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Abstract. The paper offers a new approach to modeling at-
mospheric turbulence consisting of turbulent cells whose size
is larger than the optical beam width. Particular turbulent
cells are approximated by an optical element matrix. The
ray transfer matrix method is presented, through which the
optical elements can be described in the matrix form. A de-
flection simulation was performed that indicated the behavior
of the optical beam by passing through the optical element.
Furthermore, the calculation of the deflection vector is de-
scribed together with a cascade model of turbulent cells. The
matrix calculation for the cascade of optical elements is also
expressed.
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1. Introduction
Optical Wireless Communication (OWC) refers

to transmission in unguided propagation media in the vis-
ible, infrared (IR) and ultraviolet (UV) bands [1]. When
implementing the OWC link in an optical channel, the seri-
ous effects of atmospheric phenomena should be considered
and eliminated. Significant dependence of the transmission
properties of the Free SpaceOptical (FSO) systemon the state
of the atmosphere, causing deterioration of the FSO system’s
availability [2], [3], is one of the system drawbacks. De-
spite the stochastic nature of the atmosphere, the FSO system
has advantages such as unlicensed bandwidth, more flexibil-
ity in designing optical network architecture, easy installa-
tion, insensitivity to electromagnetic interference and data
security [4].

Constituent particles of the atmosphere, mainly water
molecules, carbon dioxide, and ozone, cause absorption,
scattering, and atmospheric attenuation [5]. Furthermore,
there is a beam divergence loss in FSO communication,
which depends on the free space loss (wavelength depen-
dant) [3]. Another atmospheric effect that has a significant

impact on the performance of the FSO system is atmospheric
turbulence. Atmospheric turbulence leads to irradiance fluc-
tuations, beam spreading, beamwandering and loss of spatial
coherence of a laser beam [2], [6]. There are several works
focused on modeling and analysis of FSO systems. Some
of them focus on describing the various limitations of FSO
systems and the various ways to improve the performance of
such an atmospheric channel [5]. Further works consists of
analyzes of modulation techniques in the presence of strong
or weak turbulence in the communication channel or model-
ing of optical wave diffraction [7–11].

Several mathematical methods [12] are used to quantify
atmospheric turbulence and its effect on the optical system.
Each of these methods works with turbulence through the pa-
rameters of the transmission medium, whether it is air tem-
perature, air pressure, or time and space changes in refractive
index [12–14].

This paper offers a new perspective on turbulence as
a cascade of the turbulent cells. The turbulent cells of the
cascade are approximated by optical elements defined by ray
transfer matrices. Due to the model are observed the deflec-
tion parameters, which together form the deflection vector.

The turbulent matrix model can be linked to instan-
taneous quantification methods working with deflection pa-
rameters, especially in a dynamically changing communica-
tion channels [15]. By extending the model to the influence
of other physical phenomena (e.g. absorption, diffraction,
scattering, etc.), the model can be applied for prediction of
the optical beam propagation in turbulent medium. In such
a case, it would be possible to determine the matrix defining
the turbulence and, based on its parameters, determine the
deflection vector of the input beam.

2. Introduction to Ray Transfer
Matrix
Turbulence consists of turbulent cells of various scale

sizes [12]. The ray transfer matrix method, which is based
on the principles of geometric optics, is used for our work.
It deals with large-scale turbulent cells that cause the optical
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beam deflection in the optical wireless links. This method
offers a way to perceive a turbulent cell as an optical ele-
ment. The following technique works with the beam descrip-
tion of optical radiation, which is part of geometric optics.
The presence of paraxial rays is a requirement for using this
technique [16], for which the following applies

tan(𝜃) ≈ 𝜃 (1)

where 𝜃 represents the angle subtended by the optical beam
with the auxiliary axis parallel to the optical system axis.

The propagation of paraxial rays through various opti-
cal elements is described by ray transfer matrices [17] also
known as ABCD matrices. Optical elements can be opti-
cal prisms, thick or thin lenses, mirrors or interfaces where
the refraction of an optical beam occurs [17].

The beam transmission technique shown in Fig. 1 op-
erates with two reference planes, input and output planes.
Both planes are perpendicular to the optical axis of the sys-
tem. At each point in the optical system, an optical axis
corresponding to the central beam is defined. The optical
beam enters the inhomogeneous area through the input plane
at a distance 𝑥1 from the optical axis and propagates in the di-
rection that makes an angle 𝜃1 with an auxiliary optical axis.
The inhomogeneous area is defined by the refractive index
𝑛2, where the refractive index 𝑛1 represents the surrounding
medium. After propagation to the output plane, this beam is
at a distance 𝑥2 from the optical axis and propagates further
at an angle 𝜃2 [17].

The beam deflection on the output plane is evaluated by
the equation

𝑥2 = 𝐴 · 𝑥1 + 𝐵 · 𝜃1 (2)

and the angle of deflection of the beam from the optical axis
is evaluated from the following relation

𝜃2 = 𝐶 · 𝑥1 + 𝐷 · 𝜃1. (3)

These expressions can be written in the matrix form [17](
𝑥2
𝜃2

)
=

(
𝐴 𝐵

𝐶 𝐷

) (
𝑥1
𝜃1

)
(4)

where the ABCD matrix represents the area between in-
put and output planes where the optical element is situated.
This matrix combines the deflection of the outgoing beam
with the deflection of the incident beam.
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Fig. 1. The optical beam transmission technique, where 𝑥1,2 rep-
resent the deflections of the beam from the optical axis,
𝜃1,2 indicate the angles of deflection and 𝑑 is the distance
between the input and output planes.

2.1 Approximation of Turbulent Cells and
Inter-Turbulent Spaces

A turbulent atmosphere is considered to be a non-
stationary medium where the refractive index 𝑛 changes.
Thick lens is a proper optical element for approximating a tur-
bulent cell. Defined matrix of thick lens assumes a change
in the refractive index as the optical beam passes through the
optical structure [18].

The ABCD matrix defined for a thick lens (see Fig. 2)
is given by multiplying the three matrices containing the de-
scriptive parameters of the lens [16](

𝐴 𝐵

𝐶 𝐷

)
=

(
1 0

𝑛2−𝑛1
𝑅2𝑛1

𝑛2
𝑛1

) (
1 𝑡

0 1

) (
1 0

𝑛1−𝑛2
𝑅1𝑛2

𝑛1
𝑛2

)
(5)

where 𝑛1 is refractive index outside of lens, 𝑛2 is refractive
index of the lens itself, 𝑅1 is radius of curvature of the first
surface, 𝑅2 is radius of curvature of the second surface and t
represents the center thickness of lens.

The ABCD matrix defined for medium of constant
refractive index (see Fig. 3), which represents the inter-
turbulent space in the turbulent cell cascade model, is given
by [16] (

𝐴 𝐵

𝐶 𝐷

)
=

(
1 𝑙

0 1

)
(6)

where 𝑙 denotes the width of the area with constant refractive
index. The matrix is derived using a trigonometric function
and paraxial approximation. A more detailed description
of the derivation and calculation can be found in Sec. 3.
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Fig. 2. Beam propagation model through a thick lens, where 𝑡
denotes the center thickness of the lens, which also rep-
resents the distance between the input and output planes.
𝑅1,2 are the radii of curvature of the lens surfaces [18].
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Fig. 3. Beam propagation through a medium with a constant
refractive index, where 𝑙 denotes the distance between
the input and output planes and the equality of angles
applies 𝜃1 = 𝜃2.
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2.2 ABCD Turbulence Simulation
In the following text, L will denote the ray transfer ma-

trix (ABCD matrix) for medium of constant refractive index
(inter-turbulent space) and T will denote the ray transfer ma-
trix for the thick lens (turbulent cell). Figure 4 shows twovari-
ations of the optical beam transition. One of them represents
a reference model consisting of a medium with a constant
refractive index. The refractive index of the optical element
has the same value as the refractive index of the surrounding
medium. The second variation is a model of turbulent cell
approximated by a thick lens. The simulation based on Fig. 4
points to five cases of beam propagation:

• The first case is the reference model L0 with a medium
with a constant refractive index

• The remaining four cases T1–T4 are formed by a tur-
bulent cell model with different sizes and refractive
indices.

Geometric parameters (radii of curvature, central thickness
of the lens) and refractive indices for specific simulation
models are given in the Tab. 1. According to relation-
ship (10), the refractive index 𝑛(𝜆) depends on the wave-
length of the used laser (𝜆 = 0.6328 μm), the atmospheric
pressure (𝑃 = 102850Pa), and the thermodynamic tempera-
ture 𝑇 varying according to Tab. 1.

Model 𝑹 [cm] 𝒕 [cm] 𝑻 [K] 𝒏 [-]
𝐿0 1 2 295.65 1.027502
𝑇1 1.5 3 296.15 1.027456
𝑇2 2 4 296.65 1.027410
𝑇3 2.5 5 295.15 1.027549
𝑇4 3 6 294.65 1.027596

Tab. 1. Parameters for each case of the model. 𝑅 stands for ra-
dius of curvature (𝑅 = 𝑅1 = 𝑅2), 𝑡 is central thickness
of lenses, 𝑇 presents thermodynamic temperature, and
𝑛 is the refractive index calculated according to (10).
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Fig. 4. Three different deflected optical beams propagate
a) in a medium with a constant refractive index L0 and
b) a medium with a thick lens T1−4. 𝛼, 𝛽, and 𝛾 indicate
specific optical beam deflections in each model.

These turbulent models show how the direction
and the size of the optical beam deflection can change after
passing through a turbulent cell compared to passing through
a stationary medium. Final results of the simulation are eval-
uated for three different beams (𝛼, 𝛽, 𝛾) passing through each
model. Each of the rays has a different input deflection 𝑥1
according to Tab. 2, and its subsequent transition is realized
for different large lenses with different values of refractive
indices. With increasing matrix numbering (T1–T4), cell
size and refractive index increase.

The results of simulation based on these five models are
shown in the Fig. 5. The absolute difference of the output
deflections from the reference model Δ𝑥2 is plotted on the y-
axis and the values of the input deflection 𝑥1 of the optical
beam is plotted on the x-axis. The x-axis on Fig. 5 is formed
by three points, which indicate the deflections of the beam
on the input plane 𝑥1 (𝛼, 𝛽, 𝛾). For each model (L0–T4),
the beam deflections on the output plane 𝑥2L0 , 𝑥2T1−4 were
determined according to the model type. Since the relatively
small dimensions of the turbulent cells and the small changes
in the refractive index are taken into account, the output
deflections 𝑥2 are slightly different. Therefore, it is more effi-
cient to monitor the absolute difference of output deflections
Δ𝑥2 from the reference model given by relation

Δ𝑥2 = |𝑥2L0 − 𝑥2T1−4 | (7)

where values of 𝑥2L0 , 𝑥2T1−4 for individual models are ob-
tained from the matrix (4). Their dependence on the in-
put deflection 𝑥1 is evident. It is clear that the value
of Δ𝑥2 will be zero at all points of the reference model.

Beams 𝒙1 [cm] 𝜽1 [rad]
𝛼 0.5 1.75 e-04
𝛽 1 3.49 e-04
𝛾 1.5 5.24 e-04

Tab. 2. Values of input deflections 𝑥1 and angles of deflection 𝜃1
for three different deflected optical beams denoted as 𝛼,
𝛽, 𝛾. The input deflections 𝑥1 are determined based on
the transmitter distance, turbulent cell size, and paraxial
condition.

0.005 0.01 0.015
0

0.5

1

1.5

2
10-5

L
0

T
1

T
2

T
3

T
4

Fig. 5. Dependence of the absolute difference of the output de-
flections from the reference model on the values of the in-
put deflection of the optical beam. The dependence is
realized for five models L0–T4.
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As turbulent cell sizes and refractive indices increase, so does
the overall difference in output deflections from the reference
model. By passing through a larger turbulent cell, a more
significant deflection will occur.

3. Cascade System
The idea of a cascade system is to imagine atmospheric

turbulence as several consecutive turbulent cells. This cas-
cade represents part of the optical transmission path. Each
turbulent cell has its own defined geometric parameters that
best reflect the size of the actual turbulent cell. By modeling
the turbulent cascade, it is possible to monitor the deflection
of the beam not only on the detector of the receiver after
passing through the entire cascade but also within it.

The following section offers a mathematical procedure
for calculating the optical beam deflection with a matrix so-
lution of a cascade of turbulent cells.

3.1 Calculation of Beam Deflection by Passing
Through a Cascade of Two Turbulent Cells

To better illustrate the procedure for determining the in-
dividual deflections of the paraxial optical beam, the fol-
lowing calculation procedure will be based on the turbulent
cascade model from the Fig. 6.

In the first place, it is necessary to determine the distance
from the laser radiation source to the turbulent area 𝑙TX
and the deflection of the beam 𝑥1. Using the trigonomet-
ric tangent function, it is possible to calculate the parameters
of the beam deflection on the input plane of the lens

𝑥1 = 𝑙TX · tan(𝜃1) (8)

where 𝑥1 is the deflection on the input plane, 𝑙TX indicates the
distance from the laser source to the turbulent cell. The value
of the initial deflection angle 𝜃1 of the laser beam must be
greater than zero degrees (tan (0) = 0), which is a condi-
tion for the proper use of ray transfer matrix calculation.
The beam deflection parameters at the input plane of the first
turbulent cell of the cascade form the input vector denoted as

XIN =

(
𝑥1
𝜃1

)
. (9)

In order to calculate the deflection vectors using ma-
trix (5), the refractive indices in the given areas are deter-
mined based on the values of surrounding pressure, thermo-
dynamic temperature, and laser wavelength. The refractive
index 𝑛(𝜆) is calculated from the relation [13]

𝑛(𝜆) = 1 + 77.6 · 10−6
(
1 + 7.52 · 10−3 · 𝜆−2

) 𝑃

𝑇
(10)

where 𝜆 is optical wavelength in μm, 𝑃 is air pressure in
Pa and 𝑇 is thermodynamic temperature at the location in K.
Spectral dependence of the refractive index of the atmosphere

must be taken into account, so that its value can be evalu-
ated for specific optical wavelengths. Therefore, the used
equation depends not only on the state quantities, but also
on the wavelength of the laser.

The turbulent cell size defined by the central thickness 𝑡
and radii of curvature 𝑅1,2, and the refractive index 𝑛 are used
to calculate the matrix T1 (Fig. 6). The T1 label represents
the ABCD matrix for the first turbulent cell. By the param-
eters of deflection on the input plane (𝑥1, 𝜃1) and the matrix
T1 the deflection on the output plane are obtained(

𝑥2
𝜃2

)
= T1

(
𝑥1
𝜃1

)
. (11)

After finding the value of the parameters 𝑥2 and 𝜃2, the value
of the deflection parameters on the input plane of the second
lens (𝑥3, 𝜃3) are calculated.

The trigonometric tangent function determines the de-
flection in the input plane of the second lens due to the known
angle of deflection and inter-turbulent distance 𝑙. In this sim-
plified model, the optical beam always propagates toward the
optical axis of the system. The deflection of the laser beam
in the inter-turbulent area is defined for four potential cases,
which are shown in Fig. 7:

(a) The beam deflects from the area above the optical axis
to above it with a positive deflection value, but a neg-
ative value of deflection angle (Fig. 6 - L1).

(b) The beam deflects from the area above the optical axis
to below it. The deflection angle is negative, and de-
flection on the output plane acquires a negative value
(Fig. 6 - L1).

(c) The beam deflects from the area below the optical axis
to below it. The deflection angle is positive, but de-
flection acquires a negative value (Fig. 6 - L2).

(d) The beam deflects above the optical axis with a positive
value of both deflection parameters (Fig. 6 - L2).

T1 T2

XIN

L1

n1
XOUT
n1

n2 n3

n1

t1 t2l lRXlTX

L2

TX

Fig. 6. An illustrative model of two turbulent cells, where 𝑛1
is the refractive index of the surrounding medium, 𝑛2,3
are the refractive indices of turbulent cells, 𝑙TX,RX are
the distances TX and RX from the turbulent cascade,
𝑙 is the inter-turbulent distance, 𝑡1,2 are the central cell
thickness, T1,2 are ABCDmatrices of the turbulent cells,
L1,2 are ABCDmatrices of the inter-turbulent spaces and
XIN,OUT are the deflection vectors at the input and output
planes of the turbulent cascade.
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Fig. 7. Four cases of the laser beam transition from the space
below and above the optical axis of the system. a) and b)
represent the area L1 in Fig. 6, and c) and d) represent
the L2 region in the same figure.

The calculation of the deflection vector at the input
plane of the second turbulent cell has the form(

𝑥3
𝜃3

)
=

(
1 𝑙

0 1

) (
𝑥2
𝜃2

)
(12)

where the negative sign in the deflection parameter 𝑥3 indi-
cates the position of the beam deflection under or above the
optical axis. Subsequently, L1 represents the ABCD matrix
for the inter-turbulent space(

𝑥3
𝜃3

)
= L1

(
𝑥2
𝜃2

)
. (13)

The calculation of the deflection at the output plane
of the second lens is similar to the calculation of the first
lens, where T2 represents the ABCD matrix for the second
turbulent cell (

𝑥4
𝜃4

)
= T2

(
𝑥3
𝜃3

)
. (14)

After determining the position of the laser beam
on the output plane of the second lens (Fig. 6), the posi-
tion of the received beam on the detector’s plane (𝑥5, 𝜃5) can
be calculated based on the matrix definition for a medium
with a constant refractive index(

𝑥5
𝜃5

)
=

(
1 𝑙RX
0 1

) (
𝑥4
𝜃4

)
(15)

where the matrix in this formula represents the matrix L2 on
the Fig. 6

XOUT =
(
𝑥5
𝜃5

)
= L2

(
𝑥4
𝜃4

)
. (16)

For all cases of transmission of an optical beam in the
inter-turbulent space, depending on the inter-turbulent dis-
tance and the size of the parameters of the input deflection
vector, a positive or negative beam deflection can be de-
tected.

3.2 Matrix Cascade Calculation
Imagine a cascade of 𝑁 turbulent cells according

to Fig. 8. Each turbulent cell is defined by its ray trans-
fer matrix T1–T𝑛 and each inter-turbulent space is defined
by matrix L1–L𝑛. Vector XIN points to a primary deflection
of the optical beam at the input of the turbulent cascade and
XOUT points to the vector of the resulting beam deflection
by passing through the whole cascade.

Through the paraxial approximation [16] according to
the equation (1), it is possible to write the ABCD matrix of
this form for the inter-turbulent space

L𝑛 =

(
1 𝑙𝑛
0 1

)
, (17)

as was shown in the previous subsection. As a result of
this simplification, neither the matrices defined for turbu-
lent cells nor the matrices for inter-turbulent space contain
evolving deflection parameters. Therefore, it is possible to
perform matrix multiplication of individual optical elements
of the turbulent cascade.

Figure 9 shows a diagram pointing to a matrix cascade
calculation of the output deflection vector XOUT. The tech-
nique of calculating the output deflection of the beam incident
on the detector is evident from the given diagram. Multipli-
cation of matrices is performed by notation

XOUT = L𝑛 · T𝑛 . . .L2 · T2 · L1 · T1 · XIN (18)

where XIN denotes the vector of cascade deflection input pa-
rameters and XOUT denotes the vector of cascade deflection
output parameters. By reversing the order of the matrices, it
is possible to calculate for the given channel the deflection
of the optical beam propagating in the opposite direction.

T1 Tn-1 Tn

XIN

Ln-1L1

n1
...

XOUT
n1

n2 nn nn+1
n1

Ln-2 Ln

Fig. 8. Illustration model of the cascade of 𝑁 turbulent cells.
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R1R1
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...

Tn

XIN

R1

XIN

R1

T1 XIN

X2L1

X3T2

...

X2(n-1)+1Tn

Fig. 9. Diagram showing the procedure of cascade matrix cal-
culation. The bold blocks represent the input deflection
vector, theABCDmatrices, and the output deflection vec-
tor. Dashed blocks indicate deflection vectors by passing
through the individual elements of cascade.

4. Conclusion
In summary, this paper presents an introduction to the

ray transfer matrix method used for a mathematical descrip-
tion of atmospheric turbulence as an optical element. The
designed turbulent model consists of a cascade of optical
elements approximating turbulent cells. From the cascade
of turbulent cells and in the presence of certain simplifica-
tions and requirements, there is the potential to work with
mentioned mathematical technique. In this way, the model
currently serves to observe the optical beam deflection pa-
rameters that create the deflection vector.

The paper also includes a simulation aimed at compar-
ing the deflection of the optical beam through different large
turbulent cells via a matrix model. In addition, it presents
a mathematical procedure for calculating the deflection vec-
tors inside or outside the cascade, at the receiver.

Turbulence in FSO systems can also be analyzed us-
ing vector notation and matrix definition of the transmission
medium. Via the matrix calculation technique, it would be
possible to determine the matrix of a turbulent medium based
on initial and detected optical beams. The backward matrix
calculation will be able to specify the initial beam deflection
so that the optical link works as efficiently as possible.

Implementation of this method would be possible in
FSO systems in the presence of local temperature inhomo-
geneity, which is larger than the width of the optical beam -
turbulent cells in the desert or planetary boundary layer. Also,
the results are applicable in other transmission media - un-
derwater communications in the analysis of the propagation
of optical beams through layers with different temperatures,

i.e. different refractive indices. However, the work is in the
initial phase of the modeling for further processing in the
time and space domain.
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