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Abstract. Based on the sparsity of inverse synthetic aper-
ture radar (ISAR) signal, in this paper, a novel high 
resolution imaging algorithm is proposed. In this method, 
an optimal ISAR signal model based on mixed norm is 
established by using compressed sensing theory. The high-
resolution ISAR image with short coherent accumulation 
time is realized by solving the optimization model. The 
main advantages of the proposed approach are: The model 
makes use of the l2,0 mixed norm to realize faster conver-
gence and improve the computational speed of the model 
solution obviously. Moreover, according to the result spar-
sity of each iteration under arbitrary noise, the regulariza-
tion coefficient in the model can be adjusted adaptively, 
which avoids the complex process of repeated attempts, 
otherwise, the optimal coefficient needs to be estimated and 
attempted by the statistical characteristics of the noise and 
signal. The effectiveness of the proposed method is verified 
by simulated and measured data. 
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1. Introduction 
The imaging process of inverse synthetic aperture ra-

dar (ISAR) is a two-dimensional high-resolution imaging 
process, which static radar conducts range and azimuth 
imaging of moving targets [1]. In conventional ISAR pro-
cess, like Range-Doppler (RD) algorithm, in order to obtain 
high-resolution ISAR image, the target echo data is ob-
tained by the radar first. Then, the range high resolution 
imaging is achieved by sending large bandwidth signals 
and azimuth imaging high resolution achieved by long 
coherent processing interval (CPI) accumulation. Next, 
motion compensation needs to be implemented (including 
range-alignment and initial phase-adjustment). Finally, the 
coherent accumulation of range and azimuth are realized by 
Fourier transform. However, in practical application, ISAR 
targets are non-cooperative and mobile generally, so it is 
difficult to ensure the smooth movement of targets during 

long CPI observation. The data of long CPI will increase 
the complexity of imaging processing and consume more 
storage space. 

In contrast, short CPI observation of the target is more 
conducive to subsequent real-time imaging and recogni-
tion. In short CPI observation, the target movement is 
closer to stable and the scattering characteristics of the 
target are relatively stable. In addition, more 2-dimensional 
ISAR image sequences can be obtained by ISAR imaging 
of short CPI under the condition of the same data length, 
which is very beneficial to imaging calibration [2]. How-
ever, in short CPI observation, the echo number of signal is 
much smaller than that of full aperture, and part of the echo 
data is missing, which obviously affects the Fourier trans-
form process. At this time, the imaging result obtained by 
RD algorithm have low resolution, and the distribution 
characteristics and structure characteristics of target scatter-
ing points cannot be accurately presented, which is not 
conducive to target identification and other subsequent 
operations. ISAR imaging has a feature that the strong 
scattering center of the target occupies only a few pixel 
points in the whole imaging plane, and most of the energy 
of the scattering field is only contributed by a few strong 
scattering points, which indicates that ISAR images have 
strong sparsity [3]. Full-aperture high-resolution ISAR 
images under short CPI observation can be effectively 
achieved by the existing compressed sensing theory (CS) 
[4] based on sparsity of images [5]. 

In view of the above theory, many high-resolution 
imaging algorithms based on CS have been proposed. In 
fact, the purpose of the algorithm is to achieve the high-
resolution reconstruction of target signal, that is, the target 
information is recovered accurately by the short CPI obser-
vation signal in the presence of noise interference. The 
super-resolution imaging algorithm based on ordinary CS 
is proposed [6], which can accurately recover an unknown 
sparse signal from low-dimensional observation data to 
high-dimensional detailed data by solving a minimal-norm 
constrained optimization problem. But the signal and noise 
are treated equally in the CS imaging method, so it cannot 
perform well under the condition of low Signal to Noise 
Ratio (SNR). To solve this problem, an algorithm based on 
weighted compressed sensing (WCS) is proposed [7]. In 
the algorithm, signal and noise are distinguished by 
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weights in different environments, so it has better noise 
tolerance performance to improve the imaging algorithm 
under low SNR image. Although CS and WCS algorithms 
have achieved high-resolution image imaging in the case of 
short CPI, as these two algorithms need to be optimized 
and solved by CVX method, they have great challenges in 
terms of operation complexity and efficiency. Therefore, an 
improved smoothed l0 norm sparse signal reconstruction 
ISAR imaging algorithm is proposed [8], which has good 
results in operation speed and imaging accuracy. However, 
many parameters in it require constant debugging to find 
the best value, so the influence of human factors on imag-
ing results needs to be improved. With the in-depth re-
search, a high-resolution imaging algorithm based on l1 
norm sparse constraint is proposed, which combines the 
conjugate gradient algorithm to ensure the imaging accura-
cy [9]. In this algorithm, a method is derived to recover the 
target image accurately through the observation sample 
information, noise and target statistics information. How-
ever, the speed of the algorithm needs to be improved. 
Another, the sparsity of the sampled signal and noise used 
to estimate the regularization coefficient is not obvious 
enough, so the regularization coefficient determination 
process is cumbersome. In order to improve the efficiency, 
combing the relation between regularization coefficient and 
signal sparsity [10], we propose an adaptive sparse con-
straint ISAR high resolution Imaging algorithm based on 
l2,0 mixed norm. The main advantages of the proposed 
algorithm are  

1) In this algorithm, a sparse constrained optimization
model is established by using the l2,0 mixed norm. The
l2,0 mixed norm combines the advantages of l2 norm
and l0 norm [11], which optimizes the convergence of
the model and improves the computing speed of the
model solution.

2) The regularization coefficient in the model of this
algorithm can be adjusted adaptively according to the
result sparsity of each iteration, and the relatively sta-
ble coefficient can be determined during only a few
iteration cycles. This method avoids the complex pro-
cess of repeated attempts because the optimal coeffi-
cient needs to be estimated by the statistical character-
istics of the noise and signal, so that improves the
efficiency of the algorithm.

3) Fast Fourier Transform (FFT) and conjugate gradient
descent are used in the iterative operation of this algo-
rithm model, which simplifies the operation com-
plexity and improves the solving efficiency.

The paper is organized as follows. Section 2 proposes
the rotating signal model and the basis of optimization 
signal model of ISAR imaging is briefly introduced based 
on previous works. In Sec. 3, the optimization model is 
proposed and the solution algorithm is given to reconstruct 
the target signal by authors. ISAR imaging results of simu-
lated and measured data are presented in Sec. 4. Finally, 
Section 5 provides the conclusion and possible future 
directions. 

Fig. 1. Rotation signal model. 

2. ISAR Imaging Signal Model
It is assumed that the range-alignment and initial

phase-adjustment have been achieved [12], and then the 
rotation signal of the target model obtained is shown in 
Fig. 1. 

In the case of short CPI observation, the angle change 
of the target relative to the radar can be approximated as 

( )m mt tθ ω∆ ≈   (1) 

where tm is slow time, T represents coherent processing 
time length, and 0 ≤ tm ≤ T; ω is the rotational angular ve-
locity of the target. while the distance between the target 
and the radar is much larger than the size of the reflected 
target, the whole process of radar transmitting and receiv-
ing signal can be approximated to the plane where the radar 
and the target are connected. At this time, the distance from 
the scattering point p(x,y) on the target to the radar can be 
expressed as 

( ) ( )m 0 m m( ) cos ( ) sin ( )r t r y t x tθ θ= + ∆ + ∆   (2) 

where r0 is the distance between radar and target rotation 
center O. In short CPI observation, the target rotation angle 
Δθ(tm) is so small that can be replaced by (1), and the ap-
proximate formula of the distance between target scattering 
point and radar can be obtained 

( )m 0 m( ) sinr t r y x tω= + + .  (3) 

In general, the radar transmitting signal is linear 
frequency modulation signal s(tr)  

2r
r c r r

p

( ) rect exp 2 j( )
2

ts t f t t
T

απ
   = ⋅ +      

 (4) 

where tr represents fast time; Tp is pulse width; fc is the 
carrier frequency; α is the modulation frequency; rect[.] 
represents a window function. The Migration Though Res-
olution Cell (MTRC) may appear in the target movement 
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when its size is large, which can be compensated by some 
way [13]. The echo signal after compensated and pulse 
compressed is obtain as 
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where bp is the scattering coefficient of the target, which 
can be regarded as a constant when the rotation angle of the 
target is small; γ is the radar transmitting signal wave-
length; C is the transmission speed of electromagnetic 
wave. In the case of considering noise, when there are N 
scattering points in the range cell with a distance of r0 + y, 
the echo signal of this range cell is expressed as 

 
m m

1
( ) rect exp( 2 j )

N
m

p p
p

ts t Β f t n
T

π
=

 = ⋅ ⋅ − +  
∑  (6) 

where Bp is the scattering coefficient of the scattering point 
p; fp is the Doppler frequency of the scattering point, n is 
additive noise.  

And, 0exp( 4 j )p p
r yΒ b π
γ
+

= ⋅ − ;  2
p

xf ω
γ

= . 

The pixel distribution of the image domain can be 
obtained by making the azimuth Fourier transform of (6) 

  
d d

1
( ) sin [ ( )]

N

p p
p

s f Β c T f f n
=

= ⋅ − +∑ .  (7) 

3. ISAR Super-Resolution Imaging 
Based on Mixed Norm Sparse 
Constraint 

3.1 Optimization Imaging Model Based on 
Mixed Norm Sparse Constraint 
When the target is observed with short CPI, it can be 

assumed that the target is moving smoothly and the signal 
echo is more stable. The signal model shown in (6) can be 
discretized based on the sparse characteristics of ISAR 
signal. If there are M̅ effective pulses in each range cell 
under short CPI observation, ISAR echo signal at this time 
is expressed as  

 = +S FX n   (8) 

where S is the short CPI observation matrix of size M̅ × N, 
M̅ is the total number of sampling pulses, N represents the 
sampling points of range profile; X is the observation target 
to be reconstructed of size M × N, and M is the number of 
pulses emitted by signals under full-aperture observation; n 

represents additive noise matrix; F represents the partial 
Fourier transform matrix of size M̅ × M, and M̅ < M. 

And, 
1
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2exp j
M
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The solution of the matrix X is to recover the target 
signal accurately in the presence of noise interference. In 
this section, ISAR high-resolution imaging algorithm in 
short CPI will be derived by using the statistical character-
istics of the observation samples, noise and target. 

In (8), all elements in noise n obey the complex 
Gaussian random distribution with mean value of zero and 
standard deviation of σ, and the elements are independent 
of each other. The sparsity of target signals usually obeys 
the Laplace probability distribution, and the Laplace scale 
coefficient is η. According to the Bayesian compressed 
sensing theory [14], the maximum posterior probability 
(MAP) estimation expression of target signal X is 

 { }2

2 1
ˆ arg min λ= − +X S FX X  (9) 

where λ = 2σ2η represents the constraint coefficient of l1 
norm. In the case of uncertain SNR, λ is adjusted according 
to the fidelity and noise suppression degree of effective 
signal to balance the relationship between image sparsity 
and estimation error [15]. The solution of (9) is regarded as 
a l1 norm regularization problem [16]. 

However, in this optimization model, the convergence 
of l1 norm is not very well, which will affect the conver-
gence speed of the solution process. In addition, lambda 
needs to be estimated according to the statistical character-
istics of noise and signal, which seriously affects the effi-
ciency and accuracy of model solving. Therefore, a new 
ISAR high-resolution imaging model is obtained combin-
ing the l2,0 mixed norm, which expression is shown as 

 { }2

2 2,0
ˆ arg min λ= − +X S FX X    (10) 

where, the X2,0 mixed norm is defined as first taking the 
l2 norm of the row vector of the matrix X to get a column 
vector, then taking the l0 norm of the column vector to get 
the l2,0 mixed norm of the matrix X. The l2,0 mixed norm 
has a better convergence speed because it combines the 
advantages of l2 norm and l0 norm (the l2 norm divides the 
signal into clusters, while the l0 norm makes use of the 
sparsity of the signal) [10]. 

However, considering that l0norm minimization is 
a non-polynomial (NP) problem in practice, the norm is 
usually approximated by a continuous function [17]. 
A commonly used approximate expression is shown as  
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 ( )0
1

1 exp( )
M

mn
m

xβ
=

= − −∑Xn
  (11) 

where β < 0, so the l2,0 mixed norm approximation formula 
is  

 ( )2,0 2
1

1 exp( )
M

m
β

=

= − −∑X Xm
.  (12) 

Thus, the expression of ISAR high-resolution imaging 
model based on sparse constraints of l2,0 mixed norm can 
be shown as  

( )2

2 2
1

ˆ arg min 1 exp( )
M

m
λ β

=

 = − + − − 
 

∑X S FX Xm
.(13) 

Although Equation (13) can complete the accurate re-
covery of the target image X. It can be seen from the ex-
traction process above that the determination of the con-
straint coefficient λ needs to be adjusted according to the 
noise variance σ and the Laplace coefficient η. So the steps 
to get the optimal coefficient is cumbersome. 

In fact, the reconstruction accuracy and sparsity of the 
solution is influenced by regularization coefficient λ in (13) 
[18]. When the optimization is solved in each iteration, the 
sparsity representation of the signal will be more obvious, 
so each iteration will be more conducive to obtaining high-
resolution image when regularization coefficient of the 
model can update adaptively. And then, an adaptive 
expression of regularization coefficient λ adapted to the 
above model can be obtained by combining regularization 
theory [19] as 

 1

1
/n n

k
uλ +

+
= X  (14) 

where k is the sparsity of the signal. Xk is the modulus of 
the first k component of X. The convergence of the 
iterative process is controlled by u and 

 21
2

0 u−< < F .  (15) 

3.2 Solution of ISAR Optimal Imaging Model  
The quasi-Newton algorithm [20] is adopted to solve 

the optimization problem shown in (13). In order to avoid 
the undifferentiable problem in the process of solving the 
mixed norm, a minimal non-negative value δ is used to 
approximate (13)  

( )

2 2

2
1 1

ˆ

arg min 1 exp( )

arg min ( ) ,

M N
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f
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=
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X
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X
  (16) 

the conjugate gradient of f(X) is  
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H
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Among (15), the Hessian matrix is 

 H( ) 2 ( )H λ= + ΛX F F X  (18) 

where Λ(X) is a diagonal matrix 

 ( )2

2

exp
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m m

β δ
β

δ
×

  − +  
Λ =   

 +    

X
X

X

m

m

. (19) 

Because the Hessian matrix contains the objective 
function to be solved, it can be solved directly by iterative 
method 

 
11 Hˆ ˆ( )n nH
−

+  =  X X F Sk  (20) 

where [.]–1 represents the inverse of the matrix; X̂n repre-
sents the result of the first n iteration of the objective func-
tion X; λ in H(X) is updated with each iteration. The con-
vergence threshold ρ is set, and when the convergence 
condition of the objective function meets 

2 21

2 2
ˆ ˆ ˆn n n ρ+ − ≤X X X , the iteration cycle ends and the 

objective result is obtained. 

It is worth discussing an important feature of (20), 
that is, the major computational load is from the calculation 
of matrix inversion and Fourier matrix product in the algo-
rithm. To avoid the inverse processing, we use the conju-
gate gradient algorithm and FFT operations for the solution 
[21]. Compared with the traditional Cholesky [22] opera-
tion, this algorithm has an order of magnitude improvement 
in operation efficiency. 

4. Experiments and Analyses 
In this part, simulated data and measured data are 

used to verify the operation effect of the algorithm. During 
the verification process, the algorithm proposed in this 
paper is compared with the improved imaging algorithm 
based on l1 norm. The above two algorithms are used to 
calculate the data under different noise, and the results are 
compared. In order to verify the reconstruction perfor-
mance of the algorithm, the paper tests the algorithm 
through the MATLAB 2020a processing platform and run 
on a working station with AMD Ryzen 7 4800H CPU at 
2.90 GHz and 16.0 GB RAM. 

4.1 Simulated-Data Experiments 
In the simulation experiment, the aircraft model used 

is 70 × 60 × 9 m3, consisting of 330 scattered points. The 
aircraft point target model used in the experiment is shown 
in Fig. 2.  
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Fig. 2. The aircraft point target model. 

The radar carrier frequency is 9.6 GHz, the radial ve-
locity is 100 m/s, the radial acceleration is 5 m/s2, the pulse 
repetition frequency is 100 Hz, the rotational angular ve-
locity is 0.5 °/s, and the range direction resolution is 
0.375 m. 

In the simulation, the pulse compression is carried out 
by dechirp. The distance between the radar and the target 
rotation center is 10000 m, and the amplitude of each scat-
tering point is 1. Under the short CPI observation, 64 echo 
pulse is generally used as the standard, and the super-
resolution image with 256 pulses length is reconstructed for 
comparison.  
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Fig. 3. Range profile of simulated data. 
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Fig. 4. Imaging result of RD algorithm. 

Figure 3 and Figure 4 are the calculation results of 
testing the simulated data without noise. The range profile 
produced by 64 echo pulses after translation compensation 
is shown in Fig. 3. The imaging result of RD algorithm is 
shown in Fig. 4. It can be seen that the traditional ISAR 
imaging algorithm cannot accurately focus the short CPI 
data, and a high-resolution imaging algorithm should be 
adopted. 

In order to show the difference between before and 
after the algorithm is improved, the two high resolution 
imaging algorithms mentioned in this paper were used to 
solve the problem. The parameters are set as follows: the 
threshold of iteration is ρ = 10–4, the upper limit of iteration 
is 500, parameter β = 20, and the constant is δ = 10–6.  

The result based on l1 norm sparse constraint high 
resolution imaging algorithm is shown in Fig. 5. The result 
of algorithm proposed in this paper is shown in Fig. 6. The 
number of iterations of the algorithm based on the l1 norm 
reached the upper limit of 500, but do not reach the set 
threshold of iteration termination ρ, which takes 
326.8044 s. The algorithm proposed in this paper iterates 
for 7 times and get basically stable λ = 0.0011. It iterates 
for 245 times and reaches the iteration termination, which 
takes 149.7694 s. It can be seen that the imaging efficiency 
of the algorithm proposed in this paper is higher than that 
of the l1 norm and the regularization coefficient λ can be 
obtained adaptively after a few iterations. 
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Fig. 5. Imaging result of L1 norm. 
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Fig. 6. Imaging result of the algorithm proposed in this paper. 



482 D. SONG, Q. CHEN, K. LI, AN ADAPTIVE SPARSE CONSTRAINT ISAR HIGH RESOLUTION IMAGING ALGORITHM … 

In order to further reflect the advantages of the algo-
rithm, the results of two high resolution imaging algorithms 
under small amount of echo pulses are compared. Under 
the short CPI observation, through 50 experiments with 
numbers of echo pulses ranging from 32 to 64 in step of 4, 
and the super-resolution image with the length of 256 is 
reconstructed.  

Taking 48 echo pulses as an example, the imaging re-
sults obtained by the two algorithms are shown in Fig. 7 
and Fig. 8 respectively. The algorithm based on the l1 norm 
iterates upper limit times, but does not reach the set thresh-
old of iteration termination ρ, which takes 390.7043 s. The 
algorithm proposed in this paper iterates for 13 times and 
get basically stable λ = 0.0021. It iterates for 261 times and 
reaches the iteration termination, which takes 156.5628 s. It 
can be seen that the imaging efficiency of the algorithm 
proposed in this paper is higher than that of the l1 norm 
under small amount of echoes.  

Under different number of echo pulses, two high-
resolution imaging algorithms are used for operation. The 
average operation time comparison results of 50 repeated 
experiments are shown in Fig. 9. In the figure, the black 
broken line is the running time required by the original 
algorithm, while the red broken line is the running time 
required by the algorithm proposed in this paper.  
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Fig. 7. Imaging result of L1 norm using 48 pulses. 
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Fig. 8. Imaging result of the algorithm proposed in this paper 

using 48 pulses. 
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Fig. 9. Curve of operation time with the number of echo 

pulses. 

It can be seen that the operation time of the algorithm 
based on the mixed norm proposed in this paper is smaller 
than the previous algorithm at different numbers of echoes. 

In order to more accurately reflect the advantages of 
the algorithm in the natural environment, in the case of 
adding white Gaussian noise, the two algorithms are tested 
and compared through 50 experiments with SNR ranging 
from 4 dB to 20 dB in step of 2 dB.  
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Fig. 10. Imaging result of L1 norm at SNR =5 dB. 
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Fig. 11. Imaging result of the algorithm proposed in this paper 

at SNR=5 dB. 
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Taking the SNR of 5 dB as an example, under the 
short CPI observation, 64 echoes are taken for processing 
and the super-resolution image with the length of 256 is 
reconstructed. The imaging results obtained by the two 
algorithms are shown in Fig. 10 and Fig. 11 respectively. It 
can be seen that the algorithm proposed in this paper can 
still achieve relatively clear high-resolution imaging under 
the condition of low SNR. It can be proved by correlation 
coefficient and there is little difference between the two 
methods, which are 0.7851 in Fig. 10 and 0.7831 in Fig. 11. 
The correlation coefficient can be expressed as 

 coef
ˆ ˆC = ⋅ ⋅X X X X  (21) 

where X̅ is the full aperture image reconstructed from all 
256 echoes. 

However, in Fig. 10, the number of iterations reaches 
the threshold of 500, which takes 326.1982 s. In Fig. 11, 
a stable λ = 0.0045 is obtained after 26 iterations, and the 
result is obtained after 131 iterations, which takes 
209.5215 s. It can be seen that the imaging efficiency of 
algorithm proposed in this paper is higher than that of the l1 
norm in the case of noise. 

Under different noises, two high-resolution imaging 
algorithms are used for operation. The average operation 
time comparison results of 50 repeated experiments are 
shown in Fig. 12. 

In Fig. 12, the black broken line is the running time 
required by the original algorithm, while the red broken 
line is the running time required by the algorithm proposed 
in this paper. In general, the running time of the algorithm 
based on the mixed norm proposed in this paper is smaller 
than the previous algorithm under different SNRs. 

In order to verify the effectiveness of the algorithm 
more comprehensively, the simulation results in the state of 
small amount of echo pulses and low SNR combined are 
presented. 

The 48 echo pulses were used for simulation to com-
pare at the SNR of 5 dB, the imaging results obtained by 
the two algorithms are shown in Fig. 13 and Fig. 14. It can 
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Fig. 12. Curve of operation time with SNR. 
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Fig. 13.  Imaging result of L1 norm using 48 pulses at 

SNR = 5 dB. 
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Fig. 14. Imaging result of the algorithm proposed in this paper 

using 48 pulses at SNR = 5 dB. 

be proved by correlation coefficient which are carried out 
with 50 iterations and there is little difference between the 
two methods, which are 0.7764 in Fig. 13 and 0.7722 in 
Fig. 14. 

However, in Fig. 13, the number of iterations reaches 
the upper limit of 500, which takes 356.2474 s. In Fig. 14, 
a stable λ = 0.0052 is obtained after 35 iterations, and the 
result is obtained after 178 iterations, which takes 
198.7357 s. It can be seen that the imaging efficiency of the 
algorithm proposed in this paper is higher than that of the l1 
norm in this case. 

4.2 Measured-Data Experiments 
In order to further verify the advantages of the algo-

rithm in this paper, the measured data of aircraft YAK-42 
are used for processing. The carrier frequency of the radar 
is 9 GHz, the signal bandwidth is 400 MHz, the pulse repe-
tition frequency is 100 Hz, the target velocity is 100 m/s, 
and the rotational angular velocity is 0.013 rad/s.  

Figure 15 and Figure 16 are the calculation results of 
the measured data. The range profile produced by 64 echo 
pulses after translation compensation is shown in Fig. 15. 
The imaging result using conventional ISAR imaging algo-
rithm is shown in Fig. 16. It also can be seen that the tradi-
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tional ISAR imaging algorithm cannot accurately focus the 
measured data. In high-resolution imaging algorithm, pa-
rameter settings are the same as simulated data processing. 

Figure 17 shows the running result of the high resolu-
tion imaging algorithm based on l1 norm sparse constraints. 
The running result of the improved high-resolution imaging 
algorithm based on l2,0 mixed norm obtained in this paper is 
shown in Fig. 18. When the measured data are used for 
testing, the number of iterations of the two algorithms both 
reached the upper limit of 500 times, which do not reach the 
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Fig. 15. Range profile of measured data. 
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Fig. 16. Imaging result of RD algorithms. 
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Fig. 17. Imaging result of L1 norm. 
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Fig. 18. Imaging result of the algorithm proposed in this paper. 

set threshold of iteration termination ρ. However, due to the 
different convergence of the norms contained in the two 
algorithms, the convergence speed is still different to some 
extent. The operation time of algorithm based on l1 norm is 
542.6968 s, and the algorithm proposed in this paper takes 
411.1321 s. It can be seen that the operation efficiency of 
the algorithm based on mixed norm is higher than that of 
the original algorithm under the measured data.  

5. Conclusion
In this paper, based on the sparse characteristics of 

ISAR images, an optimization ISAR signal model based on 
mixed norm sparse constraints is proposed. The model 
takes advantage of the fast convergence speed of l2,0 mixed 
norm to improve the speed of calculation and solution. And 
then, the regularization coefficient in this model can be 
adjusted adaptively according to the result sparsity of each 
iteration result under different noise, in which the relatively 
stable coefficient can be determined only during a few 
iteration cycles. So the efficiency of the algorithm is im-
proved obviously. Future work includes: Extending the 
proposed method to achieve high quality InISAR 3D imag-
ing under short CPI; updating the algorithm to apply the 
maneuvering target in sparse sampling. 
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