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Abstract. Reconfigurable intelligent surface (RIS) is
an emerging tool for 5G and wireless communication tech-
nologies that have attracted researchers’ interest. However,
the passive nature and the high number of reflecting elements
in RIS result in a large pilot overhead, which makes channel
estimation challenging in multi-user multiple-input multiple-
output (MU-MIMO) wireless communication systems. Previ-
ous works have shown an improvement in reducing the pilot
overhead by exploiting the structured sparsity in rows and
columns, which was further improved by compensating off-
set among users in angular cascaded channels of RIS aided
system. To further reduce the pilot overhead, we analyze
and adopt coherence-optimized pilots for channel estimation
and propose an algorithm to analyze the combined effect of
low-coherence pilots with an optimum size of RIS elements
for a given number of users, transmit antennas, and normal-
ized error threshold performance. The simulation results
illustrate better NMSE performance as compared to contem-
porary techniques.

Keywords
Channel estimation, compressed sensing, reconfig-
urable intelligent surface, mm-wave MIMO commu-
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1. Introduction
According to CISCO estimate, there will be 29.3 billion

networked devices by 2023 and the number of mobile sub-
scribers will rise to 5.7 billion (71 percent of the population)
globally [1]. By the year 2026, the overall mobile data usage
will increase to 220 million terabytes per month [2]. With
the introduction of 5G, a new vision of mobile communica-
tions has emergedwith three distinct use cases: machine-type
communications, ultra-reliable and low-latency connections,
and improved broadband mobile communication. During
the standardization of the 5G wireless network, no single
enabling technology can satisfy all the requirements of 5G

applications. Researchers have already begun to investigate
communication technologies even the 6th generation (6G) by
moving away from the comfort zone of 5G-focused solutions.

RIS has given a new paradigm to wireless communica-
tion, especially in 5G and beyond [3–5]. The RIS technology
has piqued the interest of the wireless community by regulat-
ing the electromagnetic reaction of the surrounding objects
and by controlling the propagation environment determin-
istically, which results in improved signal quality [3]. The
RIS system consists of several passive reflecting devices that
may individually alter the amplitude, phase, and polarization
of the incident signal. When compared to traditional active
antenna arrays, the RIS reflecting devices passively reflect
the impinging signals, hence no radio frequency (RF) chains
are needed for transmission. As a result, it can be used with
less hardware/energy cost. Its purpose is to aid transmission
between transmitter and receiver by intelligently structuring
wireless situations where line-of-sight (LOS) is not available.

The RIS’s components are passive and unable to broad-
cast, receive, or process pilot signals, which makes the acqui-
sition of channel state information (CSI) challenging. The
transmission design requires the CSI of the cascaded base
station (BS)-RIS-user channel, a byproduct of the BS-RIS
and-user channel. Resultantly, most of the contributors fo-
cused on cascaded channel estimation [6–13]. The least
square (LS) technique was proposed in [6], however, it has
a high pilot overhead and grows with the number of RIS ele-
ments. To decrease the pilot cost, [7] created a transmission
protocol that executes channel estimation and phase shift op-
timization sequentially with a pilot overhead of subgroups
and divided the RIS into smaller groups. The authors of [8]
presented a channel estimation approach inwhich the number
of antennae has an inverse relationship with pilot overhead
at the BS. In a rich scattering communication environment,
the estimation approach in [8] requires a minimal amount of
pilot overhead with a full rank cascaded channel, however,
it is not suitable in millimeter-wave communications (mm
wave) because the channel matrix is rank deficient. To solve
this issue, the authors of [9–12] proposed compressed sens-
ing (CS) algorithms for channel estimation with lower pilot
overhead in mm-wave communication systems. The author
of [9] created a sparse signal recovery issue for cascaded
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channel estimation without taking into account the common
properties of the cascaded channel in SU-MISO systems,
which results in high estimation error and power leakage.
The atomic norm minimization approach was used in [10]
to estimate the sparse angles and gains to lessen the impact
of power leakage. For the multi-user MIMO system, dou-
ble structured sparsity and shared parameters were examined
by both [11] and [12] to estimate multi-user cascaded chan-
nels with less pilot overhead and good estimation accuracy.
Multi-user triple structured compressive sensing (MTSCS)
technique was proposed in [13] for the mm-wave system by
exploiting the sparse structure and iteratively optimizing the
offset and beam angles to reduce the pilot overhead.

Qingqing et al. in [14], signal propagation and reflec-
tions between transmitters and receivers are intelligently co-
ordinated by RIS. The desired realizations are achieved by
efficiently mitigating the fading impairment and interference,
thus improving the wireless communication capacity and re-
liability. Real-time reconfigurable scattering features such
as delay, amplitude, and polarization are available in RIS
that may be changed to increase the communication perfor-
mance [15]. The RIS consists of 𝑁 numbers of elements as
two-dimensional surface arrays with a programmable time
delay that can re-radiate without amplifying signals and if
the time delay is set properly, it can contribute positively to
the receiver [16]. Since RIS has reconfigurable properties
and large arrays [17], the key benefit of large arrays is that
signal-to-noise ratio (SNR) increases with the number of el-
ements 𝑁 [18]. Passive beam formation is achievable when
meta-surfaces re-radiate a signal proportional to the surface
area. When RIS re-transmits the signal, the time-delay and
array gain in 𝑁 numbers of the elements results in SNR at the
receiver which is proportionate to 𝑁2 and referred as "square
law" [16], [19]. In [17], RIS is considered as a surface having
real-time adjustable scattering qualities which add control-
lable paths at the physical layer and can be utilized to improve
the overall performance of communication. However, large
number of RIS elements makes the channel dimension much
larger and results in a sharp increase in the pilot overhead
of channel estimation. To reduce the pilot overhead we pro-
posed a sparse RIS in [20] by randomly selecting elements
from the RIS structure using a Gaussian distribution in the
uniform planar array (UPA). To the best of our knowledge,
to reduce the pilot overhead in RIS-aided system, the pilot
optimization technique has not yet been studied. In this con-
tribution, wewill analyze the effect of coherent training pilots
using an optimization algorithm. We will also study the ef-
fects of various surface areas of RIS to reduce pilot overhead.
Based on the preceding discussion, the main contributions of
this work are as follows:

• Compressed sensing (CS) allows reliable reconstruction
of sparse signals. Reconstruction efficiency further im-
proves by minimizing the mutual coherence of the mea-
surement matrix. In this contribution, coherence opti-
mized pilots are used to minimize the pilot overhead for
channel estimation in RIS assisted systems.

• To analyze the combined effects of low coherence pilots
with optimal RIS elements, an optimization algorithm
is proposed. The proposed algorithm determines the
optimal size of RIS’s surface area and pilots.

• We show numerically that the proposed cascaded chan-
nel estimation strategy outperforms the existing double-
structured orthogonal matching pursuit (OMP)-based
channel estimation algorithm and the multi-user triple-
structured compressive sensing simultaneous orthogo-
nal matching pursuit algorithm in terms of normalized
mean squared error (NMSE) and pilot overhead. Fur-
thermore, the suggested estimation algorithm’s NMSE
performance is close to the lower bound at low SNR.

The remaining portions of the paper are structured as
follows: in Sec. 2, we introduced the systemmodel; in Sec. 3,
we compared the coherence of random pilots with proposed
pilots; and in Sec. 4, simulation results are compared with
proposed coherence pilots technique to demonstrate the im-
proved system performance.

2. System Model
In this section, the cascaded channel in RIS aided wire-

less system is introduced in the first part and in the second
part, the channel estimation problem is formulated. The cas-
caded channels are sparse in nature by exploiting the spar-
sity, CS-based approaches are used in channel estimation.
Accurate channel models are needed for RIS-assisted com-
munication to be effective. In a RIS-assisted situation, we
will use cascaded channel estimation and develop a channel
estimation problem.

2.1 Cascaded Channel
In this study, the widely used Saleh-Valenzuela channel

model is adopted [21]. We assume a narrowband mm-wave
MIMO wireless system with i single antenna users connect-
ingwith a BS in an uplink system, where the BS has 𝑁Tx×𝑁Ty
transmit antennas and 𝑁Rx×𝑁Ry receive antennas at RIS hav-
ing uniform planar arrays (UPA) antenna which serves i users
simultaneously. Let HG, serves as channel between BS and
RIS and Hr,𝑖 can be defined as channel between RIS and
𝑖th user, where (𝑖 = 1, 2, . . . 𝐼). The channel HG can be
represented as

HG =

√︂
𝑁T𝑁R
𝑃G

𝑃G∑︁
ℓ1=1

𝛼Gℓ1aR (\
r
ℓ1
, 𝜔rℓ1 )aHT (\tℓ1 , 𝜔

t
ℓ1
) (1)

where 𝑃G are the 𝑙 th paths among BS and RIS, 𝛼Gℓ represent
the complex gain, whereas \tℓ1 , 𝜔

t
ℓ1
represent the azimuth and

elevation angles at BS and at RIS it is represented by \rℓ1 ,𝜔
r
ℓ1
.

The corresponding array steering vectors of BS and RIS are
aT ∈ C𝑁T×1 and, aR ∈ C𝑁R×1 respectively. Let the size of
channel HG be 𝑁T × 𝑁R, where 𝑁T is defined as 𝑁Tx × 𝑁Ty
and 𝑁R as 𝑁Rx ×𝑁Ry . The following may be used to illustrate
the channel between RIS and 𝑖th user:
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Fig. 1. RIS system model.
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where \r,𝑖 , 𝜔r,𝑖 are the azimuth and elevation angles at RIS,
𝛼
r,𝑖
ℓ2
defines the complex gain and 𝑃r,𝑖 denote the paths be-

tween RIS and 𝑖th user. The angular antenna response in
uniform planar array is denoted by

aUPA (\, 𝜔) =
√︄
1

𝑁Ry

[
e−j2𝜋𝑑 sin(𝜔) cos(\)𝑛1/_

]
⊗ (3)[

e−j2𝜋𝑑 sin(𝜙)𝑛2/_
]

(4)

where ⊗ represents the Kronecker product of two angular
arrays. n1 = [1, . . . , 𝑁Rx ] and n2 = [1, . . . , 𝑁Ry ] denotes
the components for each channel. The 𝑖th user’s cascaded
channel can be represented by HRIS , HGdiag(Hr,𝑖), where
HRIS ∈ C𝑁T×𝑁R , can be decomposed as

HRIS = A𝑁TH̃RISA
T
𝑁R

(5)

where ĤRIS denote the angular cascaded channel. A𝑁T and
A𝑁R are unitary dictionary matrices of size 𝑁T × 𝑁T and
𝑁R × 𝑁R at BS and RIS respectively. The cascaded channel
is sparse and has few nonzero elements because of limited
scattering around BS and RIS [12].

2.2 Problem Formulation
In a traditional wireless system, the channel is known to

the base station (BS) and can easily be estimated, on the other
hand, channel estimation in RIS aided system is a difficult
task as pilot overhead is large because of more number of
RIS elements. The UPA cascaded channel is represented as:

H̃RIS =

√︄
𝑁T𝑁R
𝑃G𝑃r,𝑖

𝑃G∑︁
ℓ1=1

𝑃r,𝑖∑︁
ℓ2=2

𝛼Gℓ1𝛼
r,𝑖
ℓ2

âR (\r𝛾 , 𝜔r𝛾)âHT (\t𝛾 , 𝜔t𝛾)

(6)

where âR (\rℓ , 𝜔r𝛾) = AH𝑁TaR (\rℓ , 𝜔rℓ) and âT (\rℓ , 𝜔rℓ) =

AH𝑁RaT (\rℓ , 𝜔rℓ) are the only non-zero elements which are
located on the array steering vector. In the RIS arrangement,
the channel estimation is imprecise. To improve the channel
estimation a double structured sparsity solutionwas proposed
in [12] and similar technique is adopted in this study. The up-
link channel model is considered as all users transmit known
pilots to BS via RIS in𝑄 time slots. The time slot 𝑞 is defined
as (q = 1, 2, . . . , 𝑄). Let yUL𝑖 ∈ C𝑁T×1 denote the received
signal and expressed as

yUL𝑖 = HGdiag(Hr,𝑖) \𝑞Ω + v𝑖 (7)

where 𝛀 are the pilot signals delivered to BS by 𝑖th user and
\𝑞 is the reflecting coefficient at 𝑛th RIS element in 𝑞th time
slot. The diagonal channel matrix is denoted by diag(Hr,𝑖)
which has channel vectors on its diagonals. We can write (6)
as

yUL𝑖 = HRIS \𝑞Ω + v𝑖 , (8)

let assume 𝛀 = 1 and after 𝑄 time slot transmission
Y𝑖=[𝑦𝑖,1 . . . 𝑌𝑖,𝑄] is obtained

Y𝑖 = HRIS𝚯 + v𝑖 (9)

where 𝚯 = [\1, . . . \𝑞] and noise v𝑖 = [𝑣𝑖,1 . . . 𝑣𝑖,𝑄] from
(4) and (7) we get

Y𝑖 = 𝚯A𝑁TH̃RISA
T
𝑁R
+ v𝑖 . (10)

Let Ỹ𝑖 = (AH𝑁TY𝑖)H is the effective measurement ma-
trix of size𝑄×𝑁T and v̂𝑖 = (AH𝑁Tv𝑖)H as noise matrix of size
𝑄 × 𝑁T. We can write (9) as

Ỹi = �̃�H̃HRIS + ṽ𝑖 (11)
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where �̃� = (AT𝑁R𝚯)H is sensing matrix of size 𝑄 × 𝑁R [12],
the cascaded channel can be estimated using CS algorithms.
As compared to a traditional wireless system, the RIS-aided
system have a large array of elements resulting in large chan-
nel dimensions and pilot overhead. Furthermore, due to
a lack of RF chains, acquiring the CSI is difficult [22].

3. CS Base Channel Estimation
In traditional digital signal processing, the Nyquist cri-

teria state that a band-limited signal must have a sampling
frequency at least twice its bandwidth to obtain precise sig-
nal reconstruction. On the other hand, in CS framework,
the signal can be recovered even when the number of ac-
cessible samples is significantly less than the conventional
requirements [23], [24]. CS addresses the accurate recov-
ery of unknown sparse signals from under-determined lin-
ear measurements [23–26]. It demonstrates how to recover
a sparse signal from a reduced number of incoherent sam-
ples. Consider x ∈ C𝑁 is sparse vector, 𝚽 ∈ C𝑀×𝑁 is the
measurement matrix and y ∈ C𝑀 is the measurement vector,
where y = 𝚽x and 𝑀 < 𝑁 . In the case of sparse x, the
following minimization can be used to minimize the issue:

min ‖x‖0 s.t y = 𝚽x.

There are two main principles that need to be con-
sidered when using CS framework for channel estimation.
These principles ensure that CS is effective and solves the
reconstruction problems. The first principle is sparsity and
the second is mutual coherence. A signal 𝑥 ∈ C𝑁 is said
to be sparse if it has 𝑘 << 𝑁 number of non-zero elements.
A sparse signal can be efficiently compressed by keeping only
its nonzero coefficients’ position and values [25]. In contrast
to the Nyquist theorem’s requirements, compressed sensing
allows efficient data sampling at significantly lower rates.

The second important property which ensures the re-
construction is mutual coherence. The coherence of a square
matrix is always orthogonal whereas, in a rectangular matrix,
orthogonality is not possible. Matrix A with low coherence
is known to have better recovery of sparse signal. The coher-
ence of matrix A can be defined as:

`(A) = max
𝑖≠ 𝑗

|〈𝑎𝑖 , 𝑎 𝑗〉|
‖𝑎𝑖 ‖ ‖𝑎 𝑗 ‖ (12)

where `(𝐴) is the largest absolute inner product between
column 𝑎𝑖 and 𝑎 𝑗 [25].

In RIS systems, channel estimation is challenging as
compared to traditional wireless communication, mainly due
to two reasons. First, RIS elements are passive in nature, sec-
ond, more elements at RISmake the channel dimensionmuch
larger which sharply increases the pilot overhead. In [22],
sparsity based channel estimation was proposed to lower the
pilot overhead. Conventional wireless systems have limited
propagation paths between the user and BS, which results
in a sparse channel between the user and BS in the angu-
lar domain. Similarly, in RIS system, the cascaded channel
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Fig. 2. Coherent vs random matrix coherence comparison.

HRIS ∈ C𝑁T×𝑁R is also sparse in the angular domain. The
channel can be decomposed as in (4). Xiuhong et al. in [12]
exploited the DS sparsity of the angular cascaded channel
and proposed a DS-OMP algorithm for channel estimation,
which results in low pilot overhead. A similar recovery al-
gorithm is adopted in this contribution. As discussed above,
the performance of CS also depends on the coherence of the
sensing matrix. In [12], pilot overhead was reduced by ex-
ploiting the sparsity, however, random pilots were adopted.
In order to further reduce the pilot overhead in RIS assisted
system, the coherence of sensing matrix is optimized by us-
ing the proposed optimization algorithm of [27]. Figure 2
illustrates the comparison of coherence optimization of the
random matrix with coherence optimized matrix, using opti-
mization algorithm [27].

4. Proposed Algorithm for Pilot
Optimization
This section proposes an algorithm to determine the

optimum size of RIS as well as the optimum pilot overhead
in a given environment. In the proposed algorithm, the op-
timum size of RIS is obtained by setting a threshold of bit
error after successive iterations. Different rectangular shaped
RISs’ are analyzed to get the optimum RIS size. The reduced
size of RIS results in a lesser number of arrays, thus mini-
mizing the pilot overhead while achieving acceptable NMSE
performance.

The main procedure of the proposed algorithm can be
explained as follows. The channel matrix, sensing matrix, bit
error threshold, and RIS elements are initialized in steps 1–4.
Because of row structured sparsity, the common row sup-
port is determined jointly, and then common column support
is calculated by exploiting partial column-structured spar-
sity. Finally, each user-specific column support for 𝑖 user
is evaluated separately, and then the channel is estimated
in steps 6–10 [12]. In step 11, the spatial domain cascaded
channel is obtained. Average NMSE is calculated by taking
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the norm of the difference between the original and esti-
mated channel in step 12. To obtain optimized RIS, an error
threshold value [ is selected. The difference between average
NMSE and [ is returned to Γ in step 14. When the differ-
ence of average NMSE and [ becomes zero or less than zero,
the optimum size of RIS is obtained for optimum NMSE
threshold error in steps 15–23.

Algorithm 1: Optimize RIS for given
environment

input : Y𝑘𝑄×𝑁T , 𝚯𝑄×𝑁R , A𝑁T ∈ C𝑁T×𝑁T , A𝑁R ∈
C𝑁R×𝑁R , 𝐼 , 𝑄, 𝑃G

Initialize: HRIS = 0𝑁T×𝑁R ; /* Channel Matrix */

1 �̃� = (AT𝑁R𝚯)
H
𝑄×𝑁R ; /* Sensing Matrix */

2 [ = 0.05; /* Error Threshold */
3 𝑁Rx = 2,𝑁Ry = 5; /* Rows & Columns of RIS */

4 𝑁R = 𝑁Rx × 𝑁Ry ; /* Elements of RIS */

5 Channel estimation by exploiting row and column sparsity;
6 for 𝑙1 = 1, 2, 3, . . . , 𝑃G do
7 for 𝑖 = 1, 2, 3, . . . , 𝐼 do
8 H̃RIS (Ω𝑙1

c ,Ωr) = 𝚯T (:, (Ω𝑙1 ,𝑖
c ))Y𝑖 (Ωr) (𝑙1));

/* Channel Estimation common row &
column support [12] */

9 end
10 end
11 HRIS = (AH𝑁T H̃RISA𝑁R ); /* Cascaded Channel */

12 NMSEavg = ‖H̃RIS −HRIS ‖; /* NMSE Calculation */
13 for 𝑄𝑖 = 1, 2, 3, . . . 7 do
14 Γ← |NMSEavg − [ |; /* Threshold */
15 if Γ > 0 then
16 𝑁Rx ← 𝑁Rx + 2; /* Increase Rows of RIS */
17 𝑁Ry ← 𝑁Ry + 5; /* Increase Column of RIS

*/
18 else if Γ ≤ 0 then
19 𝑁𝑅x0

← 𝑁Rx ; /* Return row size */

20 𝑁𝑅y0
← 𝑁Ry ; /* Return Column size */

21 end
22 end
23 end

output : �̃�𝑄×𝑁R
; /* Sensing matrix with optimized RIS size */
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5. Simulation Results
We will compare the simulation outcomes of random

pilots with coherence-optimized pilots in an uplink RIS sys-
tem, and the effects of various surface areas will also be
demonstrated on channel estimation in the RIS system. The
effects of varied paths will also be analyzed. We consider
the BS and RIS elements as 𝑁Tx = 8, 𝑁Ty = 8 and 𝑁Rx = 16,
𝑁Ry = 16 respectively, the number of users that is 𝐼 = 16 and
paths connecting RIS and BS is 𝑃G = 5. The paths between
RIS and 𝑖th user is 𝑃r,𝑖 = 8 ∀𝑖. The random pilots’ sens-
ing matrixΘ selects random values from range {− 1𝑁R , +

1
𝑁R
}.

The RIS and BS distance is denoted by 𝑑BRIS = 10m and the
distance between RIS and 𝑖th user is 𝑑r,𝑖 = 100m. Varied
paths between RIS and 𝑖th user are denoted by 𝐿c. MATLAB
R2017a is used to implement the simulations, and the system
has an Intel Core i7-8565 CPU@ 4.6GHz Quad-core 64-bit
processor with 16GB RAM.

We will compare three different scenarios to analyze
channel estimation in RIS assisted system. In the first part,
random pilots are compared with coherence optimized pilots
and the results are illustrated. In the second part, the effects
of different rectangular surface areas on channel estimation
are analyzed to achieve better NMSE results and in the third
part, the effect of different varied paths between the user and
RIS are analyzed and illustrated.

5.1 Coherence Optimized Pilot vs Pseudo
Random Pilots
Usually pseudo-random matrix is considered in mm-

wave MIMO communication. We compare the randomly
generated pilot matrix with a coherence optimized matrix for
channel estimation in DS-OMP recovery algorithms [12] as
well as in MTSC-SOMP scheme [13]. We consider LS with
known coherent pilots and known channels as a theoretical
benchmark. Figure 3 shows the normalized mean square er-
ror (NMSE) performance versus pilots’ overhead in different
time slots 𝑄. The optimized coherence matrix results are
better than contemporary techniques as illustrated in Fig. 3.
Three different paths between BS and RIS are considered.
When path is set as 𝐿c = 0 at time slot 𝑄 = 32, the NMSE
gap is 6 dB and at time slot 𝑄 = 48 the gap is increased
to 9 dB. The NMSE performance of coherent pilots remains
constant from time slot 𝑄 = 64 to 𝑄 = 128. As we increase
the paths i.e 𝐿c = 4 in the first two-time slots i.e, 𝑄 = 32
and 𝑄 = 48 the NMSE gap between conventional pilots and
coherent pilots is 9 dB and remains constant from time slot
𝑄 = 64 to 𝑄 = 128. Similarly, when the paths are increased
to 𝐿c = 8 the NMSE performance of coherence pilots signif-
icantly improves. The NMSE gap between the conventional
pilot and coherence pilot scheme is 12 dB in first time slot
𝑄 = 32 and in second time slot 𝑄 = 48, is 9 dB. The re-
sults illustrate that in the proposed scheme, with the increase
in pilot length 𝑄, the NMSE performance increases signifi-
cantly in the first two slots and remains constant for other time
slots and it outperforms the baseline systems while achieving
similar performance to the LS coherent scheme.
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5.2 Varying Surface Area
In [12], a square shape RIS was considered where el-

ements of RIS and BS were set as 𝑁Rx = 𝑁Ry = 16 and
𝑁Tx = 𝑁Ty = 8 respectively in a cascaded channel environ-
ment. Since RIS may simulate the dispersion of arbitrary
shaped objects [16], here we will analyze the different rect-
angular shapes of RIS and its effects on channel estimation.
The findings will be examined using both traditional CS and
DS-OMP techniques. We consider a rectangular surface RIS,
where elements of RIS are 𝑁Rx = 24 and 𝑁Ry = 8 and BS
elements are 𝑁Tx = 𝑁Ty = 8. The influence of reduced
size RIS is visible in the double structured sparsity recov-
ery scheme [12], and an improvement of 1.5 dB in NMSE
performance is achieved, as shown in Fig. 4. However, the
improvement in conventional CS is minimal.

The NMSE performance is analyzed by altering the
shape of RIS. The elements of RIS are set as 𝑁Rx = 20
and 𝑁Ry = 8 thus reducing the surface area and pilot over-
head. Results show that conventional CS scheme has an
almost negligible effect on NMSE performance due to insuf-
ficient information, however as shown in Fig. 5, a significant
improvement in NMSE performance of 3 dB is achieved as
compared to RIS arrangement of [12]. The NMSE perfor-
mance gap of 3 dB remained constant in all time slots 𝑄.

We further analyzed the performance of RIS by altering
the elements as 𝑁Rx = 22 and 𝑁Ry = 10. After changing
the RIS elements, minor improvement in NMSE gain in the
double structured recovery algorithm is achieved over𝑄 time
slots. The conventional CS has a very negligible effect, as
shown in Fig. 6.

5.3 Varied Common Paths Effects
In this section, we will analyze the effects of common

paths between RIS and the users in a rectangular surface
area of RIS with coherence-optimized pilots. In previous
work of [12], the NMSE performance improves with increase
in common paths. First, we’ll look at the scenarios where
RIS and the users have no common route, i.e 𝐿c = 0, and
the elements of RIS are set as 𝑁Rx = 20 and 𝑁Ry = 8.
Figure 7(a) shows significant improvement in NMSE perfor-
mance as compared to [12]. The combined effect of shape
and optimized pilots show a 6 dB gap in conventional CS and
in DS recovery algorithms. With coherent pilots, a sudden
increase in NMSE is observed in the first two pilot lengths
i.e 𝑄 = 32 and 𝑄 = 48, and it remained constant in the pilot
length 𝑄 = 64 to 𝑄 = 128.

Figure 7 illustrates the influence of the paths between
RIS and the users when the common paths are set as 𝐿c = 4,
𝐿c = 6, and 𝐿c = 8. The NMSE performance is im-
proved and pilot overheads are further reduced as compared
to contemporary techniques. When 𝐿c = 4, the NMSE
gain of 7 dB is seen in conventional CS and 9 dB gain in
DS recovery algorithm. It further improves when 𝐿c = 6,
the gain of CS enhances to 8 dB and 10 dB in DS-CS.
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Fig. 7. Varying common path between RIS and users with re-
duced surface area 𝑁Rx = 20, 𝑁Ry = 8.

A significant improvement is seen when paths are set as
𝐿c = 8 in CS and DS-CS algorithm, subsequently reducing
the pilot overhead. The improvement in NMSE around 10 dB
is observed in CS technique and 12 dB in DS technique. At
pilot length 𝑄 = 32 to 𝑄 = 48, the conventional CS tech-
nique shows a sharp increase in NMSE which gradually im-
proves till pilot length 𝑄 = 128. In DS recovery algorithm,
the NMSE performance remains almost persistent from pilot
length 𝑄 = 48 to 𝑄 = 128. The above results show that
the burden of pilot overhead is further reduced as compared
to previously proposed techniques in channel estimation by
altering the shape and optimizing the training pilots.

A box plot is a graphical method of displaying the local-
ity, spread, and skewness groups of numerical data through
their quartiles. Each box has a center point that represents
the median and margins, which represent the 25th and 75th
percentiles of the distribution, respectively. The outliers are
shown separately using the ’+’ sign and the whiskers are ex-
tended to the most extreme data points that are not outliers.
Box plot comparison of DS-OMPwith random pilots and co-
herence optimized pilots are shown in Fig. 8, where 𝐿c = 8.
Coherence optimized matrix’s NMSE results show low pilot
overhead and low range as compared to the random pilot,
which is less consistent. The standard deviation of coher-
ence optimized pilot also remains consistent in all time slots.
The random pilots’ outliers are wider than the coherence op-
timized pilots. The random pilot matrix NMSE plot starts
from −14 dB and ends at −23 dB, whereas coherence pilot
NMSE starts at −24.5 dB and ends at −25 dB for all time
slots. The above analysis shows that the adopted technique
has better results as compared to random pilots with reduced
pilot overhead.
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Fig. 8. Box plot DS OMP with 𝐿c = 8, 500 iterations.

5.4 Real Time Implementation
To implement the simulations in real-time scenarios, the

run-time and NMSE variations of coherence optimized pilot
schemes were analyzed with different RIS sizes and com-
mon paths. The simulation time data with the corresponding
NMSE of 100 iterations is presented with box plot and illus-
trated in Figs. 9 and 10. In the first case, we set elements of
RIS as 𝑁Rx = 16 and 𝑁Ry = 16, and the run-time was ana-
lyzed with various common paths. When no common path
is considered between the user and RIS i.e. 𝐿c = 0 and the
pilot length is set as𝑄 = 32, the average simulation run-time
is 19 secs and when the pilot length 𝑄 is increased from 48
to 128, the average run-time also increases from 21 secs to
28 secs as illustrated in Fig. 9(a). When the common paths
are set as 𝐿c = 4, the average run time at pilot length 𝑄 = 32
increased to 24 secs and at 𝑄 = 128 the average run-time
increased to 36 secs as illustrated in Fig. 9(b). At 𝐿c = 6 the
average simulation time at 𝑄 = 32 is 22 secs and at Q=128
is 33 secs and when the common path is further increased to
𝐿c = 8, the average run-time is 20 secs, at pilot length𝑄 = 32
and at 𝑄 = 128 the average run-time increases to 30 secs as
illustrated in Fig. 9(c) and (d). The correspondingNMSE box
plots of 100 iterations are also shown in Fig. 9(e)–(h). In the
next scenario, we changed the shape of RIS to rectangular,
and the elements of RIS are set as 𝑁Rx = 20 and 𝑁Ry = 10.
When 𝐿c = 0 the average run-time at pilot length 𝑄 = 32 is
reduced to 10 secs as compared to the previous RIS setting
which was 19 sec. When pilot length 𝑄 is increased from 48
to 128 the average simulation time also increases to 11 sec
and 15 secs respectively as illustrated in Fig. 10(a). Simi-
larly, run-time at 𝐿c = 4, 𝐿c = 6 and 𝐿c = 8, is illustrated
in Fig. 10(b)–(d). The results show that the average run-time
reduces to 45% as compared to previous RIS settings. The
results show that at optimum RIS size, the average simula-
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Fig. 9. Simulation run-time and NMSE with 𝑁Rx = 16, 𝑁Ry = 16, 𝑁Tx = 8, 𝑁Ty = 8, 𝑖 = 16.
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Fig. 10. Simulation run-time and NMSE with 𝑁Rx = 20, 𝑁Ry = 8, 𝑁Tx = 8, 𝑁Ty = 8, 𝑖 = 16.
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tion time also improves and variations in NMSE and run-time
remain minimum. The simulations can be implemented in
a real-time scenario by incorporating the already optimized
matrix with different sizes of RIS, various paths, and pilot
lengths at an optimum threshold value of NMSE.

6. Conclusion
In this contribution, we use the coherence optimized

pilots and the influence of different surface areas in RIS as-
sisted mm-wave multi-user MIMO system to reduce the pilot
overhead and the effects of varied paths on NMSE perfor-
mance. We also proposed an algorithm for the optimal size
of RIS in a given environment. Simulation findings demon-
strate that the selected method requires pilot overhead, which
is much lower than the existing algorithms. We employ
a Grassmannian sensing matrix in DS-OMP as well as in
the conventional CS recovery algorithm. It was discovered
that the NMSE gain in different time slots has significant
improvement. According to the outcomes of the study, the
coherence-optimized pilots have significant effects coupled
with diverse shaped structures, which resulted in substantial
improvement. In this contribution, we analyzed rectangular-
shaped RIS. For future work, the effects of more arbitrary
shapes like circular, elliptical, triangular, and pentagon can
be analyzed and explored.
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