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Abstract. This paper presents a new algorithm of the sin-
gular value decomposition (SVD) in the wavelet domain for
ground penetrating radar (GPR) to remove direct coupled
waves. In fact, direct coupled waves commonly disturb the
reflecting waves from underground targets. Besides, the am-
plitude and energy of direct coupled waves are large, which
reduces the resolution of the images to the targets and ad-
versely affects the subsequent image interpretation work. The
GPR signal is decomposed into several levels by Wavelet to
obtain approximation components and detailed components
of each level. The information of targets is contained in big
eigenvalues of detail components, while the direct coupled
waves are contained in small ones. Therefore, the SVD in
the wavelet domain can reduce the misjudgment of effective
signals and improve the signal to noise ratio (SNR) of GPR
signals. The simulated and field GPR data show that the
SVD in the wavelet domain denoising method has better re-
sults for direct coupled wave removal than the traditional
methods, which validates the effectiveness of the proposed
denoising method.
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1. Introduction

Ground penetrating radar (GPR) is a geophysical ex-
ploration method that uses high frequency (1 MHz-10 GHz)
electromagnetic waves to non-destructively detect invisible
targets in the ground. With the advantages of simple op-
eration, high resolution, and strong anti-interference capa-
bility, the GPR technology has been widely used in tunnel
lining detection [1], [2], geological surveys [3], pipeline de-
tection [4], [5], and many other fields. In the process of
exploration, in order to maintain more reflected wave char-
acteristics of targets, the GPR generally uses broadband to
record. However, while collecting effective wave data, var-
ious interference signals such as noise and clutter will also
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be recorded in the original GPR data. In order to improve
the accuracy of data interpretation, it is necessary to filter the
original radar data and understand the effective echo charac-
teristics of underground targets, which is of great significance
to improve the level of data interpretation.

The echoes received from the GPR mainly include ef-
fective echoes of targets, direct coupled waves, and noise.
Directly coupled waves have the characteristics of strong
correlation, high noise intensity, and high energy, which is
easy to cause the shallow target signals to be submerged. In
addition, noise is mainly a non-smooth random signal, and its
frequency is usually a function of time depth, so clutter sup-
pression can reduce the false positive rate of deep target ob-
ject recognition. At present, the processing methods of GPR
noise mainly start from the time domain or frequency domain
at home and abroad and use conventional sliding window fil-
tering, frequency bandpass filtering, etc. These methods are
often difficult to achieve ideal results, and cannot filter out
some specific signal characteristics of GPR signals well. In
order to solve the problem that the existing algorithms are
not effective for GPR clutter suppressing, scholars at home
and abroad have done a lot of research work. GPR denoising
algorithms mainly include frequency filtering [6], fast inde-
pendent component analysis (FastICA) [7], empirical mode
decomposition (EMD) [8], neural network [9], singular value
decomposition (SVD) [10], wavelet transform (WT) [11],
KL transform [12].

The wavelet transform is independent of the smooth-
ing factor in the signal, so it has distinct advantages in the
analysis of complex non- stationary time series signals in
both the time and frequency domains [13]. WT takes wavelet
multi-scale analysis and fractal scale invariance, which have
important applications in signal singularity and image pro-
cessing [14], [15]. However, when different signals have
different characteristics, similar wavelet functions require to
be carefully selected. At present, Wu [16] proposed a de-
noising method based on wavelet transform to suppress ran-
dom noise in GPR data. A 3-D wavelet denoising algorithm
was proposed to remove direct coupled wave. It choosed
a proper 2-D wavelet as the basic function and takes suitable
wavelet scale to achieve this [17]. SVD is a useful method
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to decompose the GPR data for final reconstruction of GPR
signals by spectral analysis [18]. Downs [19] used SVD-
filtering to remove direct coupled waves generated by the
presence of very shallow objects, which preserves higher-
order eigenimages. Liu [20] applied SVD method to elimi-
nate random noise and direct coupled waves from the GPR
signals. By comparing the SVD denoising method, wavelet
threshold denoising method, and bandpass filtering method
on noisy synthetic data and field data, the SVD method can
eliminate random noise and direct waves in GPR data effec-
tively and validly to improve the signal to noise ratio (SNR)
and makes the effectively reflected signal clearer. SVD can
also be used as a supplementary method to suppress ran-
dom noise. Xue [21] presented a method based on SVD of
a window-length-optimized Hankel matrix. SVD is applied
to decompose and reconstruct the Hankel matrix of the orig-
inal GPR data by singular values corresponding to effective
signals, which are used to suppress noise. But he didn’t show
enough GPR models to demonstrate this. Gao [22] showed
that wavelet domain KL is a effective denoising method by
showing enough synthetic models. But he didn’t compare
with other methods and show field data.

Considering the strong correlation between direct cou-
pled wave signals and the non-stationary characteristics of
noise signals, a filtering method for the SVD in the wavelet
domain of GPR signals is proposed through the fusion design
of the two algorithms based on the suppression ability of the
SVD on correlated signals and the time-frequency analysis
ability of wavelet transform. Compared with the wavelet-
domain KL transform, SVD, wavelet transform, and KL, the
SVD in the wavelet domain method has a stronger denois-
ing capability and less disturbance to the reflected signal of
the target body. Finally, the results based on simulated and
field GPR data validate the effectiveness of the proposed
denoising method.

2. The SVD in the Wavelet Domain
Denoising Method

2.1 Selection of Wavelet Function

Stationary signals are often filtered in a way that is con-
sidered in terms of frequency. Fourier transform is the basic
theory of frequency filtering, which is used to reflect the over-
all characteristics of signals in the time domain. Although
Fourier analysis is completely accurate in the frequency do-
main, it cannot provide any information on the local time
band, that is, it cannot provide any specific and accurate
time information. As the amplitude of the GPR echo signal
changes with time, it is clear that the signal is not a stationary
signal, so the Fourier transform cannot be used to filter noise
in the GPR echo signal.

The wavelet transform has the property of multi-
resolution analysis, which can effectively overcome the
shortcomings of the Fourier transform lacking temporal

localization. It is able to give information about the fre-
quency of the signal while giving the moment when the
frequency occurred, and dynamically adjusts the time and
frequency domain windows according to the shape of the
signal. Therefore, the wavelet transform method is widely
used in the field of time-frequency analysis.

Different from the Fourier transform, which uses the
sine and cosine functions as basic functions, the wavelet
transform uses the wavelet function as the basic function. In
theory, any function of L?(R) function space can be used as
a wavelet function.The function of square integrable space
can be decomposed orthogonally like vector space, and its
mathematical expression is:
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where g;(¢) is the standard orthonormal basis; ¢; is the pro-
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information associated with the basis function g; (¢):
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For the wavelet transform denoising algorithm, it is cru-
cial that how to appropriately choose a wavelet function. In
addition, the more similar a wavelet function is to a signal
waveform to be processed, the better the denoising effect [23].
It can be seen that the DB family wavelet function is similar
to the GPR echo signal, as shown in Fig. 1.

Except for N = 1, DBN is not symmetrical (i.e. non-
linear in phase), resulting in phase distortion when the signal
is decomposed and reconstructed. As the wavelet order in-
creases, the vanishing moments increase and the smoothness
becomes better. At the same time, the amount of computa-
tion is greatly increased and the real-time performance be-
comes worse. If the SNR are similar, the wavelet function
corresponding to the smaller N value is chosen as the basis
function, which is benefficial for data compression and noise
suppression. The wavelet function is selected from DBI1 to
DB20, and the SNR is used as the evaluation index to evaluate
the analysis. Take the SNR result of the above 40" single-
channel waveform for example, as is shown in Fig. 2. We
can see that the SNR is the highest when N =4 or 7, so DB4
wavelet is chosen as the wavelet function for the proposed
algorithm.

1.5 6000

1 4000

o

2000

Amplitude
Amplitude

0

o

-2000

-4000
0 2 4 6 3 0 S0 100 150 200 250 300

Time Sampling point

(@) (®)

Fig. 1. Comparison of DB family wavelet function and GPR
single-channel signal. (a) DB family wavelet function,
(b) The 40 single-channel waveform.
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Fig. 2. Comparison of different DB wavelet decompositions.

2.2 Singular Value Decomposition

The GPR echo signal F mainly generated by effective
echoes f from the targets, direct coupled waves g and noise
clutter s is described by [23]:

F=f+g+s. 3)
Assuming that the echo signal F denotes a m X n matrix,

m denotes the number of sampling points of a single channel
and n denotes the total number of channels of the signal,

there must exist orthogonal matrices U = [uy, us, ..., u;,] €
R™™ and V = [vy,va,...,v,] € R™" satisfying:
X 0
T _ r
UTry - ( - O) @

where X, = diag (o, 03,...,0;), the diagonal component
o; is the non-zero singular value in a non-increasing order
(i.e. o1 = 0 > --- > o0,) and I is the unit matrix. Let
U and V be the left singular and right singular matrices,
respectively, then, equation (3) can be rewritten as:

n
F=UzZV'= Z o vy (5)
i=1
where the vector u; and v; are the left and right singular vec-
tors of the matrix F, respectively, uiviT is an adapted basis
and o7 is its coefficients. From (5), the components are statis-
tically theoretically uncorrelated, indicating that the energy
is concentrated in the vector matched by the larger eigenval-
ues. Therefore, the direct coupled wave can be filtered out

by selecting the appropriate term and setting it to zero.

2.3 SVD in the Wavelet Domain

In theory, the SVD can effectively remove the compo-
nents of direct coupled waves from the GPR signal, but in
practice, the accuracy of its recognition of target echoes and
clutter is not high. Specifically, in the shallow region, the tar-
get echo signal is easily misjudged as direct coupled waves to

be removed, while in the deep region, the target echo signal is
easily misjudged as clutter to be suppressed. Therefore, the
SVD is not suitable for the global decomposition of GPR sig-
nals. What’s more, the core idea of the wavelet thresholding
algorithm is to decompose the signal in the time-frequency
domain to identify and filter noise, but it does not achieve
ideal results for the non-smooth random signal of GPR. On
the one hand, its accuracy in identifying target echoes and
clutter is not very high, and it is not effective in filtering out
direct coupled waves. On the other hand, the selection of the
threshold value is very demanding, that is, too high cannot
effectively filter out the noise, and too low tends to filter out
the effective echo signal.

Therefore, we propose a new denoising algorithm based
on SVD in the wavelet domain, which transforms the object
of singular value transformation from the original complete
echo signal to the approximate and detailed components
obtained from wavelet multilayer decomposition, reducing
the misjudgement of valid signals by the SVD and wavelet
thresholding methods and improving the filtering accuracy.
The SVD in the wavelet domain denoising process is shown
in Fig. 3.

Step 1: Wavelet N-layer decomposition of the GPR signal F
to obtain the approximate component Ay and the
detail components of each layer D;,i =1,2,--- , N.

Perform SVD and inversion of all components ob-
tained in Step 1 to obtain the approximate compo-
nent Wy and the detail components of each layer
Wi, i=1,2,---,N.

Step 2:

Wavelet N-layer reconstruction is performed based
on all the components obtained from the inverse
transform of Step 2, resulting in a filtered echo signal
based on SVD in the wavelet domain.

Step 3:

Since direct coupled waves have strong correlation, their
energy is basically concentrated in the first k& (k < r) larger
eigenvalues. Firstly, the matrix F is constructed and de-
composed using the SVD method. Secondly, the U and V
components corresponding to the first k eigenvalues are set to
zero, making the noise components are removed from the ma-
trix F. Finally, we obtain the target echo signal after filtering
the direct coupled wave and random noise.
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Fig. 3. The denoising process of SVD in the wavelet domain.
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2.4 Performance Evaluation

In order to demonstrate that the SVD in the domain de-
noising method performs well, signal to noise ratio (SNR),
root mean square error (RMSE), and normalization cross
correlation (NCC) are used to compare and analyze the GPR
data before and after direct coupled wave removal. They are
defined below:

SNR = 10><1g(g2/(g—f)2), (6)
1 m n
RMSE = %ZZ gik—fix)s ©)
i=1 j=1
'Z_nll é 8j.kfik
NCC = = m (8)
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where m X n describes the size of GPR data. g is the orig-
inal GPR data. f is the GPR data after removing direct
coupled wave. These can be considered as indicators of the
performance of the filtering method applied by identifying
the technique (or the parameters) which results in the highest
SNR and NCC with the lowest possible RMSE.

igjkfjk)x
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3. Application to GPR Simulation
Data

3.1 Simulation Conditions

GPR applies high-frequency pulsed electromagnetic
waves emitted by an antenna to detect target objects. The
GPR system includes the transmitting signal part, the col-
lecting signal part, and the signal processing part. The main
structure and mode of the GPR are shown in Fig. 4, which in-
cludes the hardware equipment: host computer, transmitting
antenna, transmitter, receiving antenna, receiver and com-
puter. Firstly, the GPR transmits electromagnetic waves to
the ground through the transmitting antenna, which are re-
flected, refracted, and projected on the ground. Then, the
signals are received by the receiving antenna, and processed
on a computer, which converts the collected electromagnetic
signals into digital signals for processing.

The host computer is responsible for setting the fre-
quency of the electromagnetic wave signal, the power of
the machine, and other parameters. The electromagnetic
wave signal is generated by the transmitting antenna. When
the electromagnetic wave reaches the intersection of air and
ground, part of signals will be reflected to be received by
the receiving antenna, which is called direct waves. Signals
from the transmitting antenna and then directly received by
the receiving antenna is called a coupled wave. Direct waves

and coupled waves belong to direct coupled waves. There
is also a part of signals that reaches the target and then re-
flects is called the target signal. When the target echo signal
reaches the receiver, it needs to be sampled and processed by
the radar receiver, and then transmitted to the control module
and processing module in the system, and finally, the original
GPR signal is obtained through data processing.

FDTD can be able to completely simulate the process
of GPR electromagnetic wave propagation in a computer.
An important area of FDTD research is the design of an ab-
sorbing boundary condition that produces good results with
small numerical reflections. The effectiveness of the ab-
sorption boundary condition is assessed by the size of the
computational volume and the volume of the computational
local area. The smaller the computational volume and the
volume of the local area, the better the absorption boundary
condition. Absorption boundary conditions can be divided
into natural and forced boundaries, with natural boundaries
being computationally simple but less effective. A represen-
tative example of a forced boundary is the perfectly matched
layer (PML). This is where the electromagnetic wave arrives
at the boundary and is first decomposed in all directions and
different loss factors are applied to the components in differ-
ent directions.

Finite difference time domain is the most common sci-
entific modelling method, which works by replacing the first-
order partial quotient in time and space with a central dif-
ference quotient, and then obtaining the distribution of the
electromagnetic field by modelling the propagation process
of electromagnetic waves in the time domain [24]. In this
paper, Matlab is chosen as the application tool of the FDTD
method to simulate the detection scenario and detection pro-
cess of GPR data.

3.2 Observed Signals of Cavity Disease Model

Experiments performed on simulation data demonstrate
that the superiority of SVD in the wavelet domain method
over conventional filtering methods in terms of random noise
suppression and direct wave removal. The dataset can be
used to evaluate SVD in the wavelet domain method and also
to establish evaluation criteria for field GPR data.

Host computer

Receiver

o
. ¢
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Medium 1
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Fig. 4. Principle of GPR model.
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Fig. 5. (a) Subsurface model used to generate GPR data. (b) The
GPR-data profile.

In order to be closer to the field data, we simulated
the parameters of the GPR equipment as much as pos-
sible. Specifically, the GPR pulse frequency is 900 MHz,
80 channels of single-channel echo data, and each consists
of 1000 sampling points. The sampling time is 2ns, and
the channel interval is 0.2m. In this paper, we have con-
structed a geological structure model with two layers. The
tested model is shown in Fig. 5. The model length and depth
are 1.6 m and 1.2 m respectively. The first layer is the pave-
ment layer with a thickness of 0.4 m, which is composed of
asphalt with the relative dielectric constant of 5 and conduc-
tivity of 0.01 S/m. The second floor is the road subgrade,
mainly composed of soil or gravel with the relative dielectric
constant of 6 and a conductivity of 0.1 S/m, with a thickness
of 0.8 m. According to Fig. 5, it can be seen that the energy
of the direct wave is stronger, and by contrast the energy of
effective reflecting wave is weak.

3.3 Simulation Data Results

In order to demonstrate the superiority of the SVD in the
wavelet domain method for GPR data, the wavelet domain
KL, SVD, wavelet transform, KL transform filter method
are used to remove direct coupled wave for comparison. As
shown in Fig. 6(a), the direct coupled wave is mainly between
15-18 ns. From a subjective point of view, the SVD in the
wavelet domain filtering algorithm remove the direct coupled
wave better, and there is no obvious clutter, which does not af-
fect the target echo signal. Although the wavelet domain KL
filtering algorithm filter out the direct coupled wave, obvious
clutter greatly affects the quality of the GPR echo image.
From Fig. 7(d), we can see that the direct coupled wave can
be removed completely, but does not distinguish well be-
tween background and target, resulting in a partially missing
target echo. From Fig. 7(e), wavelet transform cannot remove

Time (ns)

0.4 0.6 0.8 1 12
Horizontal position (m)

Horizontal position (m)

(a) Image after automatic gain (b) SVD in the wavelet domain
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Fig. 6. Results of direct wave arrivals removal for GPR simula-
tion data.

the direct coupled wave, but it greatly suppress random
noise. But when the interface between different layers is
undulating, wavelet transform may cause false reflector in
the profile. From Fig. 7(f), it can be seen that KL. method
effectively removes direct coupled waves from the GPR pro-
file by choosing a suitable k-value. Comparing Figs. 7(b)
and (c), we can know that the SVD in the wavelet do-
main can remove direct coupled waves and eliminate ran-
dom noise from the GPR profile without losing useful in-
formation. Comparing Figs. 7(b) and (e), we can know
that SVD in the wavelet domain can not only remove
the direct coupled wave from the GPR profile, but also
can eliminate the diffraction wave due to boundary effect.

Figure 7 shows the result of the 40" single channel
waveform of gain GPR echo signal of the test model. The
three filtering algorithms, including SVD in the wavelet do-
main, wavelet domain KL transform and KL, basically did not
cause any disturbance to the amplitude and phase of the cav-
ity echo signals, and the cavity area echo signals are basically
the same as before filtering, proving that the three methods
ensure that the signal amplitude of the target reflection area
does not change. According to the waveform diagram, the
amplitude residuals after filtering the direct coupled waves
by the wavelet domain are significantly higher than SVD
in the wavelet domain between sampling points 0 and 100.
Between sampling points 100 and 350, the wavelet domain
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Fig. 7. Comparison of 40™ single-channel signal wave before
and after direct wave arrivals removal.

Methods SNR RMSE NCC

SVD in the wavelet domain | 3.2829 0.0149 0.7283
Wavelet domain KL [22] 3.1151 0.0152 | 0.7159
SVD [10] 1.5964 | 0.1372 | 0.5257
Wavelet transform [11] 1.1953 0.1049 0.8642
KL [12] 3.0257 | 0.0384 | 0.7194

Tab. 1. The SNR, RMSE, NCC of SVD in the wavelet domain,
wavelet domain KL, SVD, wavelet transform and KL for
simulation data.

KL filtering algorithm suppresses the amplitude of the wave-
form in this section to zero which also indicates that the
wavelet domain KL filtering algorithm does not select the
direct coupled wave portion accurately enough and filters out
other valid reflected waves, while SVD in the wavelet domain
filtering algorithm does not filter out this segment of the echo
signal waveform and corrects it to zero, completely ensuring
that only the direct coupled wave is filtered out, proving the
superiority of SVD in the wavelet domain filtering algorithm
proposed in this paper. Between sampling points 600 and
100, wavelet domain may cause false reflector in the profile.
On the contrary, SVD in the wavelet domain don’t cause false
reflector. From the results of SVD denoising, it is clear that
direct SVD decomposition cannot effectively separate the
target signal from the background signal without selecting
suitable singular values.

Table 1 shows that the SVD in the wavelet domain filter-
ing algorithm outperforms the wavelet domain KL filtering
algorithm in terms of SNR, RMSE and NCC. In addition, the
SVD in the wavelet domain can better preserve the integrity
of the signal, so that the denoised signal still retains the sig-
nal characteristics from underground targets. The closer the
NCC is to 1, the more similar it represents to the original
image. Wavelet transform has the highest NCC value which
is shown in Tab. 1. The main reason for this is the strong
coherence and high energy of direct coupled waves, resulting
in the highest NCC value for the worst denoising effect. We
only use the NCC as an auxiliary evaluation metric. Under
the premise of better removal of direct coupled waves, the
value of NCC is used to objectively judge whether the de-
noising is excessive or not. There’s no doubt that wavelet
transform does not remove direct coupled waves very well.
Although the KL filtering algorithm is similar to SVD in the
wavelet domain in terms of SNR, RMSE and NCC, it disrupts

near-surface target signals. The processing results shows that
the SVD in the wavelet domain filtering algorithm has higher
accuracy than the wavelet domain KL filtering algorithm,
SVD, the wavelet domain, KL, which are popularly used
now. What’s more, it can also remove the diffraction wave
due to boundary effect.

4. Application to Field GPR Data

4.1 Measurement Setup

Based on field GPR data, the filtering performance of
the SVD in the wavelet domain is analyzed. Taking the
concrete structural masonry experimental wall of the Iron
Academy of Sciences as the research object, the Italian
RIS-type GPR and 900 MHz shielded antenna were used for
inspection. According to echo images, it can be judged that
the second lining rebar is mainly distributed in the time depth
range of 5-10 ns, while the direct coupled wave is mainly con-
centrated in the time depth of 5ns. The rebar echo is closer
to the direct coupled wave, which lead to a small amount of
echo signal is covered.

The experimental wall is 50 cm thick, 1.5m high and
15m long. It is divided into a reinforced layer and an un-
reinforced layer. There are 12 cavities in the unreinforced
layer, 4 in each height section. In the reinforced layer, the
diameter of the reinforcement is 22 mm and the spacing is
25cm. The distance from the wall surface is divided into
three layers: 25cm, 15cm and 5cm. The types of cavities
are Scm X 30cm, 10cm X 30cm and 15cm X 30cm. The
radar has 512 sampling points, a time window of 40 ns and
a channel spacing of 4 mm.

4.2 Field GPR Data Results

In order to verify the practicality of wavelet singular
value filtering, this section takes the field data of GPR detec-
tion in Italy as an example. After gaining the original GPR
echo data, the SVD in the wavelet domain filtering algorithm
is used to process the direct coupled waves, and the results
are shown in Fig. 8. From Fig. 8(d), we can see that there
is no signal on the image, which indicates that the SVD de-
noising algorithm cannot be applied to the field data. From
Fig. 8(e), wavelet transform does not have any effect, while
KL denoising method performed very well. The process-
ing results shows the SVD in the wavelet domain method is
suitable for GPR field data denoising. It not only removes
diffracted waves due to boundary effects, but also effectively
removes the direct coupled wave from the GPR profile with-
out destroying the near-surface target signal.

As can be seen from Fig. 8, the SVD in the wavelet
domain filtering algorithm filters out the direct coupled wave
and makes the cavity disease area more prominent, which
is more conducive to the operator’s identification and obser-
vation, proving the practicality of the SVD in the wavelet
domain filtering algorithm.
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Fig. 8. Results of direct wave arrivals removal for field GPR data.

5. Conclusions

In this paper, we have proposed a SVD in the wavelet
domain algorithm for GPR data to remove direct coupled
waves. Experimental results demonstrated that our method
consistently outperform the state-of-the-art methods across
several challenging benchmarks (including wavelet domain
KL transform). The three main contributions for performance
improvement are vanishing moment of the wavelet system,
wavelet N-layer reconstruction, singular value decomposition
and its inverse transformations.

The processing results from the field measured data
show that our method is more stable and convenient than the
other denoising methods, which can remove direct coupled
waves. The SVD in the wavelet domain not only removes
diffracted waves due to boundary effects, but also effectively
removes the direct coupled wave from the GPR profile with-
out destroying the near-surface target signal. The improved
SNR and accuracy in GPR data interpretation help to high-
light the characteristics of abnormal bodies in GPR profiles.
It is worth noting that the real geological structure is much
more complex. We have only considered one category of
cavity in two layers of geological conditions, and the appli-
cability of the method needs to be improved.
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