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Abstract. Massive multi-input multioutput (MIMO)
coupled with orthogonal frequency division multiplexing
(OFDM) has been utilized extensively in wireless commu-
nication systems to investigate spatial diversity. However,
the increasing need for channel estimate pilots greatly in-
creases spectrum consumption and signal overhead in mas-
sive MIMO-OFDM systems. This paper proposes a two-
stage channel estimation algorithm based on sparsity adap-
tive compressive sensing (CS) to address this issue. To esti-
mate the channel state information (CSI) for pilot locations
in Stage 1, we provide a geometry mean-based block orthog-
onal matching pursuit (GBMP) method. By calculating the
geometric mean of the energy in the support set of the channel
response, the GBMP method, when compared to conventional
CS methods, can drastically reduce the number of iterations
and effectively increase the convergence rate of channel re-
construction. Stage 2 involves estimating the CSI for non-
pilot locations using a time-frequency correlation interpola-
tion method, which can increase the accuracy of the channel
estimation and is dependent on the estimated results from
Stage 1. According to the simulation results, the proposed
two-stage channel estimation algorithm greatly reduces the
running time with little error performance degradation when
compared to traditional channel estimating algorithms.

Keywords
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1. Introduction
One of the key technologies for next wireless com-

munications, massive multiple-input and multiple-output
(MIMO),waswidely used in the fifth generation (5G) [1], [2].

Massive MIMO systems include a massive array antenna at
the base station (BS), which introduces a number of uniden-
tified channel characteristics and creates a significant amount
of pilot overhead. The wireless channel estimate problem is
thus made more difficult [3].

Due to the pseudoinverse of the large-scale measure-
ment matrix, conventional channel estimate techniques for
massive MIMO, such as least square (LS) and minimal mean
square error (MMSE) methods, have a high level of com-
plexity. The authors of [4] used compressed sensing (CS)
for the LS method and singular value decomposition (SVD)
to the pseudoinverse of the MMSE-based channel matrix to
further increase the accuracy of channel estimation. With
little pilot overhead, CS can precisely estimate channel state
information (CSI).

The orthogonal matching pursuit (OMP) and com-
pressed sampling matching pursuit (CoSaMP) methods were
suggested as new developments in the channel estimation
method based on CS. Channel sparsity, however, was consid-
ered to be prior knowledge that is not accessible in practice.
In order to achieve this, methods for sparsity adaptive chan-
nel estimation were proposed. A sparsity adaptive matching
pursuit (SAMP) method was put upproposed by the authors
of [5] to reconstruct the signal without first knowing about
the channel sparsity. ButHowever, in each iteration of the
traditional SAMP-based method, atom selection and matrix
inversion were replicated. The authors of [6] proposed a dis-
tributed sparsity adaptive matching pursuit (DSAMP) algo-
rithm among various subcarriers to lessen the complexity of
the SAMP algorithm. Additionally, an adaptive structured
subspace pursuit (ASSP) method was suggested by the au-
thors of [7]. It increased the precision of channel estimation
by taking advantage of the slow channel change over a large
number of sequential OFDM signals. Although the estima-
tion step size can be adaptively altered by these SAMP-based
CS methods, it is possible that the step size will not change if
the mean squared error (MSE) falls below a specified level.

DOI: 10.13164/re.2023.0197



198 L. J. GE, Z. C. WANG, L. QIAN, ET AL., SPARSITY ADAPTIVE COMPRESSIVE SENSING BASED TWO-STAGE CHANNEL . . .

In this scenario, a high channel information loss may result
from a biglarge step size, and a tiny step size may result in
an increase in computational complexity [8], [9]. As a result,
the block matching pursuit (BMP) method was presented
forth in [10] by merging the OMP method and an adaptively
updated energy threshold. However, the initialized energy
level affects how well the BMP method performs. In addi-
tion, the authors of [11] suggested an adaptive OMP (AOMP)
method to emphasize the unique sparsity in the various uplink
channels in order to lessen the complication caused by the
inversion of a large-scale channel estimation matrix. The au-
thors of [12] suggested a new method to increase the spectral
efficiency in [11] by tackling an analogous weighted mini-
mum mean square error (WMMSE) issue and enhancing the
channel prediction performance.

To accomplish a computationally efficient channel esti-
mation, we propose a sparsity adaptive compressive sensing-
based two-stage channel estimation algorithm in this article.
The following is a list of this paper’smajor accomplishments.

• To greatly reduce the dependency of the CS on the step
size, in Stage 1, we propose an improved channel esti-
mation method named the geometry-mean-based block
matching pursuit (GBMP), the geometry-mean of all
non-zero channel gains is first calculated after remov-
ing the channel gains with the maximum and minimum
amplitudes.

• To improve the channel reconstruction accuracy for non-
pilot locations, in Stage 2, based on the time-frequency
correlation function [13], the time-frequency correla-
tion interpolation method is proposed. Simulation re-
sults show that in the massive MIMO-OFDM system,
compared to the DSAMP and ASSP algorithms, the
proposed two-stage channel estimation algorithm can
significantly reduce the time overhead and effectively
increase the convergence rate of channel reconstruction
with a small error performance degradation.

The rest of this paper is organized as follows. Section 2
introduces the massive MIMO-OFDM system model and the
channel estimation problem. Section 3 introduces the detail
of the proposed sparsity adaptive compressive sensing based
two-stage channel estimation algorithm. Section 4 analyzes
the complexity and diagram of the algorithm. Section 5
shows the simulation results. Finally, Section 6 concludes
the paper.

Abbreviation Description
AWGN additive white Gaussian noise
CIR channel impulse response
MIMO multiple-input and multiple-output
CS compressive sensing
SNR signal-to-noise ratio
NMSE normalized mean square error
SAMP sparsity adaptive matching pursuit

Tab. 1. List of abbreviations.

Notation: Bold uppercase letters denote matrices and
bold lowercase letters denote vectors. A∗, AT, A−1, AH
are, respectively, the conjugate, transpose, inverse, conjugate
transpose of A. A† is defined as A† =

(
AHA

)−1 AH, which
is the Moore-Penrose pseudo-inverse of matrix A. [A]𝑚,𝑛
denotes the entry in the 𝑚-th column and the 𝑛-th row of ma-
trix A, and [a]𝑚 denotes the 𝑚-th entry of vector a, diag(a)
denotes the diagonal operation that arranges all the elements
of vector on the diagonal position. ‖A‖𝑛 is the 𝑙𝑛 norm
of matrix A. [I]𝑘 is a 𝑘-dimension identity matrix and the
symbol ⊗ denotes the Kronecker product, vec(A) denotes
vectorizing matrix A by column. The list of abbreviations is
shown in Tab. 1.

2. System Model

2.1 MIMO-OFDM Model
In the MIMO-OFDM system, the antenna array adopt

uniform linear array (ULA), which is concentrated placed
at the BS and the signal receiving end. The time-domain
channel impulse response can be expressed as [14]

h =

𝐿∑︁
𝑖=1

𝑔𝑖at (𝜃𝑖) (1)

where 𝐿 and 𝑔𝑖 represent the number of channel paths and the
complex-valued channel gain of the 𝑖-th path, respectively.
𝜃𝑖 indicates the DOA (direction-of-arrival) of the received
signal through the 𝑖-th path. The steering vector at (𝜃𝑖) is
expressed as

at (𝜃𝑖) =
1

√
𝑁t

[
1, e−j2𝜋

𝑑
𝜆
sin 𝜃𝑖 , . . . , e−j2𝜋

𝑑
𝜆
(𝑁t−1) sin 𝜃𝑖

]T
(2)

where 𝑑 denotes the distance between antennas, 𝜆 is defined
as the wavelength of the carrier frequency.

Thus, for the MIMO-OFDM system equipped with 𝑁t
transmit antennas and 𝑁r receive antennas, and 𝑁c subcarri-
ers, the signal received the 𝑛-th antenna can be expressed as

y𝑛 =
[
diag (p1𝑛) , diag (p2𝑛) , . . . diag

(
p𝑁t𝑛

) ]
F


h1𝑛
h2𝑛
...

h𝑁t𝑛


+ w𝑛
= p𝑛Fh𝑛 + w𝑛
= 𝚽𝑛h𝑛 + w𝑛

(3)

where p𝑚𝑛 ∈ C𝑁c×1 denotes the pilot sequence transmit-
ted from the 𝑚-th transmitting antenna to the 𝑛-th receiving
antenna, p𝑛 ∈ C𝑁c×𝑁c𝑁t denotes pilot sequence the 𝑛-th
receiving antenna, h𝑚𝑛 ∈ C𝑁c×1 is the CIR between the
𝑚-th transmitting antenna and the 𝑛-th receiving antenna,
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h𝑛 ∈ C𝑁c𝑁t×1 is the CIR to the 𝑛-th receiving antenna,
𝚽𝑛 ∈ C𝑁c×𝑁c𝑁t is defined as the observation matrix for
the 𝑛-th receive antenna, w𝑛 ∈ C𝑁c×1 is the additive white
Gaussian noise (AWGN) with zero mean and unit variance,
F ∈ C𝑁c𝑁t×𝑁c𝑁t is a Fourier matrix F =

[
f𝑞1, f𝑞2, . . . f𝑞𝑁c

]T
with [f𝑞𝑛]𝑚 = e−j(𝑞𝑛−1) (𝑚−1)𝑁c , and 𝑁c denotes the number
of subcarriers. The index of pilot subcarriers is given by the
set

{
𝑞1, 𝑞2 . . . 𝑞𝑁c

}
.

Finally, based on (3), the received signal in the massive
MIMO-OFDM system can be formulated as

y1
y2
...

y𝑁r


=


𝚽1

𝚽2
. . .

𝚽𝑁r




h1
h2
...

h𝑁r


+


w1
w2
...

w𝑁r


⇔ y = 𝚽h + w.

(4)

2.2 The Underdetermined Problem for the CS
Method
Upon considering the sparsity of the massive MIMO

channels, the CS based channel estimation problem can be
formulated as an 𝑙1-norm optimization problem, which is
expressed as

ĥ = argmin ‖h‖1 s.t. ‖y −𝚽ĥ‖2 < 𝜀. (5)

To ensure the unique solution of (5), the observation matrix
𝚽 should follow the restricted isometry property (RIP) crite-
rion. The RIP requires that the matrix constituted by any 𝑀
columns of the observation matrix is non-singular, and thus
the observation matrix does not map two different 𝐾-sparse
signals into the same set. Based on the RIP criterion, the
observation matrix can be determined by the Spark theory.
When Spark(𝚽) > 2𝐾 , based on the Spark theory for𝚽 [1],
the solution of (5) is unique. Thus, channel estimation is
reliable when the number of pilot sub-carriers is not less than
2𝐾 [8].

3. Two-stage Channel Estimation
Algorithm
In this section, to increase the convergence rate of chan-

nel reconstruction and improve the accuracy of the channel
estimation, a two-stage channel estimation algorithm is pro-
posed, which is shown in Algorithm 1. Further, we describe
the proposed GBMP method for pilot locations (Stage 1)
and the time-frequency correlation interpolation method for
non-pilot locations (Stage 2) in the massive MIMO system.

3.1 A Brief Introduction to the BMP Method
To solve the problem of high time complexity of SAMP-

like adaptive channel estimation methods, the BMP method

introduced the energy threshold into the OMP method and
used the threshold to select the atoms in the support set for
each iteration.

To make this paper more readable, in this subsection,
we give a brief introduction of the details of the BMPmethod.
First, calculate the inner product of the residual in the trans-
form domain as Z𝑖 =

(
𝚽Tr𝑖−1

)
. Second, calculate the arith-

metic average energy threshold of Z𝑖 and mark it as

Aver𝑖 (Z𝑘 ) = 3
𝐿∑︁
𝑘=1

[Z𝑘 ]𝑖
𝐿

(6)

where Z𝑖 =
(
𝚽Tr𝑖−1

)
represents the correlation between the

sensing matrix and the observation vector at the 𝑖-th iteration,
𝚽 is sensing matrix, r𝑖−1 is residual of the 𝑖-th iteration, 𝐿 is
the number of channel paths.

Atoms with energy greater than Aver𝑖 (Z𝑘 ) are marked
as the matching atoms, and the sensing matrix 𝚽 is updated
according to the index of the matching atom as 𝚽Γ𝑖 . Third,

calculate h𝑖 =
(
𝚽H

Γ𝑖
𝚽Γ𝑖

)−1
𝚽H

Γ𝑖
r𝑖−1. Finally, if the algorithm

stops when the conditions for stopping iteration are met,
hBMP = h𝑖 , otherwise it returns to the first step.

According to [15], if we ignore channel coding for
a wireless channel with 128 taps, approximately 12.5% of
the taps in the channel concentrate 97% of the channel’s en-
ergy. However, if we can encode the OFDM symbols with
a suitable coding matrix to account for the angular scattering
of theMIMO-OFDMsystem, then approximately 4.7% of the
taps in the channel concentrate 97% of the channel’s energy.
A typical Wiener channel estimator has 64 taps [16], so we
can generally expect that there are 4–8 taps that carry the ma-
jority of the channel’s energy. Take the single-input single-
output OFDM (SISO-OFDM) system channel as an example.
This also holds true for MIMO-OFDM systems, although the
BMPmethod overestimates the energy threshold because the
support set’s energy is significantly higher than the nonzero
taps’ average energy on an arithmetic basis. This could result
in fewer selected atoms being used in each iteration than the
actual sparsity, which would raise the overall number of itera-
tions and raise the time complexity. The burst-sparsity prop-
erty of MIMO channels must also be taken into account [17].

3.2 Stage 1: The Proposed GBMP Method for
Pilot Locations
In this paper, we use the geometric mean instead of the

arithmetic mean as the threshold to select the atoms in the
support set for each iteration. We take the geometry mean of
the sample after removing the extreme value, and the formula
is as follows

Geo𝑖 (Z𝑘 ) =
[
𝑁t𝑁r𝐿−1∏
𝑘=2

[Z𝑘 ]𝑖

]1/(𝑁t𝑁r𝐿−2)
(7)

where 𝑁t and 𝑁r are the numbers of transmitting and receiv-
ing antennas, respectively. 𝐿 is the number of channel paths.
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Z𝑖 = 𝚽Hr𝑖−1. The relationship between geometric mean and
arithmetic mean is shown

Aver𝑖 (Z𝑘 ) ≥ Geo𝑖 (Z𝑘 ) . (8)

Owing to the excessively high energy threshold in the
conventional BMP method, only a few atoms are selected
in each iteration, the number of which may be far smaller
than the real channel sparsity. Since the geometric mean of
the sample values is smaller than or equal to the arithmetic
mean of the sample values, and the geometric mean is less
susceptible to extreme values, we use the geometric mean
instead of the arithmetic mean to improve the accuracy of
signal reconstruction. In addition, to further reduce the in-
fluence of extreme values on the sample data and select most
of the non-zero channel taps in each iteration, in the pro-
posed method, we delete the atoms with the maximum and
the minimum energy.

First, we established a fixed energy threshold as the CS
algorithm’s terminal condition in Stage 1. The algorithm’s
stop-iteration condition is represented by this condition. Sec-
ond, we determine the energy of each atom in the support set
throughout the matching tracking procedure. To do this, one
must determine the correlation’s energy between the mea-
surement matrix and the signal being received. The geo-
metric average of the energy of the remaining atoms is then
calculated after the two atoms that support the largest and
smallest concentrated energy are removed. The set mean and
module are calculated for the support set as well as for each
element since the atoms in the support set are complex num-
bers. Fourth, the geometric mean value is used to update the
threshold, and the index for the atom whose energy exceeds
the geometric mean value is used to update the measurement
matrix. Not only are the two eliminated atoms with the high-
est and lowest energies included in the selection procedure,
but they are also excluded from the geometric mean com-
putation. The selection of complementary atoms completes
channel estimation.

3.3 Stage 2: Time-frequency Correlation Inter-
polation Method for Non-pilot Locations

In this paper, the channel estimation process of tradi-
tional CS algorithms at non-pilot locations is based on the
channel state information obtained from the pilot locations
and then calculated by interpolation. To reduce the number
of applying pilots and improve the accuracy of the channel
estimation, we use time-frequency correlation interpolation
method for non-pilot locations.

For the low-speed moving users in the massive MIMO-
OFDM system, the Doppler frequency shift is relatively
slight. Thus, we assume that the wireless channel is quasi-
static in the duration of several consecutive OFDM. We also
assume that the angles of arrival (AoA) and the angles of
departure (AoD), the position of non-zero taps of different
antenna pairs are approximately unchanged.

It has been found in [18] that the MIMO signal shows
some correlations in time, frequency, and space domains.
The correlation function between the transmit antennas 𝜇 and
𝜇 + Δ𝜇 can be expressed as the product of the time-domain
correlation function and the space-frequency domain corre-
lation functions, given as

𝑅[Δ𝜇,Δ𝑛,Δ𝑙] = E
{
ℎ̃𝜇 (𝑛, 𝑙)

(
ℎ̃𝜇+Δ𝜇 (𝑛 + Δ𝑛, 𝑙 + Δ𝑙)

)∗}
= 𝑅t [Δ𝑙]

𝑄0∑︁
𝑞=1

𝑅f,𝑞 [Δ𝑡c] 𝑅s,𝑞 [Δ𝜇]

(9)

where ℎ̃𝜇 (𝑛, 𝑙) denotes the channel frequency response
(CFR) of the 𝜇-th antenna in the 𝑛-th carrier of the 𝑙-thOFDM
symbol, 𝑄0 is the total number of scatters in the space. 𝑅t is
the time correlation function of the channel, which is only re-
lated to the maximumDoppler frequency shift. 𝑅f,𝑞 and 𝑅s,𝑞
are the frequency correlation function and spatial correlation
function of the channel, respectively. When the scatter is
uniformly distributed in

[
Φ𝑞 − 𝜃𝑞/2,Φ𝑞 + 𝜃𝑞/2

]
, 𝑅f,𝑞 and

𝑅s,𝑞 can be easily obtained. However, in practical communi-
cation scenarios, since the base station is at a relatively high
position compared to the users, the scatter generally does not
obey the uniform distribution. Therefore, the time correla-
tion function and the space-frequency correlation function
are independent of each other.

If we ignore the spatial correlation function, Equa-
tion (9) can be simplified as

𝑅[Δ𝑙,Δ 𝑓 ] = 𝑅t [Δ𝑙]𝑅f,𝑞 [Δ 𝑓 ] (10)

where the time and frequency correlation functions are, re-
spectively, given as [13]

𝑅t [Δ𝑙] =
sin

(
2𝜋Δ𝑙 𝑓D,max

)
2𝜋Δ𝑙 𝑓D,max

, (11)

Rf,𝑞 = FHDF (12)

where D is a diagonal matrix, given as

D =
𝑇c
𝐾

[
I𝐾 0
0 0

]
(13)

where 𝑇c is the OFDM symbol period without the CP, and
𝑁0 = 𝑇c𝑡spread /𝑇sym where 𝑡spread is the maximum channel
delay and 𝑇sym is the OFDM symbol period with the CP.
Rf,𝑞 is a cyclic matrix, whose 𝑖-th row and 𝑗-th column el-
ement represents the correlation coefficient between the 𝑖-th
frequency and the 𝑗-th frequency. Thus, Equation (9) can be
expanded as

Rf,𝑞 =


𝑟f,𝑞 [0] 𝑟f,𝑞 [1] . . . 𝑟f,𝑞 [𝐿 − 1]
𝑟f,𝑞 [−1] 𝑟f,𝑞 [0] . . . 𝑟f,𝑞 [𝐿 − 2]

...
...

...
...

𝑟f,𝑞 [−𝐿] 𝑟f,𝑞 [−𝐿 + 1] . . . 𝑟f,𝑞 [0]


.

(14)



RADIOENGINEERING, VOL. 32, NO. 2, JUNE 2023 201

According to the MIMO channel correlation
in (10)–(14), the channel estimator should know the max-
imum time delay and the maximum Doppler frequency shift.
The latter can be calculated by the accelerometer of the mo-
bile user, and then transmitted to the base station. For the
conventional LS channel estimation [19], [20], due to the
effect of LS on noise amplifying, the maximum delay is al-
ways underestimated or overestimated. Furthermore, the LS
algorithm should be performed more than one time within
the coherent time. It is also noted that with 𝐾 increasing,
Rf,𝑞 in (14) approaches to an identity matrix. It is inferred
that the CFRs at different frequencies are approximately in-
dependent of each other. In this case, for the conventional
LS methods, the required number of pilot subcarriers is large
in the massive MIMO-OFDM system.

In Stage 2, first according to Stage 1 GBMP method
to estimate the time-domain channel response hGBMP, the
maximum Doppler shift 𝑓D,max; the sampling period of the
channel estimator 𝑇sa; 𝑇c, 𝑇sym, and the pilot carriers location
set

{
𝑃1, 𝑃2, · · · 𝑃𝑁p

}
. Second, we calculate the maximum

channel delay 𝑡spread among different transmitting-receiving
antenna pairs. For different transmitting-receiving antenna
pairs, the maximum channel delay may be different. Un-
der the assumption of the quasi-static MIMO channel, the
different maximum channel delays are close to each other
among different pairs of transmitting and receiving antennas.
In our improved algorithm, the maximum value of 𝑡spread is
used as the average maximum delay spread, so that all chan-
nel information within the coherent time can be included,
where the coherent time is 𝑇corrent = 3/4

√
𝜋 𝑓D,max. Then,

the frequency-domain channel correlation matrix is gener-
ated according to (12), where 𝑄 = 𝑇corrent /𝑇sym and the
maximum value of the channel sparsity is 𝐾max.

Third, transform the output time-domain im-
pulse response hGBMP =

(
h1GBMP, h

2
GBMP, . . . , h

𝑁t
GBMP

)
of Stage 1 into frequency domain impulse response
h̃GBMP =

(
h̃1GBMP, h̃

2
GBMP, . . . , h̃

𝑁t
GBMP

)
. For {𝑘, 𝑘 + 1} ⊂{

1, 2, . . . 𝑁p
}
and 𝑃𝑘 ≤ 𝑝 ≤ 𝑃𝑘+1, the CIR correspond-

ing to the 𝑝-th carrier can be expressed as

h𝑖GBMP (𝑝) = {(𝑝 − 𝑃𝑘+1) /(𝑃𝑘 − 𝑃𝑘+1) h𝑖GBMP (𝑃𝑘 )
𝑟f,𝑞 [𝑝 − 𝑃𝑘 ]}∗ + {(𝑝 − 𝑃𝑘 ) /(𝑃𝑘+1 − 𝑃𝑘 )
h𝑖GBMP (𝑃𝑘+1) 𝑟f,𝑞 [𝑝 − 𝑃𝑘+1]}

∗.

(15)

Subsequently, the estimated channel is updated as h𝑖GBMP,
0 < 𝑖 ≤ 𝑁t. Fourth, the h𝑖GBMP (Δ𝑙) in each OFDM slot is
updated as

h𝑖GBMP (Δ𝑙) = h𝑖GBMP∗/𝑅t [Δ𝑙] . (16)

It is noted that the above h𝑖GBMP (Δ𝑙) is obtained by the pilots,
but not the time-frequency function.

At last, the number of pilots is adjusted to 2𝐾max. For
any transmitting-receiving antenna pair, 2𝐾max elements of
h𝑖 whose the largest power of the frequency-domain channel

are selected, and their indices are recorded in Spilot . Further-
more, the first and last subcarriers of the OFDM signals are
fixed as the pilots to obtain the accurate channel information
estimation.

The time-frequency interpolation and GBMP compo-
nents of the method are included in this work. Algorithm 1
displays a thorough flowchart of the process. The two-stage
channel estimation method proposed in this work is divided
into stages 1 and 2, as can be seen from Algorithm 1, making
the entire study easier to comprehend.

Algorithm 1. The Proposed Two-stage Channel
Estimation Algorithm

Stage 1 - GBMP Method for Pilot Locations
1: Input: 𝚽 =

[
𝚽1,𝚽2, . . .𝚽𝑁t𝑁r𝐿

]
, y, 𝜀;

2: Initialization: r0 = y𝑝 , set index Γ0 = ∅, h0 = 0, 𝑖 = 1,
𝜀;
3: While ‖r𝑖−1‖2 ≤ 𝜀
4: Correction: Z𝑖 = 𝚽Hr𝑖−1;
5: Calculate the geometric mean: Geo𝑖 (Z𝑘 ) =[∏𝑁t𝑁r𝐿−1

𝑘=2 [Z𝑘 ]𝑖
]1/𝑁t𝑁r𝐿−2

;
6: Select atoms whose energy is larger than the
threshold: 𝚪′

𝑖 = {𝑘 | | [Z𝑘 ]𝑖 |≥ Geo𝑖 (Z𝑘 )} , 𝚪𝑖 = 𝚪′
𝑖 ∪

𝚪𝑖−1;
7: Channel reconstruction: h𝑖 = 𝚽Γ𝑖

†r𝑖−1;
8: Update the residual: r𝑖 = h𝑖 − h𝑖−1
9: Update: hGBMP = h𝑖−1;
10: Update iteration index: 𝑖 = 𝑖 + 1;
11: End
12: Output: Final channel estimation result hGBMP.

Stage 2 - Time-frequency Correlation Interpolation
Method for Non-pilot Locations
13: Input: hGBMP, 𝑓D,max, 𝑇sa, 𝑇c, 𝑇sym,

{
𝑃1, 𝑃2, · · · 𝑃𝑁p

}
;

14: Initialization: 𝑡spread , 𝑇corrent , 𝑄, 𝐾max;
15: Frequency domain estimation: update h̃𝑖GBMP (𝑝)
according to (15);
16: Time domain estimation: update h𝑖GBMP (Δ𝑙) accord-
ing to (16);
17: Pilots adjustment: select 2𝐾max max elements of the
estimated CFR with the highest power and record their
location Spilot, judge whether the first and the last subcar-
rier label are in Spilot. If not, add them to Spilot. Place the
newly-adjusted pilots in the 𝑄 + 1-th OFDM symbol;
18: Output: h𝑖GBMP (Δ𝑙) within 𝑄 consecutive OFDM
symbols.

4. Complexity Analysis and Algorithm
Diagram
In this section, we give the intact diagrams of the pro-

posed GBMP, SAMP and BMP stated above, as shown in
Figs. 1–3 and compare the complexity of two-stage channel
estimation algorithm with DSAMP and BMP algorithms.
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4.1 Computational Complexity Analysis of
Proposed Two-stage Channel Estimation
Algorithm

When we think that the SAMP and the BMP also use
interpolation method at the non-pilot locations, we can get
that in Stage 2, the computational complexity among of the
GBMP, the SAMP and the BMP algorithms are nearly the
same. Here we compare the complexity of the GBMP and
the BMP with the complexity of the GBMP and the DSAMP
at the pilot locations. The computational complexity of the
proposed GBMPmethod in each iteration mainly depends on
the following operations. First, signal proxy (line 4): The
matrix-vector multiplication involved has the complexity on
the order of o(𝑝𝑚𝑛); Energy threshold (line 5): The cal-
culation cost of geometric mean o(𝑚𝑝(𝑛 − 2)); Identifying
or Pruning (line 6): The cost to locate the entries of atoms
greater than the geometric mean o(𝑛) [21]; LS operation
(line 7): LS solution has the computational complexity on
the order of o(2𝑚𝑝) [22]; Residual computation (line 8): The
complexity of computing the residual is o(𝑝𝑚𝑛).

Similarly, we get the complexity of the BMP and
the DSAMP algorithms, shown in Tab. 2. 𝚽 is a ma-
trix of 𝑚 rows and 𝑛 columns, 𝑝 is the number of pilot
subcarriers. We use 𝑐(.) to represent the complexity of
an algorithm, 𝑐(GBMP) = (3𝑝𝑚𝑛 + 𝑛) and 𝑐(DSAMP) =

(2𝑝𝑛𝑚 + 2𝑝𝑚 + 𝑝 + 𝑛). Next, analyze the relationship be-
tween the convergence speed between GBMP and DSAMP.
From Tab. 2, we know that the ratio of GBMP and DSAMP
running time is (0.894)/(1.940) = 0.467. Now we calcu-
late 𝑐(DSAMP) − 0.467, 𝑐(GBMP) = 0.599𝑝𝑚𝑛 + 2𝑝𝑚 +
𝑝 − 0.533𝑛, since 𝑚 > 1 and 𝑝 > 1, 0.599𝑝𝑚 > 0.533,
approximately, 𝑐(DSAMP) − 0.467𝑐(GBMP) > 0. We can
conclude that if only one iteration is considered, the com-
plexity of GBMP is higher than that of DSAMP. However,
considering the complete iteration process, the complexity of
GBMP is less than that of DSAMP. Considering the GBMP
and BMP algorithms, in the same way, we can get that the
computational complexity of GBMP is higher than that of
BMP, which is mainly reflected in the calculation of the ge-
ometric mean of the GBMP method.

Algorithms The complexity
DSAMP o(2𝑝𝑛𝑚+2𝑝𝑚+𝑝+𝑛)
BMP o(2𝑝𝑚𝑛+2𝑝𝑚+𝑝𝑛+𝑛)
GBMP o(3𝑝𝑚𝑛+𝑛)

Tab. 2. The detailed parameters of OFDM system.

4.2 The Diagrams of SAMP, BMP and GBMP
The SAMP algorithm recovers the original signal by ad-

justing the iterative step adaptively, according to the change
of the signal residuals during the iteration. Figure 1 shows
the conceptual diagram of the SAMP algorithm in the 𝑘-th
iteration. Here, 𝑟𝑖 represents the residue, 𝐶𝑖 and Γ𝑖 represent
the candidate set and the final support set of the estimated
signal, respectively.

Prelim Test Candidate Ci Final Test
Update

Residual ri

ri-1

-1
Γ

i-1
Γ

i

Update iΓ

 

Fig. 1. Diagram of original SAMP algorithm.

Prelim Test Candidate Ci

Final Test

(Calculate Averi(Zk))

Update

Residual ri

ri-1

-1iΓ

Update iΓ

 

Fig. 2. Diagram of BMP algorithm.

Prelim Test Candidate Ci

Final Test

(Calculate Geoi(Zk)

Update

Residual ri

ri-1

Update iΓ

-1iΓ

 

Fig. 3. Diagram of GBMP algorithm.

In BMP and GBMP methods, 𝐶𝑖 represents the support
set, Γ𝑖 represents the final support set, but the arithmetic av-
erage is calculated in the BMP, and the geometric average
is calculated after removing the atoms with the largest and
smallest energy in the GBMP. The complete diagram is as
shown in Figs. 1–3.

The higher NMSE performance of the MMSE method
is based on its higher complexity. DSAMP is a method to
consider the spatial common characteristics of different an-
tennas. However, the number of iterations of this method
still depends on the selection of step size. In this paper, the
geometric average is used as the threshold to select thematch-
ing atoms to reduce the time cost of the algorithm, and the
time-frequency correlation interpolation method is further
used to compensate the channel estimation accuracy to a cer-
tain extent. Therefore, the time cost of the proposed method
is improved when the loss of channel estimation accuracy
is small.

5. Simulation
ThemassiveMIMO-OFDMsystem is built by theMAT-

LAB software according to [23] and assume that the channel
gains follow the Laplace distribution with the zero mean, the
value of variance 15.

The detailed parameters are shown in Tab. 3. The delay
between different channel taps is 50 ns, the total number of
channel paths is 64, the sparsity is a variant changing be-
tween 4 and 8, we assume all the channel sparsity of different
antenna pairs are the same. Here, without the loss of gen-
erality, we set the pilot number as 16. All the simulations
iterate 1000 times and calculate themean of normalizedmean
square error (NMSE), bit error rate (BER), and the average
running time respectively. The NMSE is defined as

NMSE =
1
𝑁t

𝑁t∑︁
𝑖=1




h𝑖 − h𝑖GBMP




2

‖h𝑖 ‖2
. (17)
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Parameters Value
Transmitted antennas 64
Subcarrier interval 15KHz
Subcarrier number 1320

𝑇c 714
𝑇sym 766

OFDM symbol period 0.1 μs
QAM 64

Equalization method Eigen zero forcing

Tab. 3. The detailed parameters of OFDM system.

In addition, in the initialization of the proposed algo-
rithm, the channel state information (CSI) is unknown for the
base station, and thus the pilot pattern is also unknown. In this
paper, the initialized pilots are randomly distributed on the
subcarriers of the OFDM signal, while different transmitting-
receiving antenna pairs use the same pilot pattern.

Figure 4 compares the recovery probability of the con-
ventional BMP and the proposed algorithm under different
signal-to-noise ratios (SNRs). The recovery probability is
defined as the ratio of the number of atoms detected by the
improved geometric mean threshold and the real sparsity. It
is shown that the recovery probability of the algorithm is
higher than that of the BMP. Even at a low SNR, the recovery
probability of the algorithm is close to 70%, which is close
to that of the BMP algorithm at the high SNR.

It is shown in Figs. 5 and 6 that with the reduced thresh-
old, the improved error performance gain becomes small.
Meanwhile, the much smaller energy threshold may result in
unnecessary computing time. Thus, 𝑘 = 0.05 is adopted for
the threshold 𝜀 = 𝑘 ‖y‖2 in the following.

Figures 7 and 8 show the NMSE and BER of the pro-
posed algorithm and other traditional algorithms. Among
them, the fixed threshold value of the DSAMP and ASSP
methods in [8] and [9] is set to 0.05. The iteration number of
the OMPmethod is set to half of the number of pilot carriers.
Since the channel noise is amplified by the inversed channel
matrix in the LS method, the NMSE and SNR performances
of the LS are worse than those of the CS-based methods. In
the CS-based methods, the fixed value of the iteration num-
ber of the OMP method incurs a rough sparsity estimation of
the MIMO channel. Thus, it has the worst error performance
among the CS-based methods. The average energy threshold
of the BMP method in [11] and [12] is always set excessively
large. Furthermore, the BMP method is actually equivalent
to a single-step OMPmethod. As a result, it has a close error
performance to the OMP method. By adaptively adjusting
the terminal condition of the iteration, the higher error per-
formance of the ASSP, DSAMP and the two-stage channel
estimation algorithm can be achieved, compared to OMP
and BMP. However, since the ASSP and DSAMP methods
are based on the SAMP, their slow convergences result in high
computation time, as shown in Tab. 4. The running time is
normalized by the average running time of the OMP method.
Since the two-stage channel estimation algorithm can filter
more than 70% of the number of atoms in one iteration, its
number of iterations can be significantly reduced.

Fig. 4. Recovery probabilities under different SNRs.

Fig. 5. NMSEs versus the received SNR of the proposed algo-
rithm with varying 𝑘.

Fig. 6. BERs versus the received SNR of the proposed algorithm
with varying 𝑘.
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Fig. 7. NMSE performance comparison of different pilot
schemes.

Fig. 8. BERs of different algorithms under different SNRs.

Algorithms Average running time
OMP 1.000
LS 1.547

DSAMP 1.940
ASSP 1.550
BMP 0.963

The proposed algorithm 0.894

Tab. 4. Average running time of different algorithms.

In Figs. 7 and 8, we define the pilot spectrum efficiency
𝜂p = 𝑁p/𝑄𝑁c, which 𝑁p is the number of pilot carriers and
𝑄 is the number of OFDM symbols in the coherence time.
In [24], the MMSE method needs to use the LS method to
make a preliminary estimation of the channel, and the LS
method uses non-orthogonal pilots will cause serious distor-
tion of the channel estimation results. Therefore, this article
changes the traditional LS-MMSE to SAMP-MMSE. In ad-
dition, due to the uncertainty of the sparsity of the channel
and the maximum value of sparsity is 8, according to the

Spark theory it only needs 16 pilots to reconstruct the chan-
nel, and [8] also shows that the number of carriers used by
the pilot converges at 𝑁p = 2𝐾; therefore, the 𝜂p given in
this paper is the maximum value of spectrum efficient. For
the ASSP, DSAMP and the two-stage channel estimation al-
gorithm, 𝜂p = 0.17%, and for the MMSE method in [24]
𝜂p = 100%. Because the pilot transmission strategy is gener-
ally carried out onmultiple OFDM symbols, therefore, in this
section, the NMSE and BER of different channel estimation
algorithms are the average value calculated from multiple
consecutive OFDM symbols.

It can be seen that the NMSE and BER performances of
the algorithm are better than those of the DSAMP and ASSP
algorithms and the channel estimation accuracy and BER
performance of the MMSE are better than those of the pro-
posed algorithm, ASSP and DSAMP strategies. The NMSE
performance and BER performance of the GBMP are better
than the DSAMP and ASSP spatial-temporal methods. This
is mainly because: 1) GBMP uses time-frequency correla-
tion functions and frequency-domain correlation functions
as interpolation functions, the CFR is interpolated in the
frequency domain, while DSAMP assumes that the channel
remains constant, and ASSP only interpolates the CIR in
the time domain and thus ignores some of the characteris-
tics in the frequency domain; 2) DSAMP assumes that the
channel in the coherence time keeps constant, this is actually
an idealized assumption for the wireless channel. In a real
communication scenario, the time domain channel can not
be kept constant; ASSP assumes that the CIR remains quasi-
static during the coherence time, and only simple linearity
is used to estimate the CIR of the middle OFDM symbol.
The premise for this is to assume that the channel energy is
monotonically increasing or monotonically decreasing dur-
ing the coherent time. However, [25] proves that the channel
energy of each OFDM block is independent even it remains
quasi-static. Furthermore, if the phases of the front and
rear pilot blocks are the same, the phases of the intermedi-
ate interpolation results must be the same as the phases of
the estimated result as they are in the same quadrant of the
complex plane. In the time-frequency correlation function
used by GBMP, it is obvious that the phase will change over
time, thus its accuracy is higher than the ASSP strategy. At
the same time, it can also be seen that the channel estima-
tion accuracy and BER performance of the MMSE strategy
of [24] are better than those of GBMP, ASSP and DSAMP
strategies. This is because: 1) The channel recovery accu-
racy of the MMSE method itself is better than that of the
compressive sensing methods [8]; 2) Secondly, the MMSE
pilot scheme does not take advantage of the coherence of the
channel. The CIR experienced by different OFDM symbols
is regarded as an independent variable, and pilots are placed
in each OFDM symbol. Compressive sensing methods ig-
nore the subtle changes of the channel in the coherent time
to a certain extent, so their NMSE and BER performance are
weaker than MMSE strategies. The average running time
of the MMSE scheme is significantly higher than that of the
compressive sensing algorithms as shown in Tab. 5.
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Pilot schemes Average running time
MMSE 16.842
DSAMP 1.564
ASSP 1.438

The proposed algorithm 1.000

Tab. 5. Average run time of various pilot strategies for channel
estimation.

6. Conclusion
In this paper, we propose a sparsity adaptive compres-

sive sensing based two-stage channel estimation algorithm.
The proposed algorithm consists of two stages. In Stage 1,
the running time of the method is improved by introducing
geometric mean value. In Stage 2, the channel estimation
accuracy is improved by time-frequency correlation interpo-
lation method. Simulation results have shown that compared
to conventional CS and the MMSE-based channel estimation
algorithms, our the two-stage channel estimation algorithm
efficiently increases the convergence rate of channel recon-
struction with small error performance degradation.
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