
transformed into the GLFs base and the first three coefficients
of the spectrum are compared with the first three coefficients
of the spectrum of the ideal open loop transfer function trans-
formed into the GLFs base. This method can be also used
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for fractional-order systems. In Sec. 2 the terminology for
later parts of the paper is established. Definition of GLFs
and their properties are introduced. A method how to use
GLFs to design PID controllers is described in Sec. 3. Three
examples to evaluate the method proposed in section are pre-
sented in Sec. 4. The results are compared with the method
based on SLFs and with MATLAB pidtune method. Sec. 5
concludes this paper.

2. Basic Terms
This section outlines some basic terms which will be

used later in this paper.

2.1 Generalized Laguerre Functions
GLFs are based on generalized Laguerre polynomi-

als. Generalized Laguerre polynomials are defined according
to [16–18,25–27] as

𝐿𝛼
𝑛 (𝑥) =

e𝑥𝑥−𝛼

𝑛!
dn

d𝑥𝑛
(
𝑥𝑛+𝛼e−𝑥

)
. (1)

They generate an orthogonal base in the time domain and
also in the operator domain. They satisfy the equation∫ ∞

0

2𝜆𝑚!
Γ(𝑚 + 𝛼 + 1) (2𝜆𝑡)

𝛼e(−2𝜆𝑡)𝐿𝛼
𝑛 (2𝜆𝑡)𝐿𝛼

𝑚 (2𝜆𝑡)d𝑡 = 𝛿𝑚𝑛

(2)

where 𝛿𝑚𝑛 is the Kronecker delta defined by

𝛿𝑚𝑛 =

{
0 if 𝑚 ≠ 𝑛,

1 if 𝑚 = 𝑛,
(3)

and Γ(𝑧) is Gamma function defined according to [28] by

Γ(𝑧) =
∫ ∞

0
𝑡𝑧−1e−𝑡d𝑡. (4)

GLFs could be extracted from (2) as

𝑙𝛼𝑛 (2𝜆𝑡) =

√︄
2𝜆𝑚!

Γ(𝑚 + 𝛼 + 1) (2𝜆𝑡)
𝛼
2 e(−𝜆𝑡)𝐿𝛼

𝑛 (2𝜆𝑡). (5)

For GLFs applies that〈
𝑙𝛼𝑛 (2𝜆𝑡), 𝑙𝛼𝑚 (2𝜆𝑡)

〉
= 𝛿𝑚𝑛 (6)

where 〈 𝑓 , 𝑔〉 means the scalar product of functions 𝑓 and 𝑔.

For 𝛼 = 0, GLFs become SLFs. These GLFs generate
an orthogonal base both in the time domain and the operator
domain the same way as generalized Laguerre polynomials.
Therefore any function 𝑓 (𝑡) ∈ 𝐿2 could be represented as

𝑓 (𝑡) =
∞∑︁
𝑛=0

𝑐𝑛𝑙
𝛼
𝑛 (2𝜆𝑡) (7)

and also
ℒ { 𝑓 (𝑡)} =

∞∑︁
𝑛=0

𝑐𝑛ℒ
{
𝑙𝛼𝑛 (2𝜆𝑡)

}
(8)

whereℒ { 𝑓 (𝑡)} means Laplace transform of function 𝑓 (𝑡).

Spectrum coefficients in (7) and (8) could be computed
as

𝑐𝑛 =
〈
𝑓 (𝑡), 𝑙𝛼𝑛 (2𝜆𝑡)

〉
=
〈
ℒ { 𝑓 (𝑡)} ,ℒ

{
𝑙𝛼𝑛 (2𝜆𝑡)

}〉
. (9)

The Laplace transform of GLFs can be found in [29]

Λ𝛼
𝑛 (𝑠) = (2𝜆) 1+𝛼2

(
1

𝑠 + 𝜆

)1+ 𝛼
2 𝑚∑︁

𝑛=0
𝑀

(𝛼)
𝑚,𝑛

(
2𝜆
𝑠 + 𝜆

)𝑛
(10)

where 𝑀 (𝛼)
𝑚,𝑛 is the matrix given by 𝑀

(𝛼)
𝑚,𝑛 = 0 for 𝑚 < 𝑛, and

𝑀
(𝛼)
𝑚,𝑛 = (−1)𝑛

(
𝑚

𝑛

)
Γ(𝑛 + 𝛼

2 + 1)
Γ(𝑛 + 𝛼 + 1)

√︂
Γ(𝑚 + 𝛼 + 1)

𝑚!
(11)

for 𝑚 ≥ 𝑛.

According to [14], the scalar product of two functions
in the operator domain could be calculated by

𝑐𝑛 =
1
2𝜋j

∮
RHP

𝐹 (−𝑠)Λ𝑛 (𝑠)d𝑠 =

−
∑︁

RHPpoles
res {𝐹 (−𝑠)Λ𝑛 (𝑠)} . (12)

2.2 Fourier Method to Compute Inverse
Laplace Transform

The article [30] described a method of computing the
inverse Laplace transformusing the Fourier transform. In this
paper, 𝑠 has been substituted by j𝜔 in the transfer function,
and then the transfer function was rewritten into the form

𝐹 (j𝜔) = 𝑀 (𝜔) + j𝑁 (𝜔)
𝑄(𝜔) + j𝑍 (𝜔) . (13)

After that, the inverse Laplace transform could be calculated
as

𝑓 (𝑡) = 2
𝜋

∫ ∞

0

𝑀 (𝜔)𝑄(𝜔) + 𝑁 (𝜔)𝑍 (𝜔)
𝑄2 (𝜔) + 𝑍2 (𝜔)

cos(𝜔𝑡)d𝜔, (14)

or

𝑓 (𝑡) = − 2
𝜋

∫ ∞

0

𝑁 (𝜔)𝑄(𝜔) − 𝑀 (𝜔)𝑍 (𝜔)
𝑄2 (𝜔) + 𝑍2 (𝜔)

sin(𝜔𝑡)d𝜔.
(15)

2.3 Error Function
The following error function was chosen to compare the

solutions:

𝑒𝑟𝑟 =

∫ 𝑇

0 ( 𝑓d (𝑡) − 𝑓 (𝑡))2𝑡2d𝑡∫ 𝑇

0 𝑓 2d (𝑡)d𝑡
(16)

where 𝑓d (𝑡) is the desired function, and 𝑓 (𝑡) is the solution.
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3. The Design the PID Controllers with
the Usage of Generalized Laguerre
Functions
In paper [14], the author showed how to employ SLFs to

design integer-order PID controllers for integer-order plants.
The procedure is based on transforming transfer functions
into the SLFs base. In this paper, SLFs will be replaced
with GLFs. Furthermore, it will be shown how to use this
method for fractional order plants. Unstable systems cannot
be directly transformed into GLFs base because an unsta-
ble transfer function is not in the 𝐿2 space. Let us assume
a system described by the transfer function

𝐹s (𝑠) =
𝑝(𝑠)

𝑞(𝑠)𝑞u (𝑠)
(17)

where 𝑝(𝑠) is the numerator of 𝐹 (𝑠), 𝑞(𝑠) contains only sta-
ble poles, and 𝑞u (𝑠) contains unstable poles. This system
could be rewritten into

𝐹s (𝑠) =
𝑝 (𝑠)

𝑞 (𝑠) (𝑠+𝜆)𝑛
𝑞u (𝑠)
(𝑠+𝜆)𝑛

(18)

where 𝑛 is higher than the order of 𝑞u (𝑠). This description is
the fraction of two stable transfer functions, and each could
be transformed in the GLFs base. So it could be written into

𝐹s (𝑠) =
𝑝 (𝑠)

𝑞 (𝑠) (𝑠+𝜆)𝑛
𝑞u (𝑠)
(𝑠+𝜆)𝑛

=

∑∞
𝑛=0 𝑓𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑓
′
𝑛Λ

𝛼
𝑛 (𝑠)

. (19)

If the system 𝐹s (𝑠) is stable, it could be transformed as

𝐹s (𝑠) =
𝑝(𝑠)

𝑞(𝑠)𝑞u (𝑠)
=

∞∑︁
𝑛=0

𝑓𝑛Λ
𝛼
𝑛 (𝑠). (20)

When a controller is designed, many methods seek to
match the transfer function of the open loop with the ideal
open loop. Open loop 𝐹0 (𝑠) is the product of the transfer
function of the controller 𝐹R (𝑠) and the transfer function of
the plant 𝐹s (𝑠)

𝐹0 (𝑠) = 𝐹R (𝑠)𝐹s (𝑠). (21)

According to [14], the ideal closed loop is

𝐹c (𝑠) =
𝜔2𝑛

𝑠2 + 2𝜂𝜔𝑛 + 𝜔2𝑛
(22)

where 𝜔𝑛 and 𝜂 are parameters that have an impact on the
final shape of the desired closed loop. The open loop could
be derived in the following form:

𝐹0 (𝑠) =
𝜔2𝑛

𝑠(𝑠 + 2𝜂𝜔𝑛)
. (23)

This transfer function is semi-stable, so it should be rewritten
into the fraction of two stable transfer functions

𝐹0 (𝑠) =
𝜔2𝑛

(𝑠+2𝜂𝜔𝑛) (𝑠+𝜆)2
𝑠

(𝑠+𝜆)2
=

∑∞
𝑛=0 𝑙𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑙
′
𝑛Λ

𝛼
𝑛 (𝑠)

. (24)

The transfer function 𝐹c (𝑠) of the PID controller has
the following form

𝐹c (𝑠) = 𝑘c

(
1 + 1

𝑇i𝑠
+ 𝑇d𝑠

)
. (25)

The transformation of the PID controller transfer func-
tion (25) into the GLFs base is

𝐹c (𝑠) =
𝑘c (𝑇i𝑇d𝑠2+𝑇i𝑠+1

𝑇i (𝑠+𝜆)3
𝑠

(𝑠+𝜆)3
=

∑∞
𝑛=0 𝑐𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑐
′
𝑛Λ

𝛼
𝑛 (𝑠)

. (26)

The PI controller (𝑇d = 0) could be derived from (25)

𝐹c (𝑠) = 𝑘c

(
1 + 1

𝑇i𝑠

)
. (27)

The transformation of the PI controller transfer function (27)
into the GLFs base is

𝐹c (𝑠) =
𝑇i𝑠+1

𝑇i (𝑠+𝜆)2
𝑠

𝑘c (𝑠+𝜆)2
=

∑∞
𝑛=0 𝑐𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑐
′
𝑛Λ

𝛼
𝑛 (𝑠)

. (28)

Finally, laying (𝑇i = ∞) in (25), the transfer function of the
PD controller is

𝐹c (𝑠) = 𝑘c (1 + 𝑇d𝑠) . (29)

After transforming the transfer function (29) into the GLFs
base, it is possible to write

𝐹c (𝑠) =
𝑇d𝑠+1
(𝑠+𝜆)2
1

𝑘c (𝑠+𝜆)2
=

∑∞
𝑛=0 𝑐𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑐
′
𝑛Λ

𝛼
𝑛 (𝑠)

. (30)

It is possible to rewrite (21) into the following equa-
tion due to the knowledge of approximations of all terms
from (21) transformed into the GLFs base∑∞

𝑛=0 𝑙𝑛Λ
𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑙
′
𝑛Λ

𝛼
𝑛 (𝑠)

=

∑∞
𝑛=0 𝑓𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑓
′
𝑛Λ

𝛼
𝑛 (𝑠)

∑∞
𝑛=0 𝑐𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑐
′
𝑛Λ

𝛼
𝑛 (𝑠)

(31)

for the unstable system and into∑∞
𝑛=0 𝑙𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑙
′
𝑛Λ

𝛼
𝑛 (𝑠)

=

∑∞
𝑛=0 𝑐𝑛Λ

𝛼
𝑛 (𝑠)∑∞

𝑛=0 𝑐
′
𝑛Λ

𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑓𝑛Λ
𝛼
𝑛 (𝑠) (32)

for the stable system.

From (31) the following expression could be derived for
the unstable plant

∞∑︁
𝑛=0

𝑓𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑐𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑙 ′𝑛Λ
𝛼
𝑛 (𝑠) =

∞∑︁
𝑛=0

𝑓 ′𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑐′𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑙𝑛Λ
𝛼
𝑛 (𝑠) (33)

and from (32) for the stable plant follows

∞∑︁
𝑛=0

𝑓𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑐𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑙 ′𝑛Λ
𝛼
𝑛 (𝑠) =

∞∑︁
𝑛=0

𝑐′𝑛Λ
𝛼
𝑛 (𝑠)

∞∑︁
𝑛=0

𝑙𝑛Λ
𝛼
𝑛 (𝑠). (34)
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The 𝑘c, 𝑇i, and𝑇d values for the designed PI, PD, or PID
controller could be discovered by solving (33) resp. (34).
For computations, it is enough to have the first three terms of
each series.

3.1 Computation Spectrum Coefficients into
GLFs Base
If the plant is described by the integer-order transfer

function, spectrum coefficients could be obtained using (12).
This is the preferredmethod because it is possible to get spec-
trum coefficients analytically. Nevertheless, it is not possible
to use residues for fractional-order transfer functions because
the term in form 1

(𝑠 + 𝑞)𝑟 (35)

where 𝑟 is not an integer, is not the pole but the essential
singularity. On the other hand, it is possible to compute the
inverse Laplace transform numerically using (14) and then
compute spectrum coefficients in the time domain. This is
possible because, according to (9), spectrum coefficients
are the same in the time and operator domains. This is not
as accurate as the analytical solution using residues because
spectrum coefficients are calculated from the approximated
impulse response. But as it will be shown in Sec. 4, it is
a usable method.

For the term
𝑠𝑟

(𝑠 + 𝑞)𝑛 (36)

where 𝑟 is not the integer, and 𝑛 is the integer, it is pos-
sible to compute spectrum coefficients using (12) because
there is only the pole. That means that for the integer order
plant, the integer order open loop, and the integer order con-
troller is beneficial to compute spectrum coefficients in the
operator domain using residues according to (12). Table 1
summarizes the domains in which it is beneficial to compute
spectrum coefficients.

3.2 Choosing Parameters for GLFs
GLFs have two free parameters, 𝛼 and 𝜆, which strongly

impact the approximation quality. Choosing good values for
them is not a trivial problem. In this paper, the MATLAB
FMINSEARCHwas used. The FMISEARCHminimizes the
error function (16). In (16), 𝑓d (𝑡) is the impulse response of
the wanted closed loop, and 𝑓 (𝑡) is the impulse response of
the closed loop. This process could be quite time-consuming.
Besides, finding optimal values for the free parameters is not
trivial. There is no certainty that the values for free parame-
ters that FMISEARCH found are the best.

Coefficients Integer order Fractional order
𝑓𝑛 Operator domain Time domain
𝑓 ′
𝑛 Operator domain Operator domain
𝑙𝑛 Operator domain Time domain
𝑙′𝑛 Operator domain Operator domain
𝑐𝑛 Operator domain Time domain
𝑐′𝑛 Operator domain Operator domain

Tab. 1. Domains in which to compute spectrum coefficients.

3.3 Stability of Fractional Order Systems
The method mentioned above does not guarantee the

stability of the closed loop. The stability of the closed loop
must be analyzed. Stability of the system depends on the
roots of the denominator polynomial of the transfer function.
For the system with denominator polynomial in form

𝑁∑︁
𝑛=0

𝑎𝑛𝑠
𝑛𝑞 (37)

we could, according to paper [31], substitute 𝑠𝑞 = 𝐹 so the
denominator polynomial will be in form

𝑁∑︁
𝑛=0

𝑎𝑛𝐹
𝑛. (38)

After this transformation all physical roots have angle in
(−𝑞𝜋, 𝑞𝜋) and all unstable roots have angle in

( −𝑞𝜋
2 ,

𝑞𝜋

2
)
.

3.4 Realization of PID Using Operation
Amplifiers

The transfer function of generic inverting amplifier is

𝐹GA (𝑠) = −𝑍2
𝑍1

(39)

where 𝑍1 means input impedance and 𝑍2 means feedback
impedance. When 𝑍1 and 𝑍2 are both resistors the circuit
will be generic inverting amplifier with gain equals to −𝑅2

𝑅1
.

When 𝑍1 is resistor and 𝑍2 is capacitor the circuit will be
integrator with transfer function

𝐹i (𝑠) = − 1
𝑅1𝐶2𝑠

. (40)

If 𝑍1 is capacitor and 𝑍2 is resistor the circuit will be the
derivative with transfer function

𝐹d (𝑠) = −𝐶1𝑅2𝑠. (41)

And finally when 𝑍1 is resistor and 𝑍2 is parallel connection
of resistor and capacitor the final transfer function will be

𝐹a (𝑠) = −
𝑅2
𝑅1

𝑅2𝐶2𝑠 + 1
. (42)

From above mentioned circuits it is possible to create integer
order PI, PD or PID controllers.

4. Examples
In this section it will be shown that the proposedmethod

works and it will be compared with solutions based on SLFs.
In the first example the PI controller for the integer order
plant will be tuned. In the second example, the PD controller
for the integer order plant will be designed. And finally in
the last example it will be shown how to obtain parameters
for the PI controller for the fractional order plant.

All Matlab scripts for examples presented in this article
are available at [32].
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4.1 Example 1
A system in the form

𝐹s (𝑠) =
1

1
3 𝑠 + 1

(43)

was chosen for the first example. For this system, a PI con-
troller will be designed. For the ideal loop, parameters
𝜂 = 0.7 and 𝜔𝑛 = 17.14 rad/s were chosen. The desired
open loop is

𝐹0 (𝑠) =
293.78

𝑠(𝑠 + 24.00) (44)

and the closed loop is

𝐹c (𝑠) =
293.78

𝑠2 + 24.00𝑠 + 293.78
. (45)

Because 𝐹s (𝑠) is the integer order, all spectrum coefficients
could be computed in the operator domain. Spectrum coeffi-
cients of the desired open loop and plant transfer function in
GLFs and SLFs base are in Tab. 2. The computed parameters
are in Tab. 3.

Closed loops were calculated for all designed con-
trollers to analyze the stability according to section 3.3. Sys-
tems are of integer order so 𝑞 = 1 and when all poles are
in left half of complex plane the system is stable. Transfer
functions for each method are shown in Tab. 4. and the
stability is discussed.

All designed controllers were simulated in Micro-Cap.
Simulation schematic is in Fig. 1. The operational ampli-
fier 𝑋2 realizes the integral part of the PI controller and 𝑋3
realizes the proportional part of the PI controller. From pa-
rameters in Tab. 3 and equations (39) to (42) flows that

𝐶1 =
𝑇i

𝑅3𝑘c
, (46)

𝑅1 =
𝑅2
𝑘c
. (47)

Values for resistors 𝑅2 and 𝑅3 were chosen as 𝑅2 = 𝑅3 =

10 kΩ. Designed values for all controllers are in Tab. 5.

As you can see from Tab. 3, GLFs offers a slightly
smaller approximation error than SLFs. Solutions obtained
by SLFs and GLFs both are much better than solution ob-
tained by MATLAB pidtune. Figure 2 shows step responses
for comparison. As you can see, the solution with GLFs
has smaller overshot and is slightly faster than the solution
with SLFs. This means the quality of the control process is
better. Also you can see that simulation in Micro-Cap offers
the same results as was calculated in Matlab.

𝑓0 𝑓1 𝑓2 𝑓 ′
0 𝑓 ′

1 𝑓 ′
2

GLFs 0.4295 0.3994 0.3595 - - -
SLFs 1.2161 0.1440 0.0161 - - -

𝑙0 𝑙1 𝑙2 𝑙′0 𝑙′1 𝑙′2
GLFs 0.7343 0.4360 0.2679 –0.0865 –0.0096 0.0239
SLFs 1.0819 –1.2673 –0.0032 0.2299 0.2299 0

Tab. 2. Spectrum coefficients of the open loop and plant.

Method 𝛼 𝜆 𝑇i 𝑘c err
SLF 0 2.3658 0.3041 3.6697 0.0024
GLF 5.1174 3.4823 0.0901 4.4089 0.0023

MATLAB
pidtune - - 0.0697 4.450 0.0043

Tab. 3. Parameters for PI controller.

Method Transfer function Stability

SLF 1.1160𝑠+3.6697
(𝑠+10.5863) (𝑠+3.4186) Stable

GLF 0.3972𝑠+4.4089
(𝑠+8.1217+9.001j) (𝑠+8.1217−9.001j) Stable

MATLAB
pidtune

0.3102𝑠+4.450
(𝑠+6.8362+12.0448j) (𝑠+6.8362−12.0448j) Stable

Tab. 4. Transfer functions of closed loops for PI controllers.

Method 𝐶1 𝑅1
SLF 8.2869 μF 2.725 kΩ
GLF 2.0436 μF 2.2681 kΩ

MATLAB pidtune 1.5663 μF 2.2472 kΩ

Tab. 5. Values of components.

Fig. 1. Simulation schematic for PI controllers.
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Fig. 2. Step responses of closed loops with PI controller.
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4.2 Example 2
A system in the form

𝐹s (𝑠) =
1

𝑠( 13 𝑠 + 1)
(48)

was chosen for the second example. For this system, a PD
controller will be designed. The realization constant 𝜖 =

𝑇d
100

for the PD controller was chosen. The parameters 𝜂 = 0.7 and
𝜔𝑛 = 17.14 rad/s were selected for the ideal loop. They are
the same as in the previous example, so the open loop is de-
scribed by (44), and the closed loop is described by (45). The
plant transfer function is integer-order, thus all computations
were made in the operator domain. Spectrum coefficients of
the desired open loop and plant transfer function in GLFs
and SLFs base are in Tab. 6. Table 7 shows the values of
parameters for the desired PD controller.

Closed loopswere computed for all designed controllers
to analyze stability according to Sec. 3.3. Closed loops in this
example are of integer orders so 𝑞 = 1 and when all poles
are in left half of the complex plane the system is stable.
Transfer functions for each method are shown in Tab. 8 and
the stability is discussed.

All designed controllers were simulated in Micro-Cap.
Simulation schematic is in Fig. 3. The operational ampli-
fier 𝑋2 realizes the derivative part of the PD controller, 𝑋3
realizes the proportional part of the PD controller and 𝑋6
realizes the realization constant of the PD controller. From
parameters in Tab. 7 and equations (39)–(42) flows that

𝐶1 =
𝑇D
𝑅3𝑘c

, (49)

𝑅1 =
𝑅2
𝑘c
, (50)

𝑅11 = 𝑅12, (51)
𝐶2 =

𝑇D
100𝑅12 . (52)

Values for resistors 𝑅2, 𝑅3 and 𝑅12 were chosen as 𝑅2 = 𝑅3 =
𝑅12 = 10 kΩ. Designed values of the rest components for all
controllers are in Tab. 9.

As you can see from Tab. 7, GLFs offer, also in this
example, slightly lower approximation error than SLFs, but
in Fig. 4 you can see that solutions for GLFs and SLFs are al-
most the same. Solutions obtained by SLFs and GLFS both
are much better than solution obtained by MATLAB pid-
tune. Also you can see that simulation in Micro-Cap offers
the same results as calculated in Matlab.

𝑓0 𝑓1 𝑓2 𝑓 ′
0 𝑓 ′

1 𝑓 ′
2

GLFs 0.2967 0.1103 –0.0299 0.2463 0.5282 0.2075
SLFs 0.2349 –0.2126 –0.1462 0.3676 0.3676 0

𝑙0 𝑙1 𝑙2 𝑙′0 𝑙′1 𝑙′2
GLFs 7.0213 2.6762 –0.5650 0.2463 0.5282 0.2075
SLFs 4.1072 –2.7694 –2.2550 0.3676 0.3676 0

Tab. 6. Spectrum coefficients of the open loop and plant.

Method 𝛼 𝜆 𝑇d 𝑘c err
SLF 0 0.9251 0.2413 15.3404 0.0019
GLF 0.8549 0.5600 0.1668 23.6441 0.0015

MATLAB
pidtune - - 0.0697 63.80 0.0043

Tab. 7. Parameters for PD controller.

Method Transfer function Stability

SLF 15.3404+3.7016𝑠
(𝑠+402.978) (𝑠+9.2976) (𝑠+5.0904) Stable

GLF 23.6441+3.9438𝑠
(𝑠+587.51) (𝑠+7.51+4.01j) (𝑠+7.51−4.01j) Stable

MATLAB
pidtune

63.80+3.9438𝑠
(𝑠+1421.3) (𝑠+8.2+11.2j) (𝑠+8.2−11.2j) Stable

Tab. 8. Transfer functions of closed loops for PD controllers.

Method 𝐶1 𝑅1 𝐶2 𝑅11
SLF 370.16 μF 651.87Ω 241.3 nF 10.00 kΩ
GLF 394.38 μF 422.94Ω 166.8 nF 10.00 kΩ

MATLAB
pidtune 444.69 μF 156.74Ω 69.70 nF 10.00 kΩ

Tab. 9. Values of components.

Fig. 3. Simulation schematic for PD controllers.
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4.3 Example 3
Fractional order systemwith the following transfer func-

tion was chosen as the last example

𝐹s (𝑠) =
2

𝑠2.3 + 𝑠1.4 + 7𝑠0.8 + 4
. (53)

An integer-order PI controller was designed for this plant.
For ideal loop, parameters 𝜂 = 0.7 ans 𝜔𝑛 = 3.2 rad/s were
chosen. The desired open loop is

𝐹0 (𝑠) =
10.24

𝑠(𝑠 + 4.48) (54)

and the closed loop is

𝐹0 (𝑠) =
10.24

𝑠2 + 4.48𝑠 + 10.24
. (55)

The plant in this example is the fractional-order, thus
the spectrum coefficients for the plant were computed in the
time domain. The spectrum coefficients of the desired open
loop and the plant are in Tab. 10. Values of PI controller pa-
rameters are 𝛼 = 1.0408 × 10−16, 𝜆 = 2.9203, 𝑇i = 0.63195
and 𝑘c = 4.6079.

With the designed PI controller the transfer function of
closed loop is

5.8239𝑠 + 9.2158
0.63195𝑠3.3 + 0.63195𝑠2.4 + 4.4237𝑠1.8 + 8.3517𝑠 + 9.2158

.

(56)

For the denominator polynomial of the transfer function of
the closed loop the largest 𝑞 is 𝑞 = 0.1. After substitution
𝑠0.1 = 𝐹 the denominator polynomial is

0.63195𝐹33+0.63195𝐹24+4.4237𝐹18+8.3517𝐹10+9.2158.
(57)

This polynomial has 32 roots and only 4 of this roots are
physical (according to Sec. 3.3) and have impact on stability.
These roots are

𝐹17,18 = 1.1194 ± 0.2330j,
𝐹21,22 = 0.9942 ± 0.2612j.

None of this roots lays in angle region
(
−0.1𝜋
2 , 0.1𝜋2

)
so the

system is stable.

This designed controller was simulated in Micro-Cap.
Simulation schematic is in Fig. 1. The transfer function was
changed in the block 𝑋5 in conformity with this example.
Operational amplifiers 𝑋2 and 𝑋3 have the same meaning as
in Example 1. Values for 𝐶1 and 𝑅1 were calculated accord-
ing to (46) and (47). Values for resistors 𝑅2 and 𝑅3 was
chosen 𝑅2 = 𝑅3 = 10 kΩ. Calculated values of 𝐶1 and 𝑅1
were 𝐶1 = 13.715 μF and 𝑅1 = 2.1702 kΩ.

As you can see in Fig. 5 the results from simulation in
Micro-Cap are the same as results computed in Matlab. It is
obvious that this method is capable to design PI controllers
also for fractional-order plants.
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Fig. 5. Step responses of closed loops with PI controller for frac-
tional order plant.

Coefficient 𝑓0 𝑓1 𝑓2 𝑓 ′
0 𝑓 ′

1 𝑓 ′
2

GLFs 0.1315 –0.2016 0.0581 - - -
Coefficient 𝑙0 𝑙1 𝑙2 𝑙′0 𝑙′1 𝑙′2
GLFs 0.0980 –0.1754 0.0611 0.2069 0.2069 0

Tab. 10. Spectrum coefficients of the open loop and plant.

5. Conclusion
A method for design of the PID controllers using GLFs

was described in this paper. As was shown this methodworks
quite well and is also usable for fractional order systems. This
procedure offers better results than the procedure based on
SLFs. This method will probably work for design PI𝜆D𝜂

controllers, but there will be a challenge to choose correct
orders for PI𝜆D𝜂 . PI𝜆D𝜂 controllers could be realized us-
ing operational amplifiers when we replace capacitors with
constant phase elements designed according to paper [33].
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