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Abstract. Orthogonal Coefficients Equating (OCE) meth-
od as an analytic method is proposed to synthesize nonuni-
formly spaced antenna arrays to have array factors nearly 
equal to that of a previously designed uniformly spaced 
antenna arrays. In this method, the orthogonal coefficients 
of array factors of nonuniformly spaced array are equated 
to those of uniformly spaced array. To this end, three or-
thogonal functions including Chebyshev polynomials, Le-
gendre polynomials and exponential functions are dis-
cussed. Some examples are brought to verify the perfor-
mance of the OCE method for all three orthogonal 
functions. 
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1. Introduction 
Nonuniformly Spaced Antenna Arrays (NSAAs) are 

desirable because they yield desired radiation patterns 
without using nonuniform amplitude excitation. Therefore, 
NSAAs do not need complex circuits providing nonuni-
form amplitude distribution like as for Uniformly Spaced 
Antenna Arrays (USAAs). 

To find the optimum positions of the antennas of 
NSAAs is an essential aim for their synthesis. As yet, many 
methods have been introduced for the synthesis of NSAAs. 
These methods would be divided into two main groups. 
The first group includes various optimization procedures 
[1–6] and gives the results blindly without enough infor-
mation about the features of the results. The second group 
includes various analytical procedures among them integral 
techniques, perturbation, iterations methods and probabilis-
tic approaches [7–19]. In [17], Zeros Matching Method 
(ZMM) is introduced. In this method, the zeros of array 
factors of NSAAs are equated to the zeros of the exact-
Chebyshev pattern to reach a near-Chebyshev pattern. In 

[18], ZMM method is generalized to design arbitrary array 
factors. In [19], Fourier's Coefficients Equating (FCE) 
method is proposed. In this method, the periodicity of array 
factors is used and the Fourier's coefficients of NSAA is 
equated to those of USAA. In [20], [21], NSAAs are syn-
thesized with minimum number of elements at the cost of 
having nonuniform excitations. 

In this article, another method is proposed for the 
second group of synthesis methods. It is tried to design 
NSAAs for having array factors as close as to those of 
a previously designed USAA [22], [23]. In this analytical 
method, called Orthogonal Coefficients Equating (OCE) 
method, the array factors are represented as a summation of 
orthogonal functions, first. Then the orthogonal coeffi-
cients of array factors of NSAAs are equated to those of 
array factor of USAA. The positions of the antennas are 
obtained by solving a system of linear equations, iterative-
ly. Three orthogonal functions are used for presented OCE 
method consisting of Chebyshev polynomials, Legendre 
polynomials and exponential functions. Finally, some ex-
haustive examples are given to show the effectiveness of 
the proposed method to synthesize NSAAs. 

The paper is organized as follows. In Sec. 2, the array 
factors of USAAs and NSAAs are reviewed. In Sec. 3, the 
OCE method using Chebyshev polynomials is introduced. 
In Sec. 4, the OCE method using Legendre polynomials is 
introduced. In Sec. 5, the OCE method using exponential 
functions is introduced. In Sec. 6, matrix equations are 
obtained for all presented OCE methods. In Sec. 7, some 
examples are provided to show the effectiveness of the 
OCE method. 

2. USAA and NSAA Arrays 
Figure 1 shows linear uniformly spaced antenna ar-

rays (USAA) having L = 2N + 1 or L = 2N elements of 
equal distances d0. The array factors of uniformly spaced 
arrays are given by the following relations, for odd and 
even number of antennas, respectively: 
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where k = 2π/λ is the wavenumber and An is the excitation 
of the nth antenna. Also, u = cosθ is the variable of array 
factors which varies within u = [–1 +1]. The lower and 
upper signs in (2) stand for negative and positive n, respec-
tively. 

Figure 2 shows linear nonuniformly spaced antenna 
arrays (NSAA) with L = 2N + 1 or L = 2N antennas. The 
position of the n-th antenna is deviated from that of uni-
formly spaced arrays by end0 as follows for even and odd 
number of antennas, respectively. 
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where en is defined as the n-th deviation, assuming e0 = 0 
for the array of odd number of elements. Again, the lower 
and upper signs in the second case stand for negative and 
positive n, respectively. 

The array factor of nonuniformly spaced arrays are 
given by the following relations for odd and even number 
of antennas, respectively: 

z
N0 1 2-1-2-N

0dθ
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Fig. 1.  Typical configuration of USAAs: a) Odd number of 
elements. b) Even number of elements. 
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Fig. 2.  Typical configuration of NSAAs: a) Odd number of 
elements. b) Even number of elements. 
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It is worth noting that all array factors of USAAs and 
NSAAs in (1), (2), (4) and (5) are functions of u = cosθ 
and therefore can be represented by orthogonal functions 
defined within u = [–1 +1], which is the discussion of the 
following sections. Without loss of generality, here we 
discuss only for arrays containing odd number of elements. 

It is an important note that the excitations of USAAs, 
An, must be scaled so that their sum equals L. This is done 
to equate FUSAA(0) = FNSAA(0). 

3. Chebyshev Coefficients of Antenna 
Arrays 
Both functions FUSAA(u) and FNSAA(u) in (1) and (4) 

can be represented by Chebyshev series as follows: 
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where Tm(u) is the m-th degree Chebyshev polynomial of 
the first kind which is orthogonal with other degrees of 
Chebyshev polynomials. Also, Fms are the m-th coefficient 
given by 
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in which, εm is defined as one or two for m = 0 and m ≠ 0, 
respectively. 

Substituting functions FUSAA(u) and FNSAA(u) in (7) 
and considering the following well-known identities 
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where Jm(x) is the first kind Bessel function of order m and 
J́m(x) is the derivative of the Bessel function, the orthogo-
nal coefficients of USAA and NSAA are determined as 
follows, respectively. 
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In (11), the approximation kend0 << 1 has been assumed. 

Now, the orthogonal coefficients of NSAA are equat-
ed with those of USAA. So, Equations (10) and (11) are 
equated to one another. This equating yields a system of 
equations as follows: 
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Equation (12) is identical to that obtained from FCE 
method [19]. Equation (12) holds for m = 0 to M which is 
the upper bound of m in truncated series in (6). The param-
eter M must be specified considering (10) and (11) so that 
the largest term in the M-th coefficient got less than the 
smallest term in the zero coefficient. It means that 

0 0 0( ) ( )MJ kNd J kNd< . It would happen when 
M > 1.3kNd0. 

4. Legendre Coefficients of Antenna 
Arrays 
Both functions FUSAA(u) and FNSAA(u) in (1) and (4) 

can be represented by Legendre series as follows: 
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where Pm(u) is the m-th degree Legendre polynomial which 
is orthogonal with other degrees of Legendre polynomials. 
Also, Fms are the m-th coefficient given by 
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Substituting functions FUSAA(u) and FNSAA(u) in (14) 
and considering the following well-known identity 

 1 1 0.5
1

( )exp( j ) ( )d 2 jm m
m

J xxu P u u
x

π − +

−
=∫  (15) 

the orthogonal coefficients of USAA and NSAA are de-
termined as follows, respectively: 
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where 12 ( 0.5) jm
mk mπ −= + . In (17), the approximation 

kend0 << 1 has been assumed. 

Now, the orthogonal coefficients of NSAA are equat-
ed with those of USAA. So, Equations (16) and (17) are 
equated to one another. This equating yields a system of 
equations as follows. 
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In (16) and in the right hand side of (18), the existing 
term of n = 0, tends to zero for m ≠ 0 and 0.798 for m = 0. 

Equation (18) holds for m = 0 to M which is the upper 
bound of m in truncated series in (13). The parameter M 
must be specified in the light of (16) and (17) so that the 
largest term in the M-th coefficient got less than the small-
est term in the zero coefficient. It means that 

0.5 0 0.5 0( ) ( )MJ kNd J kNd+ < . It would happen when 
M > 1.35kNd0. 

5. Exponential Coefficients of Antenna 
Arrays 
Both functions FUSAA(u) and FNSAA(u) in (1) and (4) 

can be represented by summation of orthogonal exponen-
tial functions as follows: 
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Here, Fms are the m-th coefficient given by 
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Substituting functions FUSAA(u) and FNSAA(u) in (20) 
and considering the following well-known identity 
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the orthogonal coefficients of USAA and NSAA are de-
termined as follows, respectively: 
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  (23) 
In (23), the approximation kend0 << 1 has been assumed. 

Now, the orthogonal coefficients of NSAA are equat-
ed with those of USAA. So, Equations (22) and (23) are 
equated to one another. This equating yields a system of 
equations as follows: 
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  (24) 
In the left hand side of (24), the existing term tends to zero 
when its argument mπ + knd0 became zero. 

Equation (24) holds for m = –M/2 to M/2 which is the 
upper bound of m in truncated series in (19). The parame-
ter M/2 must be specified in view of (22) and (23) so that 
the largest term in the (M/2)-th coefficient got less than the 
smallest term in the zero coefficient. It means that 

0 0|sinc( / 2 ( )/ )|<|sinc( / )|M kNd kNdπ π−  which results in 
M > 4kNd0/π which is near to 1.3kNd0, like Chebyshev and 
Legendre polynomials. 

6. Finding the Unknown Deviations 
All three Equations (12), (18) and (24) make a linear 

system of equations consisting of M + 1 linear equations 
and 2N unknown variables en, so they can be represented as 
a non-square matrix equation, as follows 
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where [1] is a column matrix whose all elements are one. 
The unknown deviations are determined by solving the 
matrix equation (25) as follows 

 ( )1
0 0[ ] [ ] [ ][ ] [ ][ ]−= −e P P A P 1  (26) 

in which [P]–1 is the pseudo inverse of matrix [P]. To pre-
vent probable divergence, one can limit deviations in each 
iteration, for instance in the range of [–1.2  +1.2]. 

In (26), the matrices [P0] and [P] have purely real el-
ements. On the other hand, the deviations ens for NSAAs 
must be determined purely real. Hence, the supposed exci-
tations Ans for USAAs must be real, as well. The other 
limitation is that the supposed excitations Ans for USAAs 
must be positive because the excitations of the elements of 
NSAAs are positive as in (4) and (5). These are the two 

restrictions for the proposed OCE method to synthesize 
NSAAs. 

Equation (26) gives us deviations which minimize the 
following errors, in fact. 
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The error2 evaluates the similarity of synthesized patterns 
to the desired one and its integral can be calculated by 
discretization. 

To increase the accuracy of approximations existing 
in (11), (17) and (23), it is better to obtain deviations, en, in 
several iterations rather than in one iteration. This causes 
the needed deviations in each iteration become smaller than 
the final necessary deviations. To this end, one can use 
OCE methods several times to move from uniform excita-
tion toward the desired excitation by using the following 
relation instead of An in those three equations. 

 ( )(desired)1 1n n
itA A
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= + −  (29) 

where it = 1, 2, …, IT, in which IT is total number of itera-
tions. Consequently, the matrix [A] in (25) and (26) must 
be changed in each iteration. By using (29) in each itera-
tion, we start from uniform excitations which need zero 
deviations and move towards the desired excitations in IT 
iterations instead of in one iteration. 

Also, in the iteration number it, the parameter n exist-
ing in the first and third terms of (12), (18) and (24) must 
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1
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∑  is the summation of all small deviations obtained 

before the iteration number it. 

At last, the final deviations are determined by sum-
ming all small deviations obtained in all IT iterations, as 
follows 
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7. Verifying OCE Methods 
To verify the proposed OCE methods, some examples 

are presented and discussed. They are Chebyshev, Taylor 
and Raised Linear excitations. The spaces between the 
antennas of all USAAs are assumed to be d0 = λ/2. 
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7.1 Chebyshev Excitation 
A NSAA with L = 2N + 1 = 21 elements is designed 

to have a desired array factor identical to that of a USAA 
having equi-ripple (Chebyshev) excitation with Side Lobe 
Level (SLL) equal to –17, –20, or –25 dB. The parameter 
M is chosen equal to 40 for all three OCE methods, i.e., 
Chebyshev, Legendre and Exponential. Figure 3 illustrates 
the defined error2 versus the total number of iterations, IT, 
for three OCE methods, i.e., Chebyshev, Legendre and 
Exponential. It is seen that there is an optimum IT for 
which the error2 is minimum. Usually, the optimum IT is 
as large as possible. Also, the type of variation of defined 
error1 is similar to that of defined error2. Therefore, one 
may find the same optimum IT from both defined error1 
and error2. 

Figures 4–6 show the magnitude of array factors of 
designed NSAAs for SLL = –17, –20 and –25 dB, respec-
tively, obtained by three OCE methods. It is seen that the 
designed array factors have near-Chebyshev patterns [17] 
for all three OCE methods. As the SLL decreases, the dif-
ference between resultant and desired SLLs becomes larg-
er. This difference is about 1.5 dB in the case of SLL = –25 dB. 

 
Fig. 3.  Defined error2 versus total number of iterations, IT for 

two Chebyshev excitations. 

 
Fig. 4.  Array factors of NSAA designed by three OCE meth-

ods for Chebyshev excitation of SLL = –17 dB. 
 

 
Fig. 5.  Array factors of NSAA designed by three OCE meth-

ods for Chebyshev excitation of SLL = –20 dB. 

 
Fig. 6.  Array factors of NSAA designed by three OCE meth-

ods for Chebyshev excitation of SLL = –25 dB. 

Figures 7–9 illustrate the magnitude of orthogonal co-
efficients of array factors of USAAs and NSAAs, for three 
OCE methods, individually, for SLL = –20 dB. There is 
a good equality between two groups of orthogonal coeffi-
cients. The odd numbered coefficients are zero for Cheby-
shev and Legendre polynomials. High level coefficient in 
Fig. 9 is related to the frequency of ripples of equal ampli-
tudes existing in array factor. Also, it is seen from Fig. 9 
that the number of exponential functions can be nearly 
halved. 

 
Fig. 7.  Magnitude of orthogonal coefficients of Chebyshev 

polynomials for Chebyshev excitation of SLL = –20 dB. 
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Fig. 8.  Magnitude of orthogonal coefficients of Legendre pol-

ynomials for Chebyshev excitation of SLL = –20 dB. 

 
Fig. 9.  Magnitude of orthogonal coefficients of Exponential 

functions for Chebyshev excitation of SLL = –20 dB. 

7.2 Taylor Excitation 
A NSAA with L = 2N + 1 = 21 elements is designed 

to have a desired array factor identical to that of a USAA 
of Taylor excitation with SLL < –20 dB and nbar = 3. The 
parameter M is chosen equal to 40. Figure 10 illustrates the 
defined error2 versus the total number of iterations, IT, for 
three OCE methods, i.e., Chebyshev, Legendre and Expo-
nential. 

Figure 11 shows the magnitude of array factors of de-
signed NSAAs obtained by three OCE methods. It is seen 
that the designed array factors are near to the desired one. 

 
Fig. 10.  Defined error2 versus total number of iterations, IT for 

Taylor excitation. 
 

 
Fig. 11.  Array factors of NSAA designed by three OCE meth-

ods for Taylor excitation of SLL < –20 dB. 

7.3 Raised Linear Excitation 
The excitation of a USAA with L = 2N + 1 = 21 ele-

ments is chosen as a raised linear one with max/min = 2. 
This excitation is real but asymmetric so the resulted pat-
tern would be conjugate symmetric. The parameter M is 
chosen equal to 40. Total number of iterations, IT, has 
a little impression on defined errors. Hence, IT = 1 is cho-
sen for this example. Figures 12 and 13 show the amplitude 
and phase of designed array factors, respectively, obtained 
by three OCE methods, i.e., Chebyshev, Legendre and 
Exponential. The agreement between the phases is not as 
good as the agreement between the amplitudes. Of course, 
the amplitude of array factors is important for us, usually. 

 
Fig. 12.  Magnitude of the array factors of NSAA designed by 

three OCE methods for raised linear excitation. 

 
Fig. 13.  Phase of the array factors of NSAA designed by three 

OCE methods for raised linear excitation. 
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Fig. 14.  Magnitude of orthogonal coefficients of Chebyshev 

polynomials for raised linear excitation. 

 
Fig. 15.  Magnitude of orthogonal coefficients of Legendre pol-

ynomials for raised linear excitation. 

 
Fig. 16.  Magnitude of orthogonal coefficients of Exponential 

functions for raised linear excitation. 

Figures 14–16 illustrate the magnitude of orthogonal 
coefficients of array factors of USAAs and NSAAs, for 
three OCE methods, individually. The array factors are 
complex symmetric (even absolute and odd phase), be-
cause the excitations are asymmetric. Also, both even and 
odd numbered coefficients are non-zero for Chebyshev and 
Legendre polynomials. 

Figure 17 shows the excitation of all cases in the pre-
vious examples. All excitations have been scaled so that 
their sum equals L = 21. Also, Figure 18 shows the un-
known deviations, en, for all cases in the previous examples 
obtained by Chebyshev polynomials. Based on these devia-
tions and according to (3), Figure 19 illustrates the position 
of NSAAs against those of USSAs for all cases in the pre-
vious examples. It is seen from Figs. 17 and 19 that how 

designed NSAAs use nonuniform spaces to avoid from 
intensely nonuniform excitations USSAs need. In fact, 
nonuniform spaces substitute for nonuniform excitations. 

The deviations obtained by Legendre polynomials 
and Exponential functions are very close to those obtained 
by Chebyshev polynomials. These deviations have ob-
tained after optimum iterations IT mentioned for each ex-
ample. They are symmetric for symmetric excitations and 
asymmetric for asymmetric excitations. 

 
Fig. 17.  Excitations of USSA in the presented examples. 

 
Fig. 18.  Deviations obtained by Chebyshev polynomials for 

NSAAs in the presented examples. 

 
Fig. 19.  Positions of USSAs and NSSAs obtained by Cheby-

shev polynomials.   : USAA. O: NSAA. 

8. Conclusion 
An analytic method, called Orthogonal Coefficients 

Equating (OCE) method was proposed to synthesize Non-
uniformly Spaced Antenna Arrays (NSAAs). In this meth-
od, the orthogonal coefficients of array factors of NSAAs 
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are equated to those of USAAs. Three orthogonal functions 
are used for OCE method consist of Chebyshev polynomi-
als, Legendre polynomials and exponential functions. The 
limitation of the OCE method is that the excitations of the 
supposed USAAs must be real and positive. The intro-
duced OCE method is merged with an iteration approach to 
increase its accuracy. Some exhaustive examples were 
given to show the effectiveness of the OCE method for 
designing NSAAs. As a whole, the array factors of synthe-
sized NSAAs have an acceptable agreement with those of 
USAAs. 
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