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Abstract. Spectrum map (SM) is an important tool to re-
flect the spectrum usage in the electromagnetic environ-
ment. To address the problems of low precision and poor 
efficiency in the SM construction, this paper develops 
a novel SM construction approach based on the artificial 
bee colony enabled sensor layout optimization and an 
adaptive Kriging model based on spatial autocorrelation. 
Considering the significant autocorrelation between sensor 
attributes caused by the exponentially decaying shadow 
fading of signal propagation, the sensor estimation groups 
are established, and the estimation results are obtained by 
the Kriging model. The simulation results show that the 
proposed SM construction scheme can not only effectively 
reduce the overhead of sensor resources but also obtain 
a high SM construction accuracy. Extensive simulation re-
sults show that the proposed method can reduce the RMSE 
of SM construction by 37.56%, 25.32% and 12.89% re-
spectively compared with Random-OK when the standard 
deviation of shadow fading is 1 dB, 3 dB and 6 dB. 
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1. Introduction
With the rapid development of the 5G era, the Inter-

net of Things, artificial intelligence, Internet of Vehicles, 
unmanned driving, industrial control, and other fields have 
ushered in an unprecedented growth trend. In order to cope 
with the rapidly increasing frequency demand and the 
increasingly severe "spectrum deficit" [1], cognitive radio 
[2], [3] technology has been proposed and developed rap-
idly. The core idea is to perceive and understand the electro-
magnetic environment, adaptively adjust the working 
parameters of the radio system, such as frequency, power, 

modulation type, and coding methods, etc., to adapt to the 
external wireless environment. The SM visualizes the re-
gional electromagnetic environment by aggregating the 
usage of the electromagnetic spectrum in a certain area, 
including the frequency, intensity, location, historical 
change law and other spectrum data of each signal. It can 
be used for cognitive radio systems to grasp the occupancy 
of the surrounding electromagnetic spectrum, to scientifi-
cally select available frequencies, and to avoid potential 
frequency conflicts [4], [5]. 

The spectrum data required for the SM usually comes 
from the spectrum sensing networks composed of sensors 
with radio signal monitoring, receiving and processing 
capabilities, such as the cognitive communication networks 
composed of cognitive radio nodes and the specific spec-
trum monitoring network [6]. Studies have shown that the 
layout of the sensor nodes in these networks has a great 
impact on the generation performance of the SM. Due to 
the limitation of the signal acquisition cost and hardware 
calculation of radio frequency equipment, the goal of the 
SM construction is to perform accurate spectrum recon-
struction with limited sensors. Karaboga proposed an artifi-
cial bee colony (ABC) algorithm to simulate the foraging 
process of the bee colonies to solve the multi-dimensional 
multi-peak and valley optimization problem [7]. Therefore, 
the artificial bee colony algorithm, which has the character-
istics of fewer control parameters, simple calculation, and 
easy implementation, provides a solution for sensor loca-
tion selection. Due to the non-cooperative nature of radia-
tion sources, it is difficult to obtain accurate prior infor-
mation on transmitters and propagation models. The per-
formance of current indirect and hybrid methods is highly 
correlated with the accuracy of prior information and they 
are therefore not applicable to this problem. Among the 
direct methods, the Kriging method is a method for spatial 
modeling and interpolation of random fields and random 
processes based on covariance functions [8]. It can use the 
spatial correlation between monitoring data to complete the 
construction of high-precision SMs [9]. In [10], an adap-
tive OK interpolation method based on the affinity propa-
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gation clustering algorithm (APCA-OK) was proposed to 
construct the radio environment map (REM) in an efficient 
manner. The "size of the adaptive estimation group" in [10] 
was obtained from the experiments of the estimation group 
based on accuracy and running time, which cannot be ad-
justed in time in the face of the unknown spectral environ-
ment. In [11], an MCS-based REM prototype system was 
proposed, and ordinary Kriging interpolation was applied 
to construct a SM. In the process, Kriging interpolation did 
not make any improvements. The experimental results 
show that the adaptive Kriging model has better perfor-
mance. In [12], each decision variable was a given node, 
and the solution of the node was assumed to be the "path" 
traversed by ants, which was consistent with the original 
heuristic ant colony optimization (ACO) framework. The 
improvement of the ABC proposed in this paper lies in the 
design of a new perturbation mechanism based on spectral 
graph construction. 

However, SM construction mainly faces two 
challenges. 

Firstly, the relationship between the accuracy of the 
SM and the sensors location is not clear enough. Most 
existing work selects sensors by random sampling to return 
sample data for constructing SMs. For the traditional ran-
dom sampling layout [13], [14], increasing the number of 
sensors was the most effective solution for the complex 
and confrontational application environment. At the same 
time, it brought the problems of increased data return and 
calculation overhead, unreliable links, and so on [15]. Ma-
rek Suchanski focused on the impact of sensor deployment 
on the quality of the constructed SMs, and proved through 
experiments that increasing the number of sensors was 
beneficial when the number of sensors was small, but con-
tinuing to increase the number could not bring significant 
accuracy improvements [16]. Therefore, if the inherent 
characteristics of the spatial spectrum situation can be fully 
exploited, it is possible to construct SMs with less data 
requirements. 

Secondly, the spatial correlation between sensors has 
not been fully considered in the SM construction process. 
In [17–19], the spectrum situation of multiple frequency 
points with multiple time slots was described as an “im-
age”, and an idea of image inference was proposed to con-
struct and to predict the spectrum variation trend. How-
ever, these works only dealt with the spectrum data in the 
time-frequency dimension, without incorporating geo-
graphic location, nor considering the correlation between 
sensors under different signal propagation models. In  
[20–22], the SMs were constructed by interpolating or 
mapping known data to unknown points, without consider-
ing the correlation between sample attributes caused by the 
electromagnetic propagation.  

In response to the above challenges, this paper uses 
the artificial bee colony algorithm to select the optimized 
sensor selection in a limited number of sensors to adap-
tively construct SMs. The main contributions of this paper 
are summarized as follows: 

 The sensor location selection is optimized using 
an artificial bee colony algorithm. The optimization 
process sequentially performs sensor weight pro-
cessing and selects a new sensor layout with the least 
fitness of the artificial bee colony. The comparison 
confirms that the proposed sensor layout optimization 
selection outperforms random layout selection with 
less SM error. 

 An adaptive Kriging (AK) model SM construction 
method is proposed. It uses spatial autocorrelation to 
establish estimation groups of unknown points, and to 
construct the SMs adaptively, which overcomes the 
shortage of the weight coefficient allocation in the 
ordinary Kriging interpolation process. The perfor-
mance comparison shows that the proposed SM con-
struction scheme has better performance. 

The rest of this paper is organized as follows. The 
second section introduces the scene model of this paper. 
Section 3 proposes the sensor layout optimization selection 
based on artificial bee colony algorithm and the SM con-
struction method based on spatial autocorrelation adaptive 
Kriging model. Section 4 presents the simulation analysis 
results and the discussion. Finally, a summary is given in 
Sec. 5. 

2. System Model 

2.1 Network Architecture 

Multiple radiation sources and a set of sensors are 
arranged in the focused area, where the locations and the 
transmit powers of the radiation sources are unknown. The 
sensors measure the received signal strength (RSS) denoted 
by P(mi), where mi is the sensor location. The received 
signal power of the sensor can be modeled as: 

 T 10 p( ) 10 log ( )
ii i mP m P K m m W      (1) 

where PT is the transmitting power, K is the path loss factor 
of free space,  is the path loss exponent, the point mp rep-

resents the position of a certain radiation source,   repre-

sents the Euclidean distance between two vectors, and Wmi 
is the shadow loss at the point mi which obeys the lognor-
mal distribution and satisfies the standard deviation  [23]. 
Therefore, the correlation coefficient between point mi 
shadow fading Wmi and mj shadow fading Wmj is [24]: 
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where dcor is the correlation distance when i,j = 1/e is satis-
fied [24]. In this case, the shadow correlation coefficient 
i,j  decreases exponentially as the distance between receiv-
ers increases. 
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2.2 Problem Model 

The general flow of the SM construction process is 
shown in Fig. 1. The problem model is divided into three 
operations: collecting measurements from sensors, select-
ing sensors, and evaluating field strength or power values 
at arbitrary locations. 

Assume that the given area grid set is N  and the sen-
sors set is M, the subset sensor set M* M is selected as 
the sensors used to construct the SM. The number of the 
selected sensors is denoted by M*= M*. The goal of this 
paper is to select the optimized set M* under the candidate 
set M and the positions of each sensor in the area, so as to 
minimize the error RMSE between the estimated and actual 
field strength of the constructed SMs. The RMSE is de-
fined by: 

 
N

2

1

1
( )

i jn n
i

RMSE PP
N 

   (3) 

where P̂ni  is the estimated RSS of all points in the grid, Pnj
 

is the real value, and N is the total number of grids. 

Effective independence method (EFI) is currently one 
of the most widely used methods in the optimal arrange-
ment of sensors [25]. The core idea of this method is to 
keep the measurement points that contribute the most to the 
independence of the target modal vector as much as possi-
ble, so as to obtain as much modal information as possible 
in the case of limited sensors. As an unbiased estimate, the 
covariance matrix of the estimation error can be given by: 
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where Q  is the Fisher information matrix. When Q  takes 
the maximum value, the covariance P  of the estimation 
error is the smallest, and the generalized modal coordinates 
can obtain the best unbiased estimation. The Fisher infor-
mation matrix can be represented as follows: 
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where k  is the mode shape corresponding to the k-th 

measuring point, that is, the k-th row of . The vector DE  
for constructing independent distributed states is as 
follows: 

 
11 1 T T( )D 
       E ΦΨ ΦΨ Φ Φ  (6) 

where Ψ  is the normalized eigenvector of 0A ,   is the 

corresponding eigenvalue, and DE  is an effective inde-
pendent assignment matrix that characterizes the linearly 
independent contribution of candidate points to the modal 
matrix. 

According to the idea of independent contribution in 
EFI, this paper introduces contribution weight coefficient 
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Fig. 1. SM building process. 

in artificial bee colony, and designs a new perturbation 
mechanism. 

Then the SM construction problem is modeled as: 

 
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N
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M Μ
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which is a combinatorial optimization problem, and cannot 
be addressed within linear time. To this end, this paper 
proposes a SM construction method that combines the 
sensor selection and adaptive Kriging model to effectively 
obtain an approximate optimal solution to problem (7). 

3. The Proposed SM Construction 
Scheme 
In this section, SM construction scheme is proposed, 

including the optimized sensor selection based on artificial 
bee colony and the construction of SM based on spatial 
autocorrelation adaptive Kriging model. 

3.1 Framework of the Algorithm 

ABC-AK generates the optimized sensor selection ac-
cording to the artificial bee colony, which reduces the cost 
of sensor resources. Among them, the constraints of the 
artificial bee colony perturbation mechanism are updated to 
calculate the weight of each point using the information of 
the known sensors. Based on the sensor estimation groups 
established by spatial autocorrelation, unknown points are 
estimated to improve the accuracy of the SM construction. 
The flow chart of ABC-AK is shown in Fig. 2, where m*

i 
denotes the sensors in the set M* and mi denotes the i-th 
sensor in the set M. 

3.2 Optimized Sensor Selection Based on 
Artificial Bee Colony 

Firstly, we randomly generate initial solutions 

ix ( 1,2,...i NP ) in the search space, in which NP  
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represents the number of employed bees, and each solution 

ix  is a D-dimensional vector. 

Secondly, the new perturbation mechanism and fit-
ness function is generated. The next state is explored by 
swapping randomly selected and unselected sensors. The 
selected sensors are chosen for interpolation, and the unse-
lected sensors are to be interpolated. When selecting 
a sensor to be replaced, the point that has the least impact 
on the interpolation accuracy of the current sensor layout is 
considered here. The number of sensors in the current state 
is M*, denoted by x1,x2,…,xM*. Then, M* times interpolation 
error calculations are used to determine the point in the 
current layout that has the least impact on the sensor inter-
polation accuracy. This point will be discarded preferen-
tially by the scout bee as the sensor with the upper limit of 
exploration in the next state transition. At the same time, 
when selecting the sensors to be inserted, weight ηi  will be 
considered according to the RMSE of each sensor. The 
sensor with a larger weight, with a larger RMSE, has 
a higher probability of being selected, which will speed up 
the optimized selection of sensor layout. Assuming that the 
number of sensors of the target is M, M* sensors are ran-
domly selected as the initial state. Through these M* sen-
sors, the attribute values of the other (M – M*) sensors are 
estimated, and compared with the known values, i.e., the 
root mean square error RMSE is calculated for the artificial 
bee colony decision-making. The equation is given by: 

 
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where *
im

P  is the estimated value of the unselected sensor, 

and *
im

P  is the real data. 

Thirdly, the artificial bee colony is improved. The 
employed bees search for new sensors according to (9), 
generate a new sensor layout, and share the sensor layout 
information with onlooker bees, select the sensor layout 
with the smallest fitness function value according to the 
greedy strategy to maintain the optimal solution. 

 randsrc, ( , , )Dj Mi iv u η  (9) 

where i = 1,2,…,NP, j = 1,2,…,D, randscr() means 
randomly choosing D  points from M points according to 
η, η is  the weight matrix. 

The onlooker bee calculates the selection probability 
of each sensor according to (10) and selects the sensors 
with higher weights according to (9) based on the infor-
mation shared by the employed bee to improve the conver-
gence speed. 

 

1

i
i NP

k
k

p
f

f




  (10) 

where f is the fitness of each solution. 
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Fig. 2. Flowchart of ABC-AK. 

The scout bee discards the sensors that reach the up-
per limit of exploration and have lower weights according 
to (11) to find new valuable sensors to enhance the ability 
to get rid of the local optimum. 

  min max min
ij j ij j ju u r uu    (11) 

where rij is a random number between [0,1]. 

3.3 SM Construction Based on Spatial 
Autocorrelation Adaptive Kriging Model 

Unknown point estimation often utilizes spatial auto-
correlation between sensors to construct SMs. According 
to the spatial correlation, the sensors are deployed closer to 
the unknown point, and its measured value has a greater 
impact on the interpolation result. However, the sensor 
data is not pre-processed according to the electromagnetic 
propagation model in the ordinary Kriging model inter-
polation process. To address this problem, this paper uses 
spatial autocorrelation to establish sensor estimation groups 
and proposes an adaptive Kriging model (AK) based on 
spatial autocorrelation for efficient spectrum recovery. 
While satisfying the accuracy and efficiency criteria, the 
key step of AK lies in how to use spatial autocorrelation to 
find estimated groups from randomly deployed sensors, to 
select a suitable semivariogram (SV) fitting model, and to 
obtain estimated values through the Kriging model. 

The first step is to find the sensor estimation group. 
Signals under the propagation model of (1) usually exist in 
the form of clusters, and the void area is much larger than 
the spectrum occupied area. So theoretically the spatial 
autocorrelation of the SM is significant. The most com-
monly used statistic is Global Moran’ I, which is mainly 
used to describe the average degree of association of all 
spatial units with surrounding areas in the entire area. The 
equation is as follows [26]: 
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where I  is Moran’ I, and its value range is generated ran-
domly between [–1,1]. I > 0 means that the attribute values 
in the target area have a positive correlation in space. I = 0 
represents a random distribution within the target area, 
with no spatial correlation. When I < 0 indicates that the 
attribute values in the target area have negative correlations 

in space. 0
1 1

n n

ij
i j

S w
 

   n  is the total number of space 

units, zi and zj represent the attribute values of the i space 
unit and the j space unit respectively. z  is the mean value 
of the attribute values of all space units; wij represents the 
spatial weight. The decorrelation distance dcor is defined by 
the Moran index for the unknown point s0. As shown in 
Fig. 3, a set 0  of sensor estimates for point s0 is estab-
lished from the decorrelation distance dcor. 

The second step is to fit the SV. The SV is the core 
part of the Kriging model, which quantitatively describes 
the variable characteristics of the entire region. Equation 
(13) is defined according to [9]. 
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where si is (xi,yi), dij is the distance between the point (xi,yi) 
and the point (xj,yj), and N(dij) is the number of points 
whose distance is dij. It selects an appropriate theoretical 
model to fit an optimal theoretical SV curve, which can 
more accurately reflect the variation law of variables. The 
SV conforms to the first law of geography and has similar 
properties in space [27]. Its theoretical models mainly 
include the pure gold nugget effect model, spherical model, 
exponential model, Gaussian model. It has been proved by 
(2) that the spatial shadow fading coefficient follows 
an exponential decay, so the fitting of the SV adopts 
an exponential model and is fitted by least squares: 

 0( ) 1 exp
h

h C C
a

          
 (14) 

where h  is the distance between any two points, C0 is the 
nugget constant, C0 + C is the base value, and a is the step 
length corresponding to the intersection of the model's 
tangent at the origin and the base value. 

The third step is to establish an adaptive Kriging 
model. From the sensor samples, the sensor whose distance 
from the estimated point (x0,y0) is less than the decorrela-
tion distance dcor is selected to establish a sensor estimation 
group 0. It calculates the SV value ij between sensors in 
the estimated group and the SV value between each sensor 
and the estimated point according to (13). Then, the weight 
coefficients i are obtained by solving a set of linear equa- 

Unknown 
point

dcor

Sensors of the s0 
estimation group

 

Fig. 3. Estimated set of unknown points. 

tions called the Kriging model by the Lagrange multiplier 
method, and the linear system is given by: 

 0
1 1

0
n n

i i ij
i i

   
 

      (15) 

where ij is the SV value between position (xi,yi) and posi-
tion (xj,yj),  is the Lagrange multiplier. The weight coeffi-
cient i is the set that can satisfy the minimum difference 
between the estimated value P̂0 at point (x0,y0) and the real 

value P0, also satisfies the condition  0 0 0E P P   for 

unbiased estimation. 

Finally, the estimated point value P̂0 is calculated 
according to (16) 

 
1

0

n

i i
i

P P


   (16) 

where P̂0 is the estimated value (x0,y0) of an attribute at 
point, and Pi is the sample data value. 

4. Experimental Results and 
Discussion 

4.1 Setup 

In this section, the performance of the proposed SM 
construction scheme will be evaluated through simulation 
and real data evaluation. The experiment randomly selects 
1000 sensors from all the sensors as known sensors, and 
selects different numbers of the given available sensors as 
the input of the experiment to output the sensor layout with 
the highest accuracy of the spectrum map. In the case of 
different shadow fading standard deviation, the SM con-
struction performance of different algorithms is analyzed 
and compared. The parameters’ setting is shown in Tab. 1. 

The real data experiment adopts the dataset published 
by Jakob Thrane et al. [28] on IEEE Dataport [29]. The 
data is real spectrum data measured at 811 MHz and 
2630 MHz using Rohde & Schwarz (R&S) TSMW [30], 
including signal power, signal-to-noise ratio, signal recep-
tion strength, etc., and each measurement is synchronized 
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Parameter Value 
Field dimension 100 × 100 m2 

Signal transmission power (PT) 30 dBm, 26 dBm, 24 dBm
Signal transmission cartesian coordinates (20,80), (80,80), (80,20) 

Signal frequency 1000 MHz 
Path loss factor K 10 dBm 

Path loss exponent  2 
Shadow fading standard deviation () 1 dB, 3 dB, 6 dB 

Tab. 1. Propagation model simulation parameter values. 

with GPS positioning. The experiment was measured on 
the campus of the Technical University of Denmark. The 
mobile spectrum observation device traveled about 14 km 
and generated about 60,000 data points. All random experi-
ment results in simulation experiments and real data are the 
average of 500 random experiments. Accuracy is an im-
portant criterion for algorithm performance, so the mean 
square error (RMSE) is used to analyze the accuracy of the 
RMSE construction, which can be expressed as: 

  2

1 1

1
( )j

l w

ij
i j

iRMSE P
l w

P
 

 
   (17) 

where l and w are the length and width of the target area, 
respectively, P̂ij is an interpolation estimate, and Pij is a real 
value. 

4.2 Comparison Based on Simulated Data 

Firstly, the performance of the proposed is compared 
with the counterparts based on the simulation data. As 
shown in Fig. 4, Fig. 5 and Fig. 6, four different algo-
rithms, including Random-OK, Random-AK, ABC-OK, 
and ABC-AK SM construction performance, are compared 
and analyzed based on the different  of the simulation 
data. It can be seen that the RMSE of the four algorithms 
increases with the increase of , and ABC-AK performs 
better than that of the other three algorithms, indicating that 
ABC-AK has strong robustness. When the numbers of 
sensors are less than 300, under the same construction 
method, the sensor-optimized selection performs better 
than the randomly selected spectrum construction. With 
same sensor selection method, adaptive Kriging has better 
SM construction performance than ordinary Kriging. 

R
M

S
E

(d
B

m
)

 

Fig. 4. Performance comparisons for  = 1 dB. 

 

Fig. 5. Performance comparisons for  = 3 dB. 

 

Fig. 6. Performance comparisons for  = 6 dB. 

(a)

(c)(b)

(e)(d)

 

Fig. 7. (a) Original SM of simulation, (b) ABC-SA, (c) Ran-
dom-IDW, (d) Random-Splines, (e) Random-NN. 
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When  is 3 dB and the number of sensors is 100, 
performance visualizations are made in Fig. 7 to intuitively 
present the construction performance of the above ABC-
SA, Random-IDW, Random-Splines and Random-NN 
algorithms on localization, source signal strength and SM. 
It can be found that the ABC-SA algorithm has good per-
formance in all aspects. 

4.3 Test Result on Real Data 

Secondly, the SM construction of the proposed algo-
rithm is evaluated based on the real measured data. As 
shown in Fig. 8, based on the measured data, the RMSE of 
four different algorithms for constructing the SM is com-
pared and analyzed, including Random-OK, Random-AK, 
ABC-OK, and ABC-AK. It can be seen that the RMSE of 
all algorithms decreases with the increase of the number of 
sensors, and ABC-SLO-SA-AK has the best performance 
in the SM construction. Under the sensor optimization 
selection, the RMSE of ABC-AK is reduced by 0.30 dBm 
on average compared with ABC-OK. Under the random 
selection of sensors, the RMSE of the Random-AK is 
0.38 dBm lower than that of the Random-OK. Under ordi-
nary Kriging construction, the RMSE of ABC-OK is 
0.71 dBm lower than that of Random-OK on average. 
Under the adaptive Kriging construction, the RMSE of the 
ABC-AK algorithm is on average 0.63 dBm lower than 
that of the Random-AK. In the experiment, the AK algo-
rithm has better performance than the ABC-SLO algo-
rithm. The reason is that AK algorithm adopts an adaptive 
estimation group, which reduces the influence of low-
correlation sensors on the interpolation error and is more 
conducive to generating the optimized layout. 

As shown in Fig. 9, in order to further demonstrate 
the broad effectiveness of the algorithm, this paper com-
pares different SM construction algorithms based on meas-
ured data, including ABC-SA, IDW [31], NN [32], and 
Splines. It can be seen that the RMSE of each algorithm 
decreases with the increase of the number of sensors, 
which indicates that increasing the sample sampling rate is 
an important factor to improve the accuracy of the  
SM. Among the four algorithms, the RMSE of the ABC-AK 

 

Fig. 8. RMSE comparisons. 

 

Fig. 9. RMSE based on real measurement data. 

algorithm is always smaller than the other three algorithms 
and is 1.80 dBm, 1.53 dBm, 0.97 dBm lower than the 
RMSE of the Random-NN, Random-Splines, Random-
IDW, respectively. It is proved that the ABC-SLO-SA-AK 
algorithm has better performance than other algorithms in 
practice. 

5. Conclusion 
In this paper, SM construction method based on opti-

mized sensor layout selection and adaptive Kriging model 
in sensor networks is proposed to achieve high-precision 
SM construction. The simulation results show that the 
proposed SM construction scheme can not only effectively 
reduce the overhead of sensor resources but also obtain 
a high SM construction accuracy. The analysis based on 
the measured data shows that ABC-AK provides a feasible 
solution for the problem of regional SM construction under 
the condition of sensor sparse. The future work will mainly 
focus on the construction methods of high-precision SMs 
for different environments and application constraints. 
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