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Abstract. The main topic of the article is automatic target 
classification of the synthetic aperture radar images based 
on the dataset composed of measured and synthetic data. 
The original contribution of the authors is their own topol-
ogy of the convolutional neural network (CNN) with 1, 2, 
3, and 4 tiers. The original convolutional neural network is 
used to classify radar images from the Synthetic And 
Measured Paired and Labeled Experiment (SAMPLE) 
dataset which consists of SAR imagery from publicly avail-
able datasets and well-matched synthetic data. The pre-
sented topologies of the CNN with 1, 2, 3, and 4 tiers were 
analyzed in 3 different scenarios: trained on the basis of 
real measured data and tested by synthetic data, trained on 
the basis of synthetic data, and tested by real measured 
data, and in the last case training and testing sets were 
formed by combining real measured and synthetic data. 
Based on the results of testing we could not use the pro-
posed convolutional neural network trained with real 
measured data to classify synthetic radar images and vice 
versa (the 1st and the 2nd scenarios). The only last scenario 
with a combination of real measured and synthetic data in 
the training, validation, and testing data sets generates 
excellent results. The authors also present some confusion 
matrixes, which can explain the reasons for the misclassifi-
cation of radar images of military equipment. Comparing 
achieved results with another SAMPLE dataset classifica-
tion results we can prove the usability of proposed and 
tested CNN structures for automatic target classification of 
the synthetic aperture radar images. The classification 
accuracy of the original convolutional network is 96.1%, 
which is better than the results of the other research so far. 

Keywords 
Synthetic aperture radar, synthetic data, SAMPLE 
dataset, convolutional neural networks 

1. Introduction 
Synthetic aperture radar (SAR) sensing is a unique 

technique that allows users to remotely map the reflectivity 
of environments or objects in high resolution through 
transmitting and receiving electromagnetic (EM) signals 
[1], [2], [3]. Radar’s most important feature for SAR appli-
cations is that its relatively long wavelengths penetrate 
clouds and dust, and it can sense independently of most 
weather conditions [4], [5]. 

The publicly available Moving and Stationary Target 
Acquisition and Recognition (MSTAR) synthetic aperture 
radar dataset [6] has been a valuable tool in the evolution 
of SAR automatic target recognition (ATR) algorithms 
over the past two decades [7]. Because of the large number 
of target configurations, possible radar parameters, and 
environmental conditions, the SAR operating condition 
(OC) scale is very large. This leads to the impossible task 
of collecting sufficient measured data to cover the entire 
OC space. Thus, synthetic data must be created to augment 
datasets. The study of synthetic data fidelity for classifica-
tion tasks is not an easy mission. To that end, the Synthetic 
And Measured Paired and Labeled Experiment (SAMPLE) 
dataset was created and introduced [7], which consists of 
SAR imagery from the MSTAR dataset and well-matched 
synthetic data. By matching sensor parameters and target 
configurations among the measured and synthetic data, the 
SAMPLE dataset is ideal for investigating the differences 
between measured and synthetic SAR imagery [7], [8], [9]. 

The convolutional neural networks (CNN) are the re-
sults of the study of the brain’s visual cortex, and they have 
been used in image recognition since the 1980s. In the last 
decade, thanks to the increase in computational power, and 
the big variety of training data, convolutional neural net-
works achieve very high performance on some complex 
visual tasks. They are used in image search services [10], 
[11], self-driving cars [12], [13], automatic video classifi-
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cation systems, medical applications [14], [15], malware 
classification [16], filters as bitmap objects classification 
[17], and others. Convolutional neural networks are not 
restricted to the perception of visual information, and they 
are strong at other tasks. The efficiency and high success 
rate of correct recognition of the CNN is the main reason 
why we used them for SAR image classification. CNN is 
able to recognize correctly even images that are dilated and 
rotated, possibly having a different size than the training 
samples. 

Some experiments for SAMPLE dataset object classi-
fication using CNN were described in [7] and [8]. Authors 
in [7] realized classification experiments using a convolu-
tional neural network (CNN) with four convolutional lay-
ers and four fully connected layers. Their experiments were 
mainly focused on classifying measured data from synthet-
ic training data and comparing achieved results with differ-
ent mixtures of synthetic and measured data in the training 
dataset. The first experiment in [7] is a useful investigation 
of how to effectively augment limited measured training 
data with synthetic data. Such investigations are of interest 
because, relative to the entire OC space of SAR, little 
measured data is available for training ATR algorithms. By 
systematically excluding measured data from the training 
set and replacing it with synthetic data in this way, much 
can be learned that can carry over to using synthetic data to 
augment the OCs necessary to enhance classification per-
formance [7]. The second experiment in [7] is a practical 
investigation of how classification networks perform when 
no measured data is available for specific classes. This is 
an interesting problem because it requires innovation to 
successfully perform cross-domain transfer learning in 
a way that encourages the algorithm to know something 
about SAR imagery in general [7]. Authors in [7] just 
closely reached the classification accuracy of 95% for 
k = 0.5, i.e., the training set for each class contains 50% 
measured data and 50% synthetic data. 

All experiments in [8] were performed using the 
DenseNet architecture [18] implemented in PyTorch. 
DenseNet is a densely connected CNN that extends the 
ideas of the ResNet network [19]. Authors compared the 
accuracy of SAMPLE dataset object classification when 
using the speckled, despeckled, quantized, and clutter 
transfer datasets [8]. Authors in [8] for k = 0.5 achieved the 
best results of classification accuracy (almost 95%) when 
they used speckled data and employed the clutter transfer 
technique. 

The main goal of our experiments was to prove or de-
ny the possibilities of various combinations for CNN train-
ing and utilize our own designed CNN structures for 
SAMPLE dataset object classification. The next goal is to 
find the best topology for our own designed CNN struc-
tures. 

The paper is organized as follows. MSTAR and 
SAMPLE datasets are described in Sec. 2. Our own de-
signed and used CNN structures are explained in Sec. 3. 

Experiments and partial results are described in Sec. 4. The 
paper concludes with a summary in Sec. 5. 

2. MSTAR and SAMPLE Dataset 
The MSTAR dataset [6] is one of the most compre-

hensive measured SAR datasets available to the research 
community. It consists of a range of one-foot resolution 
SAR images collected by the U. S. Air Force Research 
Laboratory, Sandia National Laboratory, and The Defense 
Advanced Research Projects Agency (DARPA) during the 
second half of the 1990s. The MSTAR dataset has been 
useful for researchers who are interested in automatic tar-
get recognition (ATR) tasks [7]. Essential parameters, 
which are consistent across the MSTAR dataset, are shown 
in Tab. 1 [6], [7]. 

SAMPLE dataset was constructed of measured SAR 
images from the MSTAR dataset [6] and simulated SAR 
images based on computer-aided design (CAD) models [7]. 
Prediction of the electromagnetic signatures of a target was 
realized by asymptotic ray-tracing techniques [7]. The 
simulated models are based on metadata that was recorded 
during the MSTAR Program, enabling authors to position 
the CAD models in the same way that the measured vehi-
cles were placed during the collection. Thus, the authors in 
[7] were sufficiently able to match target and radar operat- 
 

Parameter Value 
Range resolution 0.30 m 

Range pixel spacing 0.20 m 
Range extent 25.8 m 

Cross-range resolution 0.30 m 
Cross-range pixel spacing 0.20 m 

Cross-range extent 25.8 m 
Bandwidth 591 MHz 

Center frequency 9.6 GHz 
Image size 128 × 128 

Polarization HH 
Elevations from 14° to 18° 

Taylor weighting –35 dB 

Tab. 1.  Values of parameters from the MSTAR dataset [6], [7]. 
 

Vehicle (object) Serial number 
2S1 B01 

BMP2 9563 
BTR70 C71 

M1 0AP00N 
M2 MV02GX 

M35 T839 
M548 C245HAB 
M60 3336 
T72 812 

ZSU23-4 D08 

Tab. 2.  List of the vehicles and their serial numbers included 
in the SAMPLE dataset. 
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ing conditions. SAMPLE dataset consists of matched 
measured and computer-generated (synthetic) SAR data as 
complex image data (in MATLAB .mat format), and mag-
nitude-only images (in .png format) for the ten targets 
referred in Tab. 2. 

SAMPLE dataset was approved for public release 
(case number: 88ABW-2019-1300, reference number: 
APRS-RY-19-1024) to provide a common dataset to facili-
tate collaboration across research organizations. For each 
measured SAR image, the corresponding matched synthet-
ic image was generated. The number of samples for each 
target class within the publicly released SAMPLE dataset 
is shown in Tab. 3. SAMPLE dataset SAR .png examples 
(128 × 128 pixels) of matched measured and synthetic data 
are shown in Tab. 4. 

 
 

Target class Measured 
data Synthetic data Total 

2S1 879 879 1758 
BMP2 502 502 1004 
BTR70 504 504 1008 

M1 729 729 1458 
M2 724 724 1448 

M35 729 729 1458 
M548 730 730 1460 
M60 874 874 1748 
T72 503 503 1006 

ZSU23 876 876 1752 
Total 7050 7050 14100 

Tab. 3.  Distribution of publicly released SAMPLE dataset for 
each class (vehicle). 

 

Object class and 
sensing angle values Measured data Synthetic data Class and sensing 

angle values Measured data Synthetic data 

2S1 
Elevation: 16° 
Azimuth: 30° 

  

M35 
Elevation: 14° 
Azimuth: 20° 

  

BMP2 
Elevation: 16° 
Azimuth: 180° 

  

M548 
Elevation: 14° 
Azimuth: 330° 

  

BTR70 
Elevation: 16° 
Azimuth: 45° 

  

M60 
Elevation: 15° 
Azimuth: 70° 

  

M1 
Elevation: 17° 
Azimuth: 320° 

  

T72 
Elevation: 16° 
Azimuth: 140° 

  

M2 
Elevation: 14° 
Azimuth: 310° 

  

ZSU23 
Elevation: 15° 
Azimuth: 70° 

  

Tab. 4.  SAMPLE dataset SAR .png examples (128 × 128 pixels) of matched measured and synthetic data [9]. 
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SAMPLE dataset contains data for 10 targets over 
a 360-degree azimuth sweep and a 5-degree elevation 
angle sweep (14 degrees to 18 degrees). The target set 
contains data from the 2S1, BMP2, BTR70, M1, M2, M35, 
M548, M60, T72, and ZSU23 military vehicles [7], [9]. 

3. Proposed Convolutional Neural 
Networks for SAR Objects 
Classification 
The complete architecture of the convolutional neural 

network for pattern recognition of the radar images is 
shown in Fig. 1. Proposed and used CNN consists of the 
following layers: 
• an image input layer, 
• 1st tier (consisting of a convolutional 2D layer, 

a batch normalization layer, a ReLU layer, and a max-
pooling layer), 

• 2nd tier (consisting of a convolutional 2D layer, 
a batch normalization layer, a ReLU layer, and a max-
pooling layer), 

• 3rd tier (consisting of a convolutional 2D layer, 
a batch normalization layer, a ReLU layer, and a max-
pooling layer), 

• 4th tier (consisting of a convolutional 2D layer, 
a batch normalization layer, a ReLU layer, and a max-
pooling layer), 

• a fully connected layer, 
• a softmax layer, 
• a classification layer. 

An input image for classification enters a convolu-
tional neural network through an image input layer. The 
size of an input image defines the size of the image input 
layer (128 × 128 pixels of grayscale picture). The input 2-
dimensional (2-D) images have 256 shades of gray (8 bits) 
[6], [7], [9]. 

A convolutional layer, the most important block of 
a convolutional neural network, executes a convolution 
operation to the data received from the input layer and 
passes the result to the next layer. A convolution converts 
all the pixels in its receptive field into a vector. The most 
used type of convolution is the 2D convolution layer. 
A convolutional layer of the CNN uses a kernel (some-
times called filter) to realize convolution over the 2-
dimensional input data, executing a multiplication over 
each element. As a result, it will be summing up the results 
into a single output pixel. The kernel will perform the same 
operation for every location it slides over, transforming 
a 2D matrix of features into a different 2D matrix of 
features. 

A batch normalization layer is used to normalize data 
(results of the previous layer) across all observations for 
every input line independently. The batch normalization 

layers were used to speed up the training of the convolu-
tional neural networks. This layer can also reduce the sen-
sitivity to the initial setting of the CNN. This layer is locat-
ed between convolutional layers and nonlinearities, such as 
rectified linear unit (ReLU) layers. 

ReLU is the most used activation function in convolu-
tional neural networks [18]. The function returns 0 for any 
negative input, but for any positive value x, it gives that 
same value back as a result. So, it can be written as: 

 ( ) max(0, ).f x x=  (1) 

A ReLU layer is applied after a batch normalization 
layer. A max-pooling layer is used for downsampling the 
input data in CNNs to reduce the computational load, the 
memory usage, and the number of parameters. This layer 
realizes a calculation of the maximum value for each patch 
of the input image matrix. A max-pooling operation high-
lights the most significant feature in the selected region 
which is better in practice than average pooling for com-
puter vision tasks. 

A fully connected layer is found in the last few layers 
in the network. The input to the fully connected layer is the 
output from the final max-pooling layer. A fully connected 
layer realizes the multiplication of the inputs by a weight 
matrix and then adds a bias vector the same way as it is 
realized by feed-forward neural networks. 

A softmax layer realizes a softmax function to nor-
malize the value of the input data on the base of the chan-
nel dimension. The softmax function sums all of them into 
one. The normalization realized by the softmax function 
will ensure that the sum of the components of the output 
vector is equal to 1. An output of the softmax function 
represents a probability distribution. 

A classification layer defines several classes of input 
images. In our case, the number is 10, which corresponds 
to a defined number of types of military vehicles to classi-
fy. For a SAR images classifier, four topologies of convo-
lutional neural networks were created, and their architec-
tures are defined in Tab. 5. 
 

Topology/ layer Topology 
A 

Topology 
B 

Topology 
C 

Topology 
D 

Image input layer X X X X 

1st tier X X X X 

2nd tier  X X X 

3rd tier   X X 

4th tier    X 

Fully connected 
layer X X X X 

Softmax layer X X X X 

Classification 
layer X X X X 

Tab. 5.  Architectures of tested CNN for SAMPLE dataset 
objects classification. 
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Tier 4Tier 2

Image input 
layer

Fully 
connected 

layer

Softmax layer

Classification 
layer

Tier 1

Results

Convolutional 
2D layer

Batch 
normalization 

layer

ReLU layer

Max pooling 
layer

Convolutional 
2D layer

Batch 
normalization 

layer

ReLU layer

Max pooling 
layer

Tier 3

Convolutional 
2D layer

Batch 
normalization 

layer

ReLU layer

Max pooling 
layer

Convolutional 
2D layer

Batch 
normalization 

layer

ReLU layer

Max pooling 
layer

 
Fig. 1.  The architecture of the used Convolutional Neural Network. 

 

The difference between the individual topologies is in 
the number of so-called “tiers”. Every tier is composed of 
the same number and type of layers. Topology A contains 
an image input layer, the 1st tier, a fully connected layer, 
a softmax layer, and a classification layer. Topology B 
consists of the same layers but in addition convolutional 
neural network also has the 2nd tier. Similarly, topology C 
contains the same layers as the previous one and the 3rd tier 
in addition. Topology D is composed of all four tiers and 
common layers (an image input layer, a fully connected 
layer, etc.). 

The architecture of the proposed convolutional neural 
network was created in the Matlab development environ-
ment and Deep Learning Toolbox was used. A pre-trained 
network can be used for most deep-learning applications 
after adaptation for user data. In our case, we created and 
trained convolutional neural networks from scratch using 
the trainNetwork function. The complete architecture of the 
CNN was defined by layers parameter and training options 
were defined by the options parameter of the given func-
tion. 

Our goal is to find the best topology for CNN. Gener-
ally, there is no rule to set exactly the number of layers and 
the number of neurons for a specific task. We will create 
and train four CNNs with a different number of tiers and 
we will analyze their efficiency. All of them will be trained 
with the same set of input images. The proposed topology 
of CNN will be evaluated with an identical set of testing 
images for all CNN. After that, we will choose the best 
CNN topology for SAR objects classification with the 
optimal number of tiers and neurons. 

4. Analysis of Using CNNs for 
SAMPLE Dataset Objects 
Classification 
Measured data from the real world are difficult to ob-

tain and they are expensive. Sometimes it is not possible to 
obtain such data due to the nature and type of technology, 
which is under a certain degree of secrecy. Today, in many 
cases measured data are supplemented with synthetic data. 
This way we can rapidly increase the amount of existing 
data to create more meaningful observations of selected 
objects. Synthetic data generation compared to measured 
data is faster, more flexible, and more scalable. Using syn-
thetic data can also be an effective manner to model and 
generate data that could not be measured for a different 
reason.  

The analysis of the use of CNN, the topology, and 
properties that have been described above, for objects 
classification of SAR images, is based on the verification 
of three hypotheses: 

1) H1: The generated CNN can be trained with meas-
ured data and the verification of the learning process 
results can be performed based on testing using syn-
thetic data, 

2) H2: The generated CNN can be trained with synthetic 
data and the verification of the learning process re-
sults can be performed by testing with the measured 
data, 

3) H3: The generated CNN can be trained based on a set 
of images, which is formed by combining real meas-
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ured and synthetic data. Verification of the learning 
process results can be performed by testing the same 
set (real measured and synthetic data). 

For all hypotheses, the intersection between the train-
ing and test set is 0. Images that have been used in the 
learning process will not be used in the testing process and 
vice versa. 

4.1 CNN Trained by Measured Data 
To verify the first hypothesis, four CNN topologies 

with one to four tiers (a complete structure defined in 
Tab. 5) were developed. Measured data (7050 images) 
were used for training. The input set was split at a usually 
used ratio of 70:30 [20], where 70 percent of the samples 
were used to form the training set. The remaining 
30 percent was used to create a validation set that was used 
to verify the quality of CNN's learning [20]. A complete set 
of synthetic data containing 7050 images (Tab. 4) was used 
for testing. The results obtained by a given CNN topology 
with a different number of tiers are shown in Fig. 2. 

Classification accuracy, during training by measured 
data, was improved by increasing the number of tiers. CNN 
with one tier reached a classification accuracy of 12%, 
CNN with two tiers 82.4%, and CNN with three and four 
tiers reached a classification accuracy of more than 96%. 
These results were promising but testing CNN with syn-
thetic data turned out very bad. Classification accuracy of 
CNN with one tier reached 8.4%, with two tiers 30%, with 
three tiers 34.7%, and with four tiers reached 27%. Results 
for the validation dataset reached using the CNN with 3 
tiers are shown in Fig. 3, where we can find individual 
achievements for all object classes. For better results un-
derstanding, a confusion matrix was used. The meaning of 
particular items of rows of the confusion matrix represents 
the predicted class (Output Class) and the columns repre-
sent the true class (Target Class). The cells in the diagonal 
represent the number of objects that are correctly classi-
fied. The off-diagonal cells represent incorrectly classified 
objects from the given set. 

A 2S1 object is presented in the first row, where the 
value in the first column represents the number of correctly 
classified images. It means that object 2S1 was classified 
255 times as 2S1. The rest of the values in the first row re- 

 
Fig. 2.  The results of the CNNs trained by measured data. 

 

 
           

2S1 255 0 0 0 5 1 0 3 0 0 96,6 

BMP2 2 145 4 0 0 0 0 0 0 0 96,0 

BTR70 0 1 146 0 1 2 0 0 1 0 96,7 

M1 0 0 0 215 3 0 0 1 0 0 98,2 

M2 0 0 0 4 213 0 0 0 0 0 98,2 

M35 5 0 0 2 5 203 4 0 0 0 92,7 

M548 0 0 0 0 0 1 218 0 0 0 99,5 

M60 2 0 0 1 0 0 0 259 0 0 98,9 

T72 4 1 0 6 2 0 0 0 138 0 91,4 

ZSU23 0 0 0 0 0 0 2 2 0 259 98,5 

 
95,1 98,6 97,3 94,3 93,0 98,1 97,3 97,7 99,3 100,0 96,9 
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Fig. 3.  Confusion matrix for validation data using CNN with 
3 tiers (CNN trained by measured data). 

presents incorrectly classified objects from a subset of 
images of the object 2S1: 5 times as M2, once as M35, and 
3 times as M60. In the same way, we can analyze all ob-
jects from the confusion matrix. 

In the last row and the last column, percentages of the 
number of classified objects for every particular class are 
shown. The column on the far right (the last column) 
shows the percentages of all the objects predicted to belong 
to each class that is correctly and incorrectly classified. We 
use given metrics to obtain the accuracy or positive predic-
tive value. We can also compute the false discovery rate, to 
evaluate our presented approach. The row at the bottom of 
the confusion matrix shows the percentages of all the ob-
jects belonging to each class that is correctly and incorrect-
ly classified. Computed values represent true positive rates, 
and we can also analyze false-negative rates. The cell in 
the bottom right of the plot shows the overall accuracy of 
the CNN with 3 tiers. The overall value of classification 
accuracy is satisfactory, we have reached the value of 
96.9%. All objects from the input dataset are classified 
with an accuracy higher than 93% and only a few items 
from the validation data were misclassified. More im-
portant are the results of trained CNN achieved for test 
data (Fig. 4). 

 

2S1 83 35 0 0 0 78 10 554 0 119 9,4 

BMP2 14 55 0 0 0 19 2 239 0 173 11,0 

BTR70 3 32 0 0 0 1 0 215 0 253 0,0 

M1 29 14 5 0 0 4 7 543 3 124 0,0 

M2 1 11 0 0 0 0 0 334 0 378 0,0 

M35 4 0 0 0 0 191 367 10 0 157 26,2 

M548 0 0 0 0 0 1 703 0 0 26 96,3 

M60 80 1 2 0 0 24 2 625 0 140 71,5 

T72 56 5 0 0 0 16 4 358 0 64 0,0 

ZSU23 0 2 0 0 0 0 1 81 0 792 90,4 

 
30,7 35,5 0,0 0,0 0,0 57,2 64,1 21,1 0,0 35,6 34,7 
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Fig. 4.  Confusion matrix for test data using CNN with 3 tiers 

(CNN trained by measured data). 



RADIOENGINEERING, VOL. 32, NO. 1, APRIL 2023 69 

 

 

Class and 
sensing angle 

values 

Measured 
data 

Synthetic 
data 

View of real 
shapes 

2S1 
Elevation: 15° 
Azimuth: 180° 

  
 

M1 
Elevation: 16° 
Azimuth: 180° 

  
 

M60 
Elevation: 16° 
Azimuth: 180° 

  
 

Tab. 6.  SAMPLE dataset SAR .png examples (128 × 128 
pixels) and real shapes of 2S1, M1, and M60 objects. 

The best results for test data of synthetic dataset were 
achieved by CNN with 3 tiers. Classification accuracy 
reached the value of 34.7% in this case. If we compare the 
results of the CNN with 3 tiers for the validation data with 
results for the test data of the synthetic dataset, the classifi-
cation accuracy for the synthetic dataset is insufficient. The 
highest partial classification accuracy, about 60%, was 
reached for M548 and M35 object classes. For ZSU23, 
BMP2, and 2S1 object classes, a classification accuracy of 
around 30% was reached. 

For the M60 object class, a classification accuracy of 
21.1% was reached. For the rest of the object classes 
(BTR70, M1, M2, and T72), classification accuracy 
equals 0. Most misclassifications occurred in the 2S1 and 
M1 classes. Some objects were not correctly classified into 
the M60 class. These errors were most likely caused by the 
similarity of the geometric shapes of the vehicles that be-
long to the mentioned classes. Vehicles from classes 2S1, 
M1 and M60 are tracked and also equipped with a cannon. 
Views of real shapes of vehicles from classes 2S1, M1, and 
M60 are shown in Tab. 6. 

Based on these results, hypothesis H1 can be rejected, 
and therefore it is not possible to use measured data to 
learn CNN and subsequently use learned CNN to recognize 
images of objects that have been created synthetically. 

4.2 CNN Trained by Synthetic Data 
To verify the second hypothesis, also four CNN to-

pologies with one to four tiers (a complete structure is 
defined in Tab. 5) were created. Synthetic data (7050 
images) were used for training. The input set was split at 
a usually used ratio of 70:30 [20], where 70 percent of the 
samples were used to form the training data. The remaining 
30 percent was used to create validation data that was used 
to verify the quality of CNN's learning. A complete set of 
measured data containing 7050 images (Tab. 4) was used 
for testing. Results obtained by a given CNN topology with 
different tiers are shown in Fig. 5. 

 
Fig. 5.  The results of the CNNs trained by synthetic data. 

Classification accuracy for the validation data is over 
90% for all four CNNs. CNN with one tier reached a clas-
sification accuracy of 97%, CNN with two tiers at 92%, 
CNN with three tiers at 98.2%, and CNN with four tiers 
reached a classification accuracy of 98.7%. These results 
were promising but testing CNN with measured data turned 
out the very badly same way as in the previous case for 
hypothesis H1 was. Classification accuracy of CNN with 
one tier reached 12.9%, with two tiers 17%, with three tiers 
31.7%, and with four tiers reached 21.8%. 

The results of the CNN with 4 tiers for validation data 
are shown in Fig. 6, where we can find individual 
achievements for all object classes. For better results un-
derstanding, a confusion matrix was used. The meaning of 
particular items of the confusion matrix is the same as in 
the previous case for hypothesis H1. As an example, we 
will analyze one object class from the confusion matrix in 
detail. An object class BMP2 is presented in the second 
row, where the value in the second column represents the 
number of correctly classified images. It means that 
an object from class BMP2 was classified 146 times as 
BMP2. The rest of the values in the first row represents 
incorrectly classified objects from a subset of images of the 
class BMP2: 4 times as BTR70 and 2 times as 2S1. In the 
same way, we can analyze all objects from the confusion 
matrix. 

The cell in the bottom right of the confusion matrix 
(Fig. 6) shows the overall classification accuracy of the CNN 

 

2S1 261 3 0 0 0 0 0 0 0 0 98,9 

BMP2 1 146 4 0 0 0 0 0 0 0 96,7 

BTR70 1 0 150 0 0 0 0 0 0 0 99,3 

M1 0 0 0 211 1 1 0 1 5 0 96,3 

M2 0 0 1 0 214 0 0 0 0 2 98,6 

M35 3 0 0 0 0 216 0 0 0 0 98,6 

M548 0 0 0 0 0 1 218 0 0 0 99,5 

M60 0 0 0 0 0 0 0 261 1 0 99,6 

T72 0 1 0 0 0 0 0 2 148 0 98,0 

ZSU23 0 0 0 0 0 0 0 0 0 263 100,0 

 
98,1 97,3 96,8 100,0 99,5 99,1 100,0 98,9 96,1 99,2 98,7 

            

 

2S
1 

B
M

P2
 

B
TR

70
 

M
1 

M
2 

M
35

 

M
54

8 

M
60

 

T7
2 

ZS
U

23
 

 

 
 

Fig. 6.  Confusion matrix for validation data using CNN with 
4 tiers (CNN trained by synthetic data). 
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2S1 405 14 325 0 0 2 103 8 0 22 46,1 

BMP2 52 31 378 0 0 0 10 4 0 27 6,2 

BTR70 32 4 464 0 0 0 4 0 0 0 92,1 

M1 36 30 77 482 9 0 10 63 0 22 66,1 

M2 108 19 384 27 8 0 39 34 0 105 1,1 

M35 129 29 200 74 0 115 154 25 0 3 15,8 

M548 26 0 2 0 0 173 529 0 0 0 72,5 

M60 437 28 3 176 1 0 15 200 0 14 22,9 

T72 136 58 222 63 0 0 12 2 0 10 0,0 

ZSU23 333 40 0 39 0 2 4 444 13 1 0,1 

 
23,9 12,3 22,6 56,0 44,4 39,4 60,1 25,6 0,0 0,5 31,7 
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Fig. 7.  Confusion matrix for test data using CNN with 3 tiers 

(CNN trained by synthetic data). 

CNN with 4 tiers. The overall value of classification accu-
racy is satisfactory, reaching a value of 98.7%. 

All objects from the input data are classified with a 
probability higher than 96.1% and only a few items from 
the validation data were misclassified. More important are 
the results of trained CNN achieved for test data (Fig. 7). 

The best results for test data of the measured dataset 
were achieved by CNN with 3 tiers. Classification accura-
cy reached the value of 31.7% in this case. Comparing 
results achieved by CNN with 3 tiers for validation data 
and results for test data (created from the measured da-
taset), classification accuracy for test data (created from 
measured data) is insufficient. The highest classification 
accuracy, around 60%, is observed for M548 and M1 ob-
ject classes. Classification accuracy of around 20% is ob-
served for object classes M60, BTR70, and 2S1. For object 
classes M2 and M35 we observed classification accuracy 
of around 40%. For BMP2 object class classification accu-
racy of 12.3% was achieved. Classification accuracy equal 
to 0 was achieved for object classes T72 and ZSU23. Most 
misclassifications occurred in M60 and ZSU23 classes. 
 

Class and 
sensing angle 

values 

Measured 
data 

Synthetic 
data 

View of real 
shapes 

M60 
Elevation: 16° 
Azimuth: 180° 

  
 

ZSU23 
Elevation: 15° 
Azimuth: 180° 

  
 

2S1 
Elevation: 15° 
Azimuth: 180° 

  
 

Tab. 7.  SAMPLE dataset SAR .png examples (128 × 128 
pixels) and real shapes of M60, ZSU23, and 2S1 
objects. 

Most of the objects belonging to these classes were not 
correctly classified to 2S1 respectively M60 class. These 
errors were most likely caused by the similarity of the 
geometric shapes of the vehicles that belong to the men-
tioned classes. Vehicles from classes M60, ZSU23, and 
2S1 are tracked. View of real shapes of vehicles from clas-
ses M60, ZSU23, and 2S1 are shown in Tab. 7. 

Based on these results, hypothesis H2 can be rejected, 
and therefore it is not possible to use synthetic data to learn 
CNN and subsequently use learned CNN to recognize 
images of objects that have been measured by real equip-
ment. 

4.3 CNN Trained by a Mixture of Measured 
and Synthetic Data 
To verify the last – the third hypothesis, four CNN 

topologies with one to four tiers were developed again 
(a complete structure is defined in Tab. 5). For CNN train-
ing purposes, measured and synthetic datasets (14100 fig-
ures) were used. The input dataset was split at a usually 
used ratio of 70:15:15 [20], where 70 percent of figures 
were used to form the training data and 15 percent of fig-
ures were used to create validation data. The remaining 
subset (15 percent, containing 2115 images) was used for 
testing purposes. Results obtained by a given CNN topolo-
gy with different tiers are shown in Fig. 8. 

Classification accuracies of all four CNN structures 
are presented in Fig. 8. For validation data CNN with one 
tier reached a classification accuracy of 12.5%, CNN with 
two tiers at 90.2%, CNN with three tiers at 95.6%, and 
CNN with four tiers reached a classification accuracy of 
97.3%. The results of the CNNs training are extremely 
good. Testing of the trained CNNs ended with very good 
results, which were opposite to both previous cases for 
hypotheses H1 and H2. For test data CNN with one tier 
reached a classification accuracy of 12.5%, CNN with two 
tiers at 88.5%, CNN with three tiers at 95.9%, and CNN 
with four tiers reached a classification accuracy of 96.6%. 

The results of the CNN with 4 tiers for validation data 
are shown in Fig. 9, where we can find individual 
achievements for all object classes. For better results un-
derstanding, a confusion matrix was used again. The mean- 

 
Fig. 8.  The results of the CNNs trained by a mixture of 

measured and synthetic data. 
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2S1 262 0 0 0 0 1 0 1 0 0 99,2 

BMP2 3 139 3 0 3 2 0 0 1 0 92,1 

BTR70 3 7 138 0 3 0 0 0 0 0 91,4 

M1 0 0 0 215 2 1 0 1 0 0 98,2 

M2 0 0 0 1 213 2 0 1 0 0 98,2 

M35 0 2 1 1 1 210 3 1 0 0 95,9 

M548 0 0 0 0 0 0 218 0 0 1 99,5 

M60 3 0 0 0 0 0 0 259 0 0 98,9 

T72 0 2 0 1 2 0 0 2 144 0 95,4 

ZSU23 0 0 0 0 8 0 1 7 0 247 93,9 

 96,7 92,7 97,2 98,6 91,8 97,2 98,2 95,2 99,3 99,6 96,6 
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Fig. 9.  Confusion matrix for validation data using CNN with 
4 tiers (CNN trained by a mixture of measured and 
synthetic data). 

ing of cells of the confusion matrix is the same as in the 
previous case for hypotheses H1 and H2. As an example, 
we will analyze one object class from Fig. 9 in detail. Re-
sults valid for object class BTR70 are presented in the third 
row, where the value in the third column represents the 
number of correctly classified images. It means that images 
containing object BTR70 were correctly classified 138 
times as belonging to the BTR70 object class. The rest of 
the values in the third row represents incorrectly classified 
images containing object BTR70: 3 times as 2S1, 7 times 
as BMP2, and 3 times as M2. We can analyze all objects 
from the confusion matrix in the same way. 

The cell in the bottom right of the confusion matrix 
(Fig. 9) shows the overall classification accuracy of the 
CNN with 4 tiers. The overall value of classification accu-
racy is satisfactory, reaching a value of 96.6%. All objects 
from the input data are classified with a probability higher 
than 91.8% and only a few items from the validation data 
were misclassified. More important are the results of 
trained CNN achieved for test data (Fig. 10). The best 
results for test data consisting of a mixture of the measured 
and synthetic datasets were achieved by CNN with 4 tiers. 
Classification accuracy reached a value of 96.1% in this 
case. Comparing results achieved by CNN with 4 tiers for 
validation data and results for test data, classification accu-
racies are almost the same. The highest classification accu-
racy, more than 98.1%, is observed for ZSU23 and M548 
object classes. The lowest but still very good classification 
accuracy, around 90.3%, is observed for the BMP2 object 
class. For other object classes (2S1, BTR70, M2, M1, M35, 
M60, T72) are observed classification accuracy values 
from interval 93.8–97.3%. The worst results were achieved 
by CNN with 1 tier, which means that the given topology 
is not suitable for the classification of SAR images. 

Based on these results, hypothesis H3 can be accept-
ed, and therefore a mixture of measured and synthetic data 
can be used to learn CNN with very good results. Sub-
sequently, CNN trained in that way can recognize images  
of objects that have been measured by real equipment and 

 

2S1 252 9 0 0 1 1 0 0 0 1 95,5 

BMP2 2 140 3 0 1 0 0 0 4 1 92,7 

BTR70 3 2 144 0 1 1 0 0 0 0 95,4 

M1 0 0 0 211 1 0 0 4 3 0 96,3 

M2 3 0 0 0 211 0 0 0 0 3 97,2 

M35 0 2 0 1 3 211 2 0 0 0 96,3 

M548 0 0 3 0 1 4 211 0 0 0 96,3 

M60 1 0 0 4 0 0 0 255 2 0 97,3 

T72 0 2 0 1 0 2 0 0 146 0 96,7 

ZSU23 0 0 1 0 6 0 0 3 0 253 96,2 
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Fig. 10.  Confusion matrix for test data using CNN with 4 tiers 

(CNN trained by a mixture of measured and synthetic 
data). 

 
Fig. 11.  Comparison of achieved results for different types 

of training set. 

created in a synthetic environment. A visual comparison of 
all results achieved in CNN testing experiments is shown 
in Fig. 11. 

Comparing achieved results with another SAMPLE 
dataset classification results [8] we can prove usability of 
proposed and tested CNN structures for SAMPLE dataset 
classification. We reached overall classification accuracy 
of 96.1%, authors in [8] declared, that they observed classi-
fication accuracy values from the interval of 88–95% for 
training data consisting of randomly selected objects from 
a set of measured (real) and synthetically created images of 
identical objects in a 1:1 ratio. Our achieved results also 
prove findings in [8] that it is not only important to match 
target configurations and sensor parameters, but it is also 
beneficial to match environmental conditions when gener-
ating synthetic SAR data for SAR image classification 
tasks. Environmental conditions, for example, wet snow, 
ground vegetation, hardwood species, and softwood spe-
cies, have considerable effects on SAR imagery. 

5. Conclusion 
Hypotheses H1 (when CNN was trained only with 

measured data) and H2 (when CNN was trained only with 
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synthetic data) can be rejected based on the results 
achieved by proposed CNNs. Thus, it is not possible to use 
real measured SAR images of objects to train CNN and 
then test and use the CNN with synthetic data. It is also not 
possible to do the opposite: train CNN with synthetic data 
and test and use CNN with real measured SAR images of 
objects. Hypothesis H3 (when CNN was trained with 
a mixture of measured and synthetic data) can be accepted 
as true because the learned CNN reached a classification 
accuracy for all objects close to 100%. The training data 
consisted of randomly selected objects from a set of meas-
ured (real) and synthetically created images of identical 
objects in a 1:1 ratio (the training set for each class con-
tains 50% measured data and 50% synthetic data). In the 
same way, test data was created, i.e., a mix of randomly 
selected measured (real) and synthetic images that were not 
used in the CNN learning process. The obtained results 
confirm the suitability of the use of a mixture of measured 
and synthetic data for this purpose. 

Authors in [7] and [8] just closely reached the classi-
fication accuracy of 95% for k = 0.5, i.e., the training set 
for each class contains 50% measured data and 50% syn-
thetic data. Comparing achieved results with the above-
mentioned SAMPLE dataset classification results we can 
prove the usability of proposed and tested CNN structures 
for automatic target classification of the synthetic aperture 
radar images. The classification accuracy of the original 
convolutional network is 96.1%, which is better than the 
results of the other research so far. 
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