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Abstract. Radio emitter localization based on Received
Signal Strength (RSS) is promising in large-scale Internet
of Things (loT) and wireless sensor networks (WSNs) for
its low hardware and computation costs. To improve its
localization accuracy and reduce the system energy con-
sumption, we propose an improved RSS localization algo-
rithm based on the joint sensor selection and semidefinite
programming (SDP). An initial position estimate is first
obtained using RSSs available at a random set of sensors.
A refined sensor set is then selected to complete the second
estimation by analyzing the geometric structure of sensing
network. Performance of the method is evaluated in terms
of localization accuracy and execution time, and compared
with existing methods. Extensive simulations demonstrate
that the proposed approach achieves a localization accu-
racy of approximately 1.5 m with 8 to 10 sensors. The
method outperforms the second-order cone programming
(SOCP) and the least squared relative error (LSRE)-based
SDP algorithms in terms of both the location and the
transmit power estimation accuracy.
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1. Introduction

Large-scale network localization techniques in 5G
and beyond 5G wireless networks are essential for many
Internet-of-Things (IoT), smart city and military applica-
tions, including spectrum monitoring, intelligent transpor-
tation, asset tracking and battlefield monitoring [1], [2].
Compared with methods relying on time of arrival (TOA)
[3], [4], time difference of arrival (TDOA) [5], [6], or an-
gle of arrival (AOA) [7], [8] measurements, received signal
strength (RSS) based localization method features low
hardware cost and low network synchronization require-
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ment, making it suitable for large-scale [oT with resource-
constrained radio sensors [9—13].

RSS-based localization includes fingerprint localiza-
tion and ranging localization. The fingerprint localization
is realized in two steps. Firstly, a collection of RSS values
is carried out in a certain area and an RSS-fingerprint map
is created to fulfill the so-called offline training phase.
Secondly, in the online test phase, the actual monitored
RSS is compared to the entries in the fingerprint map to
estimate the emitter location. The authors in [9] and [10]
matched the actually monitored RSS with the fingerprint
map using commonly used machine learning models such
as K-nearest neighbor, decision tree and support vector
machine to perform highly accurate emitter localization.
Fingerprint localization and most traditional ranging locali-
zation algorithms assume that emitter transmitting power is
known. However, the power is usually unknown in
an uncooperative scenario, and methods for estimating the
transmit power have been rarely investigated. We focus on
the scenario where both the emitter location and transmit
power need to be estimated. The authors in [14] had pro-
posed an uncooperative RSS-based localization scheme
utilizing a maximum likelihood (ML) estimator. It tried to
solve a non-linear and non-convex optimization problem,
which is challenging in wireless sensor network (WSN)
with limited computation resources. To address such
an issue, Ziskind et al. [15] proposed an iterative-based
algorithm to reduce the computation complexity, but the
estimation result depends on the initial value used and the
optimality of the algorithm cannot be guaranteed. In [16],
unscented transformation (UT) and weighted least squares
(WLS) methods were applied to develop a low complexity
algorithm for joint estimation of location and transmit
power. In [17] and [18], the ML problem was modeled as
a WLS problem, and then the WLS problem was converted
into a convex semidefinite programming (SDP) or second-
order cone programming (SOCP) problem, which has low-
er computation complexity.

The above-mentioned ranging localization algorithms
are based on least squares (LS) criterion, where the sum of
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squares of the absolute errors is minimized. To obtain
a formula without a logarithm term, most researchers firstly
convert the conventional RSS measurement to the absolute
power domain. Then, they applied a first-order Taylor
series to approximate the received power. However, in the
case of noise with significant shadowing effect, this ap-
proximate representation can lead to a significant increase
in position estimation error. The authors in [12] and [13]
converted the traditional RSS measurement model into
a multiplication model without a logarithm term. After-
ward, they transformed the multiplication model to a least
squared relative error (LSRE) model. The LSRE model
was further relaxed into an SDP problem by semidefinite
relaxation (SDR). These transformations can avoid the
errors introduced by the approximation of the first-order
Taylor series. The above schemes still suffered from pro-
hibitive hardware costs and power consumption due to the
usage of all the sensors in the networks. Generally, some
sensors in the network do not improve the estimation per-
formance due to the restricted communication range, while
increasing the system runtime and energy consumption.
Thus, this paper tries to select an optimal subset of all sen-
sors to estimate the location and transmit power with low
energy and computation overhead.

Few existing LSRE-based localization algorithms
take the sensor selection problem into consideration. In the
uncooperative RSS-based localization, Ababneh et al. [19]
pointed out that a reasonable selection of sensors was the
key factor to determine the quality of the overall network
estimation. In [20], the sensor selection was molded as
an optimization problem that satisfied the localization er-
ror, yet without the selection feedback mechanism.
Bopardikar et al. [21] proposed an alternation-free sensor
selection and localization approach based on the TDOA,
which had low complexity. Nevertheless, the approach did
not take into account the differences among the sensors.
Bel et al. [22] solved the sensor selection problem for RSS-
based localization by deriving an RSS threshold depending
on the total number of sensors. Then all sensors with RSS
measurements above the threshold were selected. This
resulted in selecting the sensors that were closest to the
emitter.

In this paper, we comprehensively consider the dif-
ferences among sensors, and the geometric structure to
select an optimized set of sensors. To improve the localiza-
tion accuracy, lower the deployment and computational
complexities in large-scale WSNs, an improved RSS local-
ization algorithm based on joint sensor selection and SDP
is proposed. Main contributions of this paper are:

e Using a series of auxiliary matrices, a bivariate joint
estimation model of transmit power and location is
constructed. Furthermore, we design an uncoopera-
tive emitter localization algorithm based on joint sen-
sor selection and semidefinite programming. The al-
gorithm achieves a good localization performance via
three steps, i.e., initial position estimation, sensor se-
lection, and refined position estimation.

e A sensor selection algorithm is proposed to reduce the
system runtime and improve the system efficiency by
exploring the sensor network geometry structure via
network area splitting, and selecting sensors relatively
close to the emitter.

e Extensive simulations for different scenarios show
that the proposed algorithm can achieve higher locali-
zation accuracy with less calculation time than exist-
ing SDP and SOCP optimization algorithms.

The remaining sections are structured as follows. In
Sec. 2, the sensor selection problem and the RSS meas-
urement model are presented. Subsequently, Section 3
describes RSS-based emitter localization model. Section 4
gives the proposed sensor selection algorithm in detail. The
simulation results are shown in Sec. 5. Finally, Section 6
summarizes the work of this paper and gives an outlook on
future research. The corresponding Cramer-Rao lower
bound (CRLB) for the RSS measurement model is derived
in the Appendix.

In the following, tr (.) and rank (.) represent the trace
and the rank of a matrix, respectively, [.]" denotes the
transpose of a matrix. I, represents the m by m identity

matrix. | . | denotes ¢, norm.

2. Problem Statement and Measure-
ment Model

In this section, we first provide a description of the
sensor selection problem and the RSS measurement model.

2.1 Sensor Selection Problem

In the RSS-based localization problem, multiple spa-
tially separated sensors capture the radiated signal from
an unknown radio emitter. Typically, there is an infor-
mation fusion center (FC) responsible for collecting RSS
measurements, which are the input for the localization
algorithm. Due to the limited communication range, the
computational complexity, and the limited battery power of
the sensor, it is impractical to use all sensors for localiza-
tion in a sensor network [23]. Hence, the selection of sen-
sors is necessary in a practical scenario.

We consider a representative case where there is
an unknown emitter and the N fixed sensors in a 2D net-
work. Figure 1 provides an example of network scenario.
First, a few random sensors passively perform the RSS
measurement and feed the measurements to FC to perform
the initial location estimation. A refined set of sensors are
then selected and activated to measure the RSSs from the
emitter to achieve higher localization accuracy. The trans-
mission of data is performed in two steps. Firstly, the raw
signals captured are processed locally by the individual
sensors and converted into RSS data. Then, the RSS data is
sent to FC to obtain the emitter location. It is worth raising
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Fig. 1. Example of a sensing network.

the fact that information transmission requires energy. To
reduce the overall energy consumption of the system, one
sensor closest to the emitter (i.e., the sensor with the high-
est RSS) is selected to take on the role of FC. The FC is
responsible to perform both the emitter localization and
sensor selection tasks. In our assumed localization of
a small area only one FC is set. However, deploying more
FCs in a larger localization area is valuable to reduce local-
ization errors.

2.2 Measurement Model

The N fixed sensor locations are denoted by
Si=[xivi], i=1,...,N, while the emitter is denoted by
X = [a;D]. According to the widely-used RSS measurement
model [11-13], the received power (in dBm) at the i-th
sensor can be modeled as:

RzPO—lOﬂlogw%ani, i=1,..,N (1

0
where Py represents the received power at the reference
distance do, and f is the path loss exponent (PLE).
di= ||IX — Si|| represents the distance from the emitter to S;,

and »; is the log-normal shadowing effect usually modeled
as a zero-mean Gaussian distributed random variable with

variance o7, i.e., n, ~ N (0,0 .

In the case of unknown transmit power, the ML esti-
mation problem can be expressed as [12]:

2
N d
argminZliz(E—P0 +1041og,, d—’] . )
o,

©hT o 0

3. Bivariate RSS Localization Model

The RSS of each sensor is disturbed by channel shad-
owing. Therefore, the sample mean is evaluated to mitigate
the interference, which is given by [24]:

i)

[ "
Let I, = 1094 , ! —10 94, and & = 10 104, the prob-
lem (4) can be rewritten as [12]:
IOZ[ = dié’ ©)

where & represents the composite noise term. Clearly, if n;

and n; are independent, & and &, are independent for the
case with i # j. The parameters to be estimated are denoted

by 6=[x".R]. Motivated by [12], the LSRE-based

equivalence estimation then can be formulated as:

_ N dz 1212
- ' L hh
0 = argl}fl}’?izl[lglf + pE j (6)

There are optimization variables both in the numera-
tor and denominator as in (6). Therefore, problem (6) is
non-convex and difficult to solve. Using traditional SDR
technique cannot immediately convert the problem (6) into
a standard form [13]. To apply SDR, two variables L; and
Ly are introduced to replace 1//; and 1/ly in (6), respective-
ly. Then problem (6) is equivalent to [12], [13]:

AT ul 1
X', L, | =argmin) | LLd} + J NG
R

The problem (7) can be modified as [13]:

N
i U
mlL{}Z( 1), (8a)
st. LLd} <v,, (8b)
g/ui (8C)

LLrd’
where v=[vl,---,vN]T and yz[,ul,---,yN]T.

To decrease the complexity of obtaining unknown pa-
rameters and jointly estimate ¢ , a symmetric matrix z

containing X is defined. Z =z -Lo* is taken as a joint esti-

mation matrix. Describing Lo’d? term in (8) with Z, we get:

L|x =8| =tc(zw),i=1,...N ©)
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Based on (9), the constraint problem can be written

as:
v, tr(ZVK) -0 (10)
L |
tr(zw,) 1/1, <o an
S
Z=0, (12)
rank(Z) =2 (13)

where = stands for the positive semidefinite symbol. (12)

and (13) derive from the following significant equivalence:
LI LX
= < Z = 0,rank(Z2)=2. (14)
LX LX X| |

The fact that a matrix is positive semidefinite implies
that problem (8) is solvable. Hence, neglecting (13), the
final SDP formulation is expressed as:

my ()

(15)
st (10),(11),(12).

With {Z*,v*, ,u*} denotes the solution to the SDP.

Following the definition of Z, the location X can be calcu-
lated as:

X=7'(1:23)/2"(L1) (16)
and the transmit power Py is obtained as:
P, =1041og,, (1/ [z (1,1)) , (17)

As mentioned before, sensor selection is a problem of
finding an optimized subset of sensors. To avoid the influ-
ence of the battery power of the nodes on the localization
system, we assume that the power level of the nodes is
sufficient. Thus, the localization accuracy heavily depends
on the distances between sensors and the emitter. In sensor
selection, we should consider the sensor-emitter geometry
structure and its relative distance. In next section, we will
investigate how to find a subset of sensors that gives posi-
tioning results with high accuracy.

4. Sensor Selection for RSS-Based Lo-
calization

4.1 Sensor Selection Scheme

The accuracy associated with the localization process
relies on several factors. The main idea behind our pro-

posed selection method is to use information of the relative
location of a sensor to the emitter. On the one hand, the
RSS-based localization performance is closely related to
the qualities of the measured RSSs. Theoretically, the clos-
er the sensor is to the emitter, the more effective it is in
improving localization accuracy [26]. This means that the
higher RSS, the more reliable the estimation results will be.
On the other hand, the objective function of ML is non-
linear, which leads to a non-linear relationship between the
accuracy and the number of sensors used [26]. Consequent-
ly, using more sensors does not always improve the locali-
zation performance.

Furthermore, the geometry structure of the sensor-
emitter network is also an important factor [27] and the
sensors selected should be distributed around the emitter
[28]. The distribution structure of the sensors with a uni-
form angular separation around the emitter is the geometric
structure [27]. A successful geometry structure can be
established by selecting sensors from different spatial di-
rections of the emitter. However, the emitter is not always
located in the center of the sensing area, it may locate on
the boundaries of the sensing area. To select the sensors
spaced around the emitter, we divide the sensing area into
multiple equiangular partitions and examine whether there
is at least one sensor in each partition.

The selection algorithm is described in detail in the
following. First, due to the unknown emitter location, m
(m < N) random sensors measure the RSS values and report
the measurements to the FC. Using the localization method
provided in Sec. 3, we perform the first estimation and
obtain an initial emitter location (i.e., X1). Then, depending
on the number of sensors (i.e., M) required in the second
estimation, we divide the sensing area with the center of X,
into M partitions equally in the polar angle domain. The M
partitions are numbered clockwise or counterclockwise by
partition £, i = 1, -+, M, where clockwise or counterclock-
wise numbering yields similar results. Subsequently, we
proceeded with the analysis in a counterclockwise fashion.
For two neighboring partitions / and J (I <J), a sensor on
the boundary of the two partitions is considered to be in
partition /. Finally, we search for the sensor closest to the
emitter in each partition in turn. When there is an empty
partition, the empty partition will be skipped and its num-
ber will be recorded until all partitions are traversed. We
record the number of these empty partitions as e. The e
empty partitions are renumbered counterclockwise by par-
tition ii, ii=1, -+, e.

For the e empty partitions, we first select the nearest e
sensors to the emitter among the set of unselected sensors.
The e sensors are denoted by S, ii = 1, ..., e. The distances
of e sensors to the emitter are denoted as Dy, ii =1, ..., e. If
two sensors are equal in distance from the emitter, their
RSS values are similar. From this aspect, we deduce that
there is a point of the length equal to D;; on the angle bisec-
tor of the empty partition ii. The e locations are denoted by
Si". Then, we express the RSS measurements at coordinate
Si” by using the RSSs at the Sii. We refer to these points as
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simulated sensor nodes. Specifically, these simulated sen-
sors are imaginary, and their information can only be in-
ferred by Sii. We give the inference process in the follow-
ing.

The coordinates of sensors S;; are converted into a po-
lar coordinate system. The polar coordinates of the e real
and simulated sensors are denoted by (v, pi1) and (7'ii, o),
for it = 1, ..., e, where r's=ru, pu= (2ni—m)/M, and i is
the initial number of the empty partition. Thus, we obtain
the Cartesian coordinates of the simulated sensors given by
(ricos(p), r'isin(pi)). More sensors are deployed to
avoid too many empty partitions. In addition, when there
are more empty partitions, all partitions are rotated around
the emitter location. The rotation acts like a re-division of
the area.

When all partitions have available sensors, all select-
ed sensors are activated to perform measurement. The
measured data are then transferred to FC to perform
the second refined estimation. An example without empty

\ Partition2
/
® v @ ,
/
\ (’Pz // Partition 1
\

\\,, _» (8
@ S ©)
/ \\ (r 6 'p@)
/ \\ Partition 6

L. / \
Partition 4 / \

/ @ Partition5
/ \

( 7:04 /

/ (r5,05) \
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(a) Sensing area splitting with 6 partitions and sensor locations

\
\
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\\ Partition2  /

/
Partition 3 \ @ Y
/\/\/ "/ Partition I
SN 0) N
P / .
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/ \ P
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\
@ @ \ i @
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1sector , s « Partition 6
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(b) Sensing area splitting with one empty partition

Fig. 2. Sensing area partition.

Make the first
estimation;

Polar coordinate
transformation;
Set the number of sensor
selections;
Area division;
i=1

Is there at least one
sensor in partition i ?

Yes

Record Select the
ition 7 i sensor with the
Py > < highest RSS in
e partition i.
Sort the RSS ‘
at unselected Removes
SEensors. selected sensor
Simulation of from partition i
RSS
A # v
Fill some
empty
partition
end

Fig. 3. Flow chart of the proposed sensor selection method.

partitions is given, as shown in Fig. 2(a). An example with
one empty partition is shown in Fig. 2(b), where the simu-
lated sensor is inferred by the fifth sensor. Figure 3 details
the process of the sensor selection method.

4.2 Algorithm Framework

With sensor selection, the localization algorithm
needs to be executed twice. In the first step, m random
deployed sensors are used to passively measure the RSSs
from the emitter and report the values to FC. The initial
location estimate is obtained by performing the first esti-
mation using the sensed RSS measurements based on SDP
as in Sec. 3. According to the initial estimation and selec-
tion algorithm, other M sensors are selected to actively
measure RSSs. Then a second estimation step is executed
at the FC to give a more accurate result. Figure 4 depicts
the flow of the localization.

Input Collect First
pu RSS values Estimation
Y
Second Sensor
Estimation selection

Fig. 4. Framework of the RSS-based localization algorithm.
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5. Simulation Results and Analysis

5.1 Simulation Settings

In this section, two optimization schemes presented in
[13] and [17] are compared to validate the proposed algo-
rithm (denoted by “SS-SDP”). The two counterpart
schemes are represented by “SOCP-random” and “LSRE-
random”, respectively. The results are also compared with
the CRLB, which is widely used to represent the lower
bound of an unbiased estimator. All of the mentioned algo-
rithms were solved using the MATLAB R2020a package
CVX [29]. The times were captured by a laptop with
an AMD R7-5800H 3.3 GHz CPU and 16 GB RAM.

In the simulated scenario, 100 known sensors are de-
ployed in a 2-D area, with 50 sensors randomly distributed
within the area and the remainder uniformly distributed on
the boundary of the area. We assume that the sensors are
equipped with omnidirectional antennas [16]. As the sen-
sors are fixed and will work for a long period of time, we
simply choose the more stable sensors. The emitter is ran-
domly placed in this area. Figure 5 represents a scenario
with 30 sensors and an emitter. The PLE is taken as
a known parameter, unless otherwise stated. Our experi-
mental environment is line-of-sight. Only the environmen-
tal noise and path loss are considered in the information
transmission. The propagation model in (1) is employed to
generate the RSS measurements. The shadowing variables
n; is generated using a Gaussian distribution NV (0, o*) with

consistent variances o*= o fori =1, ..., N. The root mean
square error (RMSE) is used to measure the localization
performance, and is defined by:

RMSE = /ii“ X[—E(\,.“Z (18)

where Mc represents the number of Monte Carlo (Mc)

runs. X; and 5(\1 are the true emitter location and the esti-

mated location in the i-th run, respectively. The simulation
parameters are shown in Tab. 1.

In our simulations, the proposed algorithm invokes
m =15 sensors randomly to passively sample the radio sig-
nals and perform the initial estimation. Then we select
M =13 sensors to actively measure the RSSs and perform
the second estimation. The other two algorithms to be
compared also use 13 sensors randomly to perform the
localization. To verify the effect of unknown Po on the
estimated performance, we set o= 3 and select M sensors.

Value
100x100 m?
(-20,-10, 10, 20, 30, 40) dBm

Parameter
Field dimension
Transmitted power at do (Po)

Reference distance (dp) 1m
Path loss exponent (/3) 4
Standard deviation (o) 1,2,3,4,5,6
Number of samples (N;) 100
Monte Carlo runs (Mc) 3000

Tab. 1. Model simulation parameter values.

a Ht-3030)

Y(m)
>

X(m)

Fig. 5. Scenario with 30 sensors and one emitter.

08 |
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o sssoe

06 |
05 |
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01 |

-20 -10 10 20 30 40
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Fig. 6. RMSE at different Po.

The RMSE data for different transmitted powers are rec-
orded as shown in Fig. 6. It can be seen that the RMSE is
independent of the Po. Thus, in the following, we select the
transmitted power arbitrarily.

5.2 Sensor Selection Simulation Results

To verify the importance of sensor selection, 10, 20,
30, 40, 50, and 60 sensors are selected respectively to per-
form the three localization algorithms in the scenario with
o = 3 dB. Figure 7 shows the impact of the number of
sensors on RMSE of the emitter location estimation. The
results indicate that the proposed SS-SDP performs well
with different numbers of sensors. The RMSE decreases as

[ el
e
e Rt

RMSE(m)

20 30 40 50 60

number of sensor

Fig. 7. RMSE performances with different numbers of sen-
SOrS.
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Fig. 8. Impacts of number of sensors on average running time.

the number of sensors increases. The average running time
of the algorithm is shown in Fig. 8. It shows using more
sensors will increase the running time of the algorithm.
Figures 7 and 8 also show that it takes a longer time with
more sensors while the localization accuracy is slightly
increased. The proposed algorithm performs well when
fewer sensors are selected. The gains from the algorithm
are not optimal when more sensors are selected.

5.3 Impact of Standard Deviation of Shadow-
ing Effect on RMSE

We then investigate the scenario with varying shad-
owing levels. In this scenario, the number of sensors used
is fixed as 13 (i.e., M = 13). The RMSE curves for the
considered algorithms are given in Fig. 9. In general, the
RMSE and the CRLB increase with . The gap between
the RMSE of the SS-SDP and the LSRE-random is larger
than 0.4. As o increases, the RMSE gap between the two
algorithms increases. Moreover, Figure 9 shows that the
RMSE growth rate of SS-SDP slows down. LSRE-random
has a significant performance improvement over the
SOCP-random. The RMSE curves for the estimated trans-
mit power are shown in Fig. 10. The results in Fig. 9 and
10 show that SS-SDP has higher accuracy for both the
location and transmit power estimations. Notably, the vari-
ation range of RMSE of SS-SDP is the smallest. Hence,
SS-SDP results in the lowest sensitivity to channel shad-
owing.

With =3 and M = 13, we find a threshold value of
m. The range of m is from 3 to 6. The results of the two
estimations are shown in Tab. 2. According to Tab. 2, the
final results do not outperform the LSRE-random algo-
rithm at m = 3 or 4. But when m is bigger than 5, the result
is better than that of LSRE-random algorithm.

First estimation
m 3 4 5 6
RMSE | 1129 [ 929 | 538 | 387
Second estimation
RMSE | 217 [ 179 | 068 | o061

Tab. 2. RMSE for the two estimations.

RMSE(m)

shadowing(dB)

Fig. 9. RMSE of the location estimation versus o

3

RMSE(dBm)

0 > s
1 2 3 4 5 6

shadowing(dB)

Fig. 10. RMSE of the transmit power estimation versus o.

5.4 Impact of the Number of Sensors on
RMSE

With a fixed o = 3 dB, we examine the localization
performance for different numbers of sensors, with M vary-
ing between 8 and 18. The RMSE of the emitter location
estimates versus the number of sensors is shown in Fig. 11.
The result shows that the CRLB and the RMSE decrease as
the number of sensors increases. The SS-SDP algorithm
still outperforms the other two algorithms. When M = 8§,
the SS-SDP performs roughly 60% and 70% better than the
LSRE-random and SOCP-random algorithms, respectively.
As the number of sensors increases, the RMSE gap be-
tween the LSRE-random and the SS-SDP decreases.

To further validate the performance of the SS-SDP,
we estimate the location with a different number of sensors
while keeping the RMSE between 0.90 and 1.00. Table 3
shows the relationship between the number of sensors
involved in localization and the RMSE of location estima-
tion. Therefore, the SS-SDP uses about 1/2 of the LSRE-
random and about 1/7 of the SOCP-random in terms of the
number of sensors to achieve similar performance. It sig-
nificantly indicates the superiority of the SS-SDP algo-
rithm.
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Algorithm Number Accuracy
SS-SDP Selecting 8 or 9 sensors 0.91~0.97
LSRE-random | Randomly selecting 20 or 21 sensors | 0.94~0.98
SOCP-random | Randomly selecting 75 or 76 sensors | 0.91~0.97

Tab. 3. The number of sensors versus RMSE.

RMSE(m)

8 10 12 14 16 18

number of sensor

Fig. 11. RMSE of location estimation versus the number of

Sensors.
Algorithm Complexity
$S-SDP 0( (M+k)(M+k2)3)

LSRE-random 0( (M+k)(M+kz)3)

SOCP-random 20 (M 3 )

Tab. 4. Computational complexity. (Note: The number of sen-
sors and the localization dimension are denoted by M
and k, respectively.)

0.9

SSSDP

©— LSREsandom
0.8

SOCP-random

07 |

0.6 \_/‘W

Average time(s)

0.4

L L
8 10 12 14 16 18

number of sensor

Fig. 12. Average running time versus the number of sensors.

Computational complexity is also an important factor
that affects the performance of the algorithm. The trade-off
between estimation accuracy and complexity is also inves-

tigated and the complexities of the considered algorithms
are summarized in Tab. 4.

The average running time as the number of sensors
varies is shown in Fig. 12. The results reveal that the aver-
age running time of the LSRE-random is about 2 to 3 times
that of the SOCP-random. The SS-SDP performs twice in
our scheme, so it takes more time than the LSRE-random.
The results in Fig. 12 and Tab. 4 match well. We conclude
that the SS-SDP achieves better performance with relative-
ly low complexity.

5.5 Localization Error versus Emitter Loca-
tion

In this experiment, the locations of the emitter are
changed, the effects of the location on the estimation per-
formance are investigated. The emitter location is assumed
to vary from the center to the edge of the sensing area.
Typical locations are (—60, —60), (—70, —70), (-80, —80),
and (90, —90). The results of the RMSE are plotted in
Fig. 13.

It is shown that the RMSE of the three methods in-
creases gradually as the emitter moves from the center of
the area to the boundary. The SS-SDP algorithm has the
smallest RMSE increment and shows the best performance
in the central area. When only 8 sensors are employed, the

6

SS-SDP
©— LSRErandom

SOCP-random

RMSE(m)

number of sensors

@

T
s SS-SDP

9 'K ©— LSRE-random

SOCP-random

RMSE(m)

number of sensors

(b)
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(©)
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8 10 12 14 16 18
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Fig. 13. Localization errors versus emitter location. (a), (b), (c),
and (d) represents the corresponding RMSE of location
estimation under the four locations of (—60, —60),
(=70, -70), (-80, —80), and (-90, —90).

RMSE of the SS-SDP grows from 2.8 m to around 6 m for
the four locations. When there are more than 12 sensors,
the RMSE of the SS-SDP algorithm remains below 3 m.
Therefore, the SS-SDP algorithm effectively alleviates the
performance degradation caused by the emitter location
changes.

6. Conclusion

We have proposed an uncooperative emitter localiza-
tion method based on joint sensor selection and semidefi-
nite programming optimization to increase the accuracy in
RSS-based localization and to lower computation complex-
ity. The superiority of the algorithm has been demonstrated
through extensive simulations, compared to other typical
localization methods. We show that in future IoT or WSN
localization scenarios with massive radio frequency sen-
sors, sensor selection is a critical step in lowering the algo-
rithm complexity and the energy consumption. In future
work, a more practical path loss model for the non-line-of-
sight propagation should be considered and the investigat-
ed joint optimization approach in this study will be extend-
ed to the new scenario.
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Appendix: Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) is defined as
a lower bound on the variance of any unbiased estimator
and is widely used as a benchmark for localization perfor-
mance. The CRLB for RSS-based localization had been
derived in [17] and [18]. It was derived from the inverse
matrix of Fisher's information matrix. A concise derivation
process is given below. From the measurement model in
(1), the probability density function of the RSS measure-
ments is written as [17]:
2
}(19)

B, R\/[]T represents the signal

(B- B +1081og,,(d,))
202

p(F;0)= H [ 5 zexp{—

where the matrix F:[

strength values. M indicates the number of sensors.

Taking the logarithm of both sides of (19), we obtain:

In (F~§)=—Mln(27m'2)—L S (P—P +10plog,, (d ))2
bl 2 o7 i 1o gold;)) .

i=1

(20)

The first-order and second-order partial derivatives of
(20) are taken respectively. We then apply them to form

the Fisher information matrix / (9) :

1(@){/ - E{

Following (20) and (21), the / (Z)) can be written as:
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The diagonal elements of the inverse of the Fisher in-

formation matrix / 71(9) are the CRLB of the unknown

parameters.



