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Abstract. Device-to-Device (D2D) communication is 
a potential technology to improve the spectral and energy 
efficiency (EE) of communication networks. In this paper, 
we study energy-efficient power allocation (PA) schemes in 
uplink distributed antenna system (DAS) with device-to-
device underlay communication. Our goal is to maximize 
the total EE of all D2D pairs while guaranteeing the data 
rate and transmit power requirements of the cellular user 
and D2D links. To solve this non-convex constrained opti-
mization problem, we propose an energy-efficient near-
optimal PA algorithm based on the concave-convex proce-
dure and fractional programming theory. This near-opti-
mal algorithm can achieve the EE performance close to the 
optimal exhaustive search. To reduce the complexity, we 
furthermore present an efficient sub-optimal algorithm 
with the antenna selection method which can obtain the 
closed-form power allocation expressions. Simulation 
results demonstrate the significant EE performance of our 
proposed PA schemes. 

Keywords 
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1. Introduction 
Recently, with the increasing demand for energy re-

sources and the requirements for higher data rates, green 
communication has attracted considerable attention in 
communication networks [1], [2]. The major goal of green 
communication is to pursue higher spectrum efficiency 
(SE) and energy efficiency (EE). Therefore, how to im-
prove EE performance has become a critical issue in mo-
bile communication systems. 

As a potential green technology in next-generation 
networks, Device-to-Device (D2D) communication allows 
direct communication between two adjacent devices. This 

short-range communication can improve the system EE and 
enhance the reliability of communication links with re-
duced energy consumption [3], [4]. Distributed antenna 
system (DAS) is proved as an effective green communica-
tion technology for increasing the EE and improving the 
coverage which has attracted worldwide research interest 
[5], [6]. By proper coordination, D2D communication and 
DAS can greatly increase network capabilities, EE, and 
reduce energy consumption. 

Some related references have discussed the effective 
power allocation (PA) schemes in D2D communications 
[7–13]. The authors in [7] considered optimal resource 
allocation for energy-efficient D2D communications in 
an overlay cellular network. The authors in [8] jointly 
considered the cellular user (CU)-D2D matching and rate 
maximization problems. The proposed power control 
scheme can efficiently find feasible solutions. In [9], 
a resource allocation method for maximizing the system 
throughput in D2D communication system was studied. 
The authors in [10] investigated power consumption mini-
mization and beamforming design in a cellular system 
underlying D2D communications, which assumed that the 
base station is not aware of the channel state information. 
In [11], the authors presented a robust power allocation 
problem in downlink D2D communication underlaying 
unmanned aerial vehicle (UAV)-assisted networks. In [12], 
a D2D underlaying non-orthogonal multiple access 
(NOMA)-based cellular network with resource allocation 
was studied. The authors in [13] developed the productive 
resource control algorithm with the goal of EE maximiza-
tion in D2D communication-assisted cellular networks. In 
addition, the authors also addressed a distributed method to 
realize optimal EE performance. In [14], the authors jointly 
studied power and channel allocation schemes for EE 
maximization. The authors also analyzed the important 
characteristics of D2D underlay communication which 
provided a theoretical basis for future research. In [15], the 
authors studied an alternating optimization scheme to solve 
the sum-rate maximization problem under the requirements 
of data rates. The optimization problem of weighted sum 
EE maximization was solved by fractional programming 
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theory in [16]. The authors jointly optimized the band-
width, power allocation, and relay selection. The studies in 
[17] proposed a beneficial iterative scheme based on D2D-
CU matching strategy for maximizing EE in downlink 
D2D communication networks. Meanwhile, the quality-of-
service (QoS) and power constraints of CUs were guaran-
teed. 

The above works are all based on the D2D communi-
cations in co-located antenna system (CAS). There are 
some research works about resource allocation and EE 
optimization in DAS and D2D communication [18–21]. In 
[18], the authors developed an energy-efficient PA scheme 
in the uplink DAS with D2D communication, which only 
considered individual D2D pair. In [19], the authors pre-
sented a multiple criteria scheme to optimize EE in down-
link DAS. In addition, the requirements of transmit power 
and data rates were guaranteed and an optimal scheme was 
developed to allocate the available power. The authors in 
[20] proposed an effective PA method to maximize EE in 
downlink DAS. The optimal solution as a closed-form can 
be derived with reduced computational complexity. The 
studies in [21] presented PA criteria to obtain the optimal 
SE and EE performance in a downlink system. The results 
confirmed the advantages of D2D communication in DAS. 
It is observed that the above articles are focused on EE 
performance in downlink D2D communication underlaying 
DAS. To the best of our knowledge, there is less research 
on the problem of considering together with multiple D2D 
pairs in the uplink DAS scenario. 

Inspired by aforesaid observations, we present the EE 
maximization problem for the uplink D2D communication 
underlaying DAS over composite Rayleigh fading chan-
nels. Specifically, the scenarios of multiple D2D pairs are 
considered and two effective PA algorithms are proposed 
to improve the EE. The contributions of this paper are 
summarized as follows:  

 The multiple D2D pairs and uplink communication 
scene are considered in the system model. Subject to 
the constraints of minimum rate and maximum trans-
mit power of CU and D2D pairs, we formulate a con-
strained non-convex EE maximization problem. 

 To solve the non-convex optimization problems, 
an alternating iterative algorithm is proposed. Then 
the concave-convex procedure (CCCP) algorithm is 
presented and the objective function is transformed 
into a sub-tractive form with fractional programming 
(FP) theory. The results show that the proposed PA 
algorithm can achieve the EE performance close to 
the exhaustive search.  

 To further reduce the complexity, a sub-optimal algo-
rithm based on the antenna selection is designed. 
Moreover, the closed-form PA of CU is derived and 
the complexity is reduced. The sub-optimal algorithm 
can achieve excellent performance in terms of EE. In 
addition, the computational complexities are analyzed.  

The rest of the paper is organized as follows. The sys-
tem model of D2D-DAS is introduced and the EE maximi-
zation problem is formulated in Sec. 2. Section 3 presents 
two effective PA algorithms and gives the complexities of 
algorithms. The results and analysis are shown in Sec. 4 
and the conclusion is summarized in Sec. 5. 

2. System Model and Problem 
Formulation 

2.1 System Model 

In this section, we model the uplink single-cell multi-
ple D2D pairs underlay communication in DAS. Let K 
(k = 1,…, K) denote the total number of D2D pairs. One 
CU intends to communicate with N (i = 1,…, N) remote 
antenna units (RAUs) while several other D2D pairs are 
communicating with the same spectrum. The RAUs are 
uniformly distributed in the cell. We consider that the CU 
and K D2D pairs share the same spectrum. For conven-
ience, each user is equipped with a single antenna and has 
a maximum power constraint, i.e., pc  Pmax,c and 
pk  Pmax,d. The system model with D2D-enabled DAS is 
shown in Fig. 1. 

The signal to interference plus noise ratio (SINR) of 
the uplink DAS is expressed as  
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Fig. 1. D2D underlay communication in DAS. 
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The achievable rate of CU is given by 
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The achievable rate of the k -th D2D users is 
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where ,
c
c ig  and ,

c
k ig represent the channel gains from the CU 

and the k-th transmitter of D2D to the i-th RAU’s receiver, 
respectively. 

,
d
c kg  and

,
d
m kg are the channel gains from the 

CU and the m-th transmitter of D2D to the D2D receiver k, 
respectively. 

In this paper, the composite fading channel included 
path loss and Rayleigh fading is considered. Accordingly, 
the channel power gains are listed as follows 
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where  is the path loss exponent. dc,i and dk,i indicate the 
distances from CU and the k-th D2D user to the i-th RAU’s 
receiver, respectively. dk,k and dm,k are the distances of the 
k-th and m-th D2D pair from D2D transmitter to D2D 
receiver. dc,k represent the distance from CU to the D2D 
receiver k. hc,i and hk,i denote the small-scale fading coeffi-
cients between CU and RAU and between the k-th D2D 
and RAU. hk,k and hm,k are the small-scale fading coeffi-
cients of the k-th and m-th D2D pair from D2D transmitter 
to D2D receiver. hc,k denote the small-scale fading coeffi-
cient between CU and D2D pair k. 

2.2 Problem Formulation 

Based on the definition, the EE of all D2D users can 
be expressed as the ratio of the total rate and the total 
power consumption [5], [6], i.e., 
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where Ps means the static circuit power consumption with 
a constant value. 

For the uplink multi-D2D pairs underlay communica-
tions in DAS, we formulate the objective problem for EE 
maximization under minimum rate requirements and maxi-
mum transmit power constraints, which can be written as 
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min,s.t. ,c cR R    (6a) 

 
min, ,d dR R    (6b) 

 
max,0 ,c cp P     (6c) 

 
max,0 ,    1,...,k dp P k K    (6d) 

where  1, , ,k Kp p pp    represents the power alloca-

tion vector of the D2D pairs. The observations reveal that 
the function in objective problem (6) is non-concave, (6a) 
and (6b) are non-convex constraints. It is very challenging 
and intractable to directly derive the global optimal value 
for the problem (6). Consequently, this EE maximization 
objective problem cannot be directly solved by the existing 
optimization methods, which will be further discussed 
below. 

3. Power Allocation Scheme for EE 
Maximization 

3.1 Near-Optimal PA Scheme 

In this section, we present an efficient PA scheme for 
solving this non-convex problem. We will firstly adopt the 
alternating iterative algorithm [22] to optimize the transmit 
power p of D2D pairs and the power pc of CU. For given 
pc and without considering the inequality in (6a), the objec-
tive problem (6) is transformed into 
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The inequality constraint of the minimum rate Rd has 
a special difference of concave function (D.C.). The se-
quential convex programming (SCP) method can be uti-
lized to convert the non-convex constraint into a series of 
convex constraints. Accordingly, we note that Rd in (4) can 
be rewritten as the subtraction of two concave functions 
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We linearize Rd,2 by using the first-order Taylor 
expansion. R*

d,2 can be expressed as 
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We can get R*
d = Rd,1 – R*

d,2. Therefore, the optimiza-
tion problem in (7) can be transformed into 
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The observations reveal that the function in objective 
problem (10) is still a non-concave one. According to the 
analysis, this special optimization problem can be solved 
by the CCCP method. The objective function can be 
rewritten as 

 
 

1 21

2
2 , ,1 1

2
2 , ,1 1,

( ) ( )

log

log .

K

dk

K Kd d
c c k m m kk m

K Kd d
c c k m m kk m k

R f f

p g p g

p g p g







 

  

 

  

  


 

 

p p

 (11) 

As shown in (11), we can find that the term 
2

, ,1
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   is the linear function in pk.  

According to the concave-preserving property of the 
logarithmic function, f1(p) is the concave one in p strictly. 
Similarly, f2(p) is the concave one in p. 

We adopt the first-order Taylor expansion to linearize 
the f2(p) at the initial value p0  
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where f2(p0) is the gradient of f2(p) at p0  
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As discussed above, given the initial value, the 
problem (10) can be transformed 
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Through analyzing the structure of the objective func-
tion in (14), the denominator F(p) is affine function and the 
numerator 0

T
1 2 02 0( ) ( ) ( )( )f f f  p p p p p  is concave 

one. Hence, the function in (14) is a pseudo-concave one. 
The optimal value of optimization problem (14) can be 
derived correspondingly. Moreover, the fractional form can 
be easily found in this objective function. In terms of the 
fractional programming theory [23], the optimal solution in 
(14) can be obtained by solving the objective problem in 
the transformed subtractive form 
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where 1 is non-negative FP factor and it can be written as 
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Since the converted optimization problem in (15) is 
convex, the optimal solution can be obtained by standard 
convex optimization toolbox, i.e. CVX. Considering the 
high complexity, we adopt an efficient gradient descent 
(GD) algorithm with Armijo rule for obtaining the optimal 
value p*. What’s more, the derivative of η2 w.r.t pk is 
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Furthermore, the optimal value p* can be calculated 
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where p(u) is the u-th iteration of p, ξ is the step size. 

For the near-optimal PA solution we can transform 
the minimum rate constraint (6a) as 
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where min
th2 1R   . Herein, the optimization problem (6) 
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It can be found that η3 is a monotonically decreasing 
function of pc. We can derive two cases of the optimal 
solution for *

cp . 
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The specific procedure of near-optimal power 
allocation algorithm is shown as the Algorithm 1. 
 

Algorithm 1 Near-Optimal Power Allocation Algorithm

1: Initialize iterative index l = 0, initial point ( ) ( )
0 0, ,l l

cp p   

2: Repeat 
3:     Initialize iterative index t = 0, initial point p0

(t)  
4:     Repeat 
5:         Initialize tolerance  > 0, 1 = 0 
6:         Repeat  
7:             Compute p(u +1), η2 and update 1   
8:         Until η2 <   
9:         t = t +1 
10:        Update p0

(t)= p(u +1)  
11:    Until p0

(t) converges 
12:    l = l +1  
13:    Update p0

(l)= p0
(t)  

14:   Fix p0
(l), compute ( )

,0
l

cp  by (21)  

15: Until ( ) ( )
,00 ,l l

cpp converges.  

3.2 Sub-optimal PA Scheme 

Based on the analysis of Algorithm 1, we can find 
that near-optimal algorithm requires more iterative opera-
tions and thus has relatively complexity. Hence, a sub-
optimal PA algorithm based on antenna selection to 
achieve EE performance is further presented. 

According to the inequality in (6a), we can get 
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When selecting one of the RAUs with the maximum 
c,i for communication, pc can be given as 
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optimal value of pc 
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Moreover, the minimum rate requirement can be 
automatically met 
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We transform the constraint (6b) into the convex one 
by using SCP, the original EE optimization problem in (6) 
can be rewritten as 
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It can be found that the function J1 is still a non-
concave one and cannot be solved directly. J1 has a special 
difference of concave function form. Therefore, we utilize 
the CCCP method to transform the objective function. It 
can be transformed as 
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Then we linearize f4(p) through first-order Taylor 
expansion at p0  
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where f4(p0) is the gradient of f4(p) at the initial value p0  
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The optimization problem can be given as  
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We adopt the FP theory to reform the above objective 
function J2 into a concave one and it becomes 
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where 2 is non-negative FP factor 
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The optimization problem (31) is convex, thus the 
optimal solution can be obtained by GD method. Similar to 
the near-optimal PA scheme, we derive the partial deriva-
tive of J3 with respect to pk as 
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Therefore, we can attain the sub-optimal PA  

 ( 1) ( )
sub sub 3* ( )v v J   p p p   (34) 

where ( )
sub
vp  is the v-th iteration of p ,   is the step size. 

The sub-optimal power allocation algorithm is sum-
marized in Algorithm 2. 
 

Algorithm 2 Sub-optimal Power Allocation Algorithm 

1: Initialize iterative index l = 0, initial point p0
(l)  

2: Utilize (24) to compute pc
*  

3: Repeat 
4:     Initialize tolerance  > 0, 2 = 0 
5:     Repeat 
6:         v = v + 1 
7:         Update ( )

sub
vp , compute J3 and 2  

8:    Until J3 <   
9:    l = l + 1 
10:    Update ( )

0
( )
sub

l vp p  

11: Until p0
(l) converges. 

 

3.3 Computational Complexity Analysis 

This subsection exhibits the computational complex-
ity analysis of our proposed algorithms. In Algorithm 1, the 
computational complexity is mainly from optimizing p by 
outer and inner iteration, respectively. Therefore, the 
complexity based on Algorithm 1 can be denoted by 

 0 1 2 12 log(1/ )KL L L  , where L0 is the number of outer 

iterations, L1 and L2 are the numbers of inner iterations, 1 
is the computational accuracy of the GD method. Accord-
ingly, the computational complexity for Algorithm 2 is 
consisted with  3 4 2log(1/ )KL L  , where L3 and L4 are 

the numbers of outer and inner iterations in sub-optimal 
scheme, 2 is computational accuracy of GD method. In 

addition,  1
3(1/ )K   is the complexity of the exhaus-

tive search scheme and 3 is the search accuracy. 

4. Simulation Results 
This section presents the simulation results to demon-

strate the EE performance of our proposed energy-efficient 
PA algorithms. We consider the uplink communication 
scenario in DAS and there are N RAUs. The polar coordi-
nate of RAU1 is (0,0), the (N – 1) RAU’s polar coordinates 

are  3 / 7 , / 3 , 1, , 1r i i N   . The cellular user and 

D2D pairs are randomly distributed in the cell. The trans-
mitter and receiver of the D2D pairs are close enough to 
meet the communication distance requirements. The simu-
lation parameters are summarized in Tab. 1. 
 

Parameters Value 
Cellular radius r 1000 m 

Path loss exponent  3 
Noise power –104 dBm 
Circuit power 1.5 W 

Number of RAUs N 7 
Number of channel realization 1000 

Minimum rate requirement of CU 3 bit/s/Hz 

Tab. 1. Simulation parameters. 

In Fig. 2, the EE performances under different PA 
schemes are compared. We also give the comparison of 
baseline scheme in previous work [18], while assuming 
only one D2D pair. We can find that both EE of our pro-
posed PA schemes are increasing firstly and then stay to be 
a constant with the increase of Pmax, d, which confirms the 
effectiveness of both proposed schemes. The uplink EE 
with the near-optimal PA scheme is shown to be quite 
close to the exhaustive search. Besides, the sub-optimal 
algorithm only has a little EE performance loss within the 
near-optimal algorithm, but the sub-optimal PA algorithm 
has lower complexity since the fewer iteration are com-
puted and the closed-form PA can be derived. 
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Fig. 2. EE with different PA schemes. 

 
Fig. 3. EE with different rate requirements. 

Figure 3 reveals EE performance with different mini-
mum rate constraints of CU. The curves indicate that both 
proposed schemes are effective and meaningful within 
different rate requirements. The EE performance gradually 
increases and then remains stable as Pmax, d increases. It is 
due to the powers of D2D pairs being limited when Pmax, d 
is small. As the increase of Pmax, d, the powers of D2D pairs 
can reach a larger value and the EE will increase corre-
spondingly. However, the EE increases finally to a certain 
value due to the limitation of power constraints. From 
Fig. 3, it also can be concluded that the EE with a lower 
minimum rate outperforms the other higher minimum rate. 
This is because when the minimum rate constraint is high, 
there is a limitation for the transmit powers of D2D pairs to 
prevent interference with CU communication, which 
causes a reduction in energy efficiency. 

Table 2 exhibits the total running time of our pro-
posed algorithms. As illustrated in Tab. 2, we can find that 
the near-optimal PA algorithm and sub-optimal PA algo-
rithm run in less time than the exhaustive search because of 
low complexity. Meanwhile, the sub-optimal PA algorithm 
runs less time than the near-optimal scheme, as expected. 
In addition, the comparison of the running time is also con- 
 

Scheme 
Near-optimal 

scheme 
Sub-optimal 

scheme 
Exhaustive 

search  
Runtime 2577.68 s 93.26 s 14626.63 s 

Tab. 2.  Comparison of running time. 
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Fig. 4. EE performance vs. different path loss exponents. 

 
Fig. 5. EE with different numbers of D2D pairs. 

sistent with the complexity analysis which further 
demonstrates the effectiveness of the proposed algorithms. 

In Fig. 4, we compare the EE performance under 
different path loss exponents for the proposed power 
allocation schemes. Figure 4 illustrates that both EE of the 
near-optimal PA scheme and sub-optimal PA scheme are 
improved when the path loss exponent decreases. This 
phenomenon can be explained as the fact that the increase 
of exponent leads to the increase of path loss and signal 
attenuation, which expands the reduction on the energy 
efficiency. This corresponds to the actual communication 
scenario and further proves the effectiveness and rational-
ity of the proposed schemes. 

Figure 5 gives the EE performance with different 
numbers of D2D pairs. It is clearly demonstrated that the 
EE is improved by the proposed effective PA algorithms. 
We present the uplink EE performance results when there 
are two D2D pairs, three D2D pairs, and four D2D pairs, 
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respectively. It can be indicated that the impact of in-
creased D2D pairs on EE is apparent and EE is signifi-
cantly improved with the growth of D2D pairs. It also 
shows that the sum data rates are increased with the joining 
of more D2D pairs. The results confirm the superiority of 
D2D communication in enhancing system capacity and 
improving energy efficiency.  

5. Conclusion 
In this paper, we have studied the energy-efficient PA 

schemes to maximize EE under the constraints of data rates 
and transmit powers. The energy-efficient near-optimal 
algorithm using alternating iterative and concave-convex 
procedure has been applied to solve the constrained non-
convex problem. Moreover, fractional programming theory 
has also been applied to solve the equivalent objective 
problem. To reduce the computational complexity, an effi-
cient sub-optimal algorithm which can achieve the closed-
form PA is proposed. The simulation results demonstrate 
the effectiveness of our proposed PA schemes and these 
schemes can obtain the beneficial EE performance of D2D 
communication. The above PA schemes are based on the 
single-CU, and we will further investigate the EE optimiza-
tion performance based on multiple CUs and multiple D2D 
pairs in future work. 
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