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Abstract. With the rapid expansion and widespread adop-
tion of the Internet of Things (IoT), maintaining secure con-
nections among active devices can be challenging. Since IoT
devices are limited in power and storage, they cannot per-
form complex tasks, which makes them vulnerable to different
types of attacks. Given the volume of data generated daily,
detecting anomalous behavior can be demanding. However,
machine learning (ML) algorithms have proven successful in
extracting complex patterns from big data, which has led to
active applications in IoT.

In this paper, we perform a comprehensive analysis, includ-
ing 4 ML algorithms and 3 neural networks (NNs), and pro-
pose a pipeline which analyzes the influence data reduction
(loss) has on the performance of these algorithms. We use
random undersampling as a data reduction technique, which
simulates reduced network traffic data. The pipeline inves-
tigates several degrees of data loss. The results show that
models trained on the original data distribution obtain ac-
curacy that verges on 100%. XGBoost performs best from
the classic ML algorithms. From the deep learning models,
the 2-layered NN provides excellent results and has sufficient
depth for practical application. On the other hand, when the
models are trained on the undersampled data, there is a de-
crease in performance, most notably in the case of NNs. The
most prominent change is seen in the 4-layered NN, where
the model trained on the original dataset detects attacks with
a success of 93.53%, whereas the model trained on the max-
imally reduced data has a success of only 39.39%.
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1. Introduction
The continuous and exponential growth of the Internet

of Things (IoT) created an automation-driven society, where
unique devices are interconnected in order to improve the
quality of healthcare, industry, transportation, etc. [1], [2].

IoT networks vary from the traditional approach of net-
working, which reflects in their traffic patterns [3]. Namely,
IoT is characterized by highly homogeneous traffic, meaning
all devices running the same application will exhibit simi-
lar behavior patterns. Additionally, since IoT networks are
comprised of many devices, they generate massive amounts
of data. Each device in the network is sensitive to an attack
that causes a variation in the standard behavior of the net-
work and creates significant problems for end-users. This is
a time-sensitive issue, and therefore, it is essential to detect
these network anomalies quickly.

Techniques to detect anomalous behavior are being ex-
tensively developed for many applications [4]. Certain tech-
niques are based on analyzing network traffic characteris-
tics essential to understanding specific traffic patterns, such
as protocol design, network management, and resource dis-
tribution. This task can be time-consuming, limiting real-
time device monitoring and requiring extreme expertise and
knowledge. Consequently, this becomes a problem when it
is necessary to address potential traffic anomalies swiftly. In
the past few years, machine learning (ML) has slowly taken
its place as an alternative approach to human-assisted tradi-
tional intrusion detection systems [5]. The main reason is
that ML allows development of portable algorithms.

However, next-generation security systems should be
able to offer real-time anomaly detection and adjust their
knowledge according to changes in daily network traffic.
Therefore, ML algorithms should be reinforced through time,
according to changes in the active usage of IoT devices. Con-
sidering that end devices have limited memory, storing the
entirety of their network traffic information can be challeng-
ing [6]. For this reason, occasionally it is necessary to under-
stand if particular instances of network traffic can be excluded
from the ML process.

In this paper, we perform a comprehensive analysis of
IoT traffic classification by evaluating the performance of
4 ML algorithms and 3 deep learning (DL) neural networks
(NNs) across different sampling strategies (simulating data
loss). Our approach also investigates the needed NN depth
(i.e., the number of layers) for successful traffic classification.
The main reason for using ML and DL algorithms is that IoT
devices generate large volumes of data. Therefore, analyz-
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ing network traffic requires technologies capable of rapidly
processing, analyzing, and comprehending massive volumes
of data. Given the extensive application of ML in trending
topic-related research, we focus on applying the most often
used algorithms in order to determine patterns of anoma-
lous traffic [7]. Our proposed pipeline successfully classifies
anomalous traffic when models are trained both on the entire
network traffic data and on randomly undersampled network
traffic data. Unlike previous work, we investigate the impact
which different degrees of random undersampling (simulat-
ing train data loss through different sampling strategies) have
on the models’ performance. This serves as an indication of
the algorithm’s behavior when traffic information is lost, and
in turn, gives an idea of the volume of network traffic data
which end devices (with small storage space) must keep for
training a successful anomaly detection model.

This paper is organized as follows. Section 2 gives
an overview of current research in the field. Section 3 details
the pipeline used in the research, from the dataset and prepro-
cessing of the data to the models and metrics used. Section 4
provides an overview of the results. Section 5 concludes the
paper.

2. Related Work
Most of the research on anomaly detection in IoT net-

works focuses on supervisedMLperformed on entire datasets
gathered from IoT devices in a controlled environment. Re-
search has proved successful in the application of ML when
dealing with the big data problem in network security. Appli-
cations of ML in network traffic analysis vary from working
with supervised and unsupervised algorithms, to real-time
applications.

Detailed systematic overviews of available datasets and
state-of-the-art approaches in analyzing network traffic are
being actively researched [8–10]. Research has focused on
investigating the performance of widely-used ML algorithms
such as SVM, Naive Bayes, Decision Tree, and Random For-
est [11–13]. Generally, best performances were obtained
from SVM [14] and XGBoost [15], with accuracy rang-
ing from 89–99%. The authors in [16] suggest a super-
vised ML-based intrusion detection system (IDS) for IoT
networks. After normalization and dimensionality reduction
on the UNSW-NB15 dataset, 6 ML models were trained,
obtaining an accuracy of 99%.

DL networks have the ability to use their hierarchical
structure to create high-level features from the inputted raw
data [17]. Proposed DL-based IDS can use Convolutional
Neural Networks (CNNs), Deep Belief Networks (DBNs),
Restricted Boltzmann Machines (RBMs), Recurrent Neural
Networks (RNNs), and Deep Neural Networks (DNNs). Pa-
per [18] presents a DBN-based IDS for an IoT environment
which detects anomalous traffic and offers it as a service.
The method was evaluated using raw traffic data. In [19]
the authors propose a CNN-based IDS using an available,

well-established dataset. The approach uses a CNN to ex-
tract the network traffic features, before applying supervised
learning to detect the intrusions. DNN-based IDS approaches
use data transformation and normalization before feeding the
data into the model [20], [21].

Researchers have also addressed the issue of class im-
balances in datasets. In [22] the authors compared the perfor-
mance of different ML algorithms in the CSE-CIC-IDS2018
dataset. In order to balance the dataset, the authors addressed
the imbalance by using Synthetic Minority Oversampling
Technique (SMOTE) [23], which improved the performance
for minority class attacks. However, there are proven in-
stances where SMOTE can cause particular issues with the
data [24], which is why we use different methodologies to
address data imbalance issues.

In the next section, we give an overview of our ap-
proach, i.e., the section details the specifics of the dataset
and data preprocessing performed. Additionally, we present
an analysis of the changes which occur in the data during the
preprocessing part of the pipeline. We also give an overview
of the models used in the research as well as the metrics
which evaluate the models.

3. Pipeline

3.1 Dataset
For the purpose of this research, we use the IoTID20

dataset [25], which consists of 625,783 instances of net-
work traffic generated in a smart home network. The dataset
provides normal and anomalous network flow in a testbed
environment consisting of a speaker, a smartphone, a secu-
rity camera, and a laptop. The network traffic is described
via 83 network features extracted from the traffic and 3 label
features which illustrate binary, category, and sub-category
traffic distributions.

3.2 Preprocessing
In order to prepare the dataset for the requirements of the

models before training, we remove the instances withmissing
values. Additionally, we exclude the source and destination
IPs provided, and we disregard the timestamp. From the 3
provided labels, we rely on the binary label of the network
traffic data (normal or anomaly).

As can be seen from Tab. 1, the dataset contains 40,073
instances labeled as normal (or 6.4%) and 585,710 instances
labeled as an anomaly (or 93.6%). The distribution of the
instances shows significant data imbalance in favor of anoma-
lous traffic. As a next step, we reduce anomalous instances
and balance the normal and anomalous traffic using the Ran-
domUnderSampler [26]. The balanced dataset, where we
simulate data loss, kept the 40,073 instances of normal traffic,
whereas only 40,073 randomly selected instances remained
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(a) Before undersampling (b) After undersampling

Fig. 1. Data distributions per attack type.

Binary level distribution Type of attack Number of instances
Normal Normal 40,073

Anomaly

DoS 59,391
Mirai 415,677
MITM 35,377
Scan 75,265

Tab. 1. Dataset overview: class distribution.

from the anomalous traffic. We investigate the change in the
performance of the models between the original dataset and
the balanced dataset. Additionally, we investigate the gradual
changes in the models’ performance by analyzing the models
at several undersampling strategies (0, 0.1, 0.3, 0.5, 0.7, 1,
where 0 is the original dataset, and 1 is the fully balanced
dataset).

3.3 Statistical Analysis
In order to understand the impact which the

RandomUnderSampler has on the data, we performed a sta-
tistical analysis of the data (before and after undersampling
with a sampling strategy equal to 1), using box and whisker
plots. The undersampling was applied to the anomalous traf-
fic only. For each attack type, we plotted the time-wise data
distribution in the original and the fully undersampled data.
The data distribution is given in Fig. 1. Figure 1(a) shows
the locality, spread, and skewness groups of the data before
undersampling is performed. Figure 1(b) shows the data
distribution after undersampling.

Since the undersampling process influenced only the
anomalous traffic instances, there are no changes in the dis-
tribution of the normal traffic; the seeming difference results
from the difference in the y-axis range. Both distributions
show the DoS attacks are significantly skewed, but the skew
is different between the two graphs. Another notable differ-
ence is the presence and lack of outliers in the DoS attacks.
The presence of the outliers before preprocessing comes from
combining two separate DoS attacks occurring on different

days and analyzing them as one. Since the DoS attacks con-
sist of flooding the target with network traffic, the attacks are
an outlier in regular network traffic. However, they should not
create outliers in their attack group, particularly considering
the simulated nature of the dataset. Figure 1(b) shows how
random undersampling contributes to removing the outliers
in the DoS attacks.

The Mirai attacks have similar distributions in both
stages of the analysis. However, after the undersampling,
the data is more tightly grouped, as are the outliers. From
both subfigures in Fig. 1 we can observe that the dispersal
in both graphs is consistent for the Mirai attacks, including
the skewing of the data. The changes in the MITM ARP
Spoofing and the Scan attack groups are not as noticeable as
with the other attack groups.

Since the undersampling is performed only on the pre-
dominant class (anomalous traffic), the distribution of the
normal traffic remains unchanged. However, a difference can
be noted in the relation between normal and anomalous traf-
fic. Namely, the value range of normal traffic is smaller than
both DoS and Mirai attacks before the undersampling, which
is not the case after undersampling is performed.

3.4 Algorithms
ML and DL algorithms automate model building by

learning from training data and identifying patterns to de-
scribe a requested outcome. Once trained, the algorithms
can reapply the decision-making process on new and unseen
data. The quality of the results depends on the quantity and
quality of the data provided in the training process, the data
preprocessing, and the algorithms used.

For the purpose of this research, we analyzed the re-
sults obtained from most frequently used ML algorithms.
Additionally, we analyze the performance of DLmethods, by
training and evaluating 3 NN approaches. More specifically,
the methods used are:
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• Gaussian Naive Bayes (Gaussian NB) [27], is a super-
vised classification algorithm that follows the Gaussian
normal distribution and is a simple classification tech-
nique, which has high functionality.

• Support Vector Classifier (SVC) [28], is an effective
algorithm for localization of a distinct hyperplane for
separating data points in high dimensional spaces.

• Random Forest [29], is an ensemble of decision trees,
where each individual tree in the forest has a different
structure and provides separate predictions. The most
voted prediction is the models’ final output.

• XGBoost [30], stands for Extreme Gradient Boosting
and is a distributed gradient-boosted decision tree en-
semble algorithm that provides a parallel tree boosting.

• NNs [31] consist of interconnected layers of nodes.
Each node in a layer performs simple operations on
the inputted data and later passes the results to the next
layer until an output is created. The difference be-
tween the classical ML algorithms and the NNs is the
interpretability of the models. Namely, NNs cannot be
easily interpreted, since the model itself is a black box.
Another distinction is that we use different NN archi-
tectures to analyze the depth required for successful IoT
traffic classification.

The effectiveness of ML and DL algorithms is an-
alyzed through evaluation metrics, so selecting the right
metrics is important [32]. With classification methods,
the metrics are extrapolated from the confusion matrix,
i.e., true positives (TP), false negatives (FN), false posi-
tives (FP), and true negatives (TN). The confusion matrix
gives an instance-wise explanation of the behavior of the
model by means of a visual representation of each of the
above-listed factors. This shows where the deterioration
in results originates. An overview of the confusion ma-
trix and its values as they are used in this paper are given
in Tab. 2. Additionally, we evaluate the models using ac-
curacy (which shows how many times the algorithm made
an accurate prediction overall), precision (showswhat portion

Predicted Negative Predicted Positive

Actual
Negative

TN (true negatives)
negative samples (attacks)
the model predicted correctly

FP (false positives)
negative samples (attacks)
the model predicted as normal

Actual
Positive

FN (false negatives)
positive samples (normal traffic)
the model predicted as attack

TP (true positives)
positive samples (normal traffic)
the model predicted correctly

Tab. 2. Confusion matrix (as used in this paper).

of all identifications is correct), recall (shows what portion of
actual values was identified correctly), and F1-score (which
is a harmonic mean of precision and recall).

4. Results
The architecture of our approach is illustrated in Fig. 2.

Initially, we preprocess the dataset by removing instances
with missing values and scaling the data. From there, we
split the data into training (80%) and testing (20%) datasets.
Next, we apply sampling strategies to the training data. The
selected sampling strategies are 0 (original dataset), 0.1, 0.3,
0.5, 0.7, and 1 (fully balanced dataset). With each sampled
dataset we train the models again, and use the testing data is
used to evaluate the trained models. This allows us to com-
pare the difference in model performance when the original
distribution of network traffic is kept andwhen the anomalous
traffic is reduced.

We trained and evaluated 4 classicML algorithms and 3
DLNNs (a shallowNNwith 1 hidden layer and two additional
NNs with 2 and 4 hidden layers respectively). Each of the
NNswas optimized using stochastic gradient descent and had
binary cross-entropy as a loss function. The training process
for each network lasted 25 epochs. Each epoch used a fixed
batch size consisting of 64 instances. We chose a dense NN
because each layer provides learning features from all the
combinations of the features of the previous layer. When
working with tabular data, one to five hidden layers are most
often enough to solve problems without overfitting. This is
why we chose 3 models: shallow NN (with 1 hidden layer),
2-layered NN and 4-layered NN. Additionally, we reduce the

Fig. 2. Proposed pipeline architecture.
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number of neurons as the layers progress, because this way
the network can learn a lot of lower-level features and later use
them in subsequent layers to create higher-level features.

The results obtained from the classic ML approaches
and the NNs for the original and fully balanced datasets are
presented in Tab. 3. The Gaussian NB showed the worst
performance of all models, with nearly half of the anomalous
activity being misclassified as normal traffic, from both the
original and undersampled training. The best overall perfor-
mance is displayed by XGBoost, with an accuracy approach-
ing 100%, whereas Random Forest and SVC show slightly
weaker performance. The overperformance which can be
noted in the case of XGBoost trained with the original data
is largely due to the fact that the dataset used for the study is
a simulated one. Additionally, the test dataset we are using
to evaluate our models is a randomly-selected portion of the
original data. This significantly increases the possibility of
high data correlation between the train and test data, which
also contributes to the overperformance of the approach.

The performance of the 3 NNs when trained with the
original dataset shows an accuracy approaching 100% in all
3 cases. This is not the case when we train the NNs on the
undersampled data. Namely, when training with the under-
sampled data there is significant skewness in the performance
of the models. The results with the undersampled data are
consequently less than satisfactory for all 3 NNs.

In order to understand the drop in the performance of
the NNs, we observed the behavior of the loss function. The
initial loss values suggested that the model was randomly
guessing the output. Since this is standard behavior for ran-
domly initialized NNs, this did not explain the behavior of
the model. Another potential issue we tested for was overfit-
ting. Overfitting occurs when the model fits exactly against
the training data and performs inaccurately against unseen
data. We evaluated the performance of the trained models
both on the data used for training and the data used for test-
ing. The results showed that the model performed similarly
when tested on the train and on the test data, which ruled
out overfitting as an explanation for the behavior of the NNs.
The only remaining cause for the obtained results rests in
the structure of NNs. Namely, NNs have high complexity
and a high number of parameters that need to be calculated
during the training phase. Therefore, with reduced training
data, the model cannot properly adjust its parameters and un-
derperforms. Considering that all 3 NNs show worse results
with the undersampled data, this phenomenon occurs with
all 3 configurations.

The undersampling of the dataset does not significantly
influence the overall results of the classic ML algorithms.
When these results are compared to those obtained on the
original data, there is a change in the confusion matrix before
and after the random undersampling is performed. Namely,
from the change in the upper right corner of the confusion
matrix it can be seen that by undersampling the anomalous
traffic, the models lose crucial information on the attacks.

This results in more of the anomalous traffic being classified
as normal network traffic. This distinction is pronounced in
the results of the SVC and the Random Forest algorithms.
However, XGBoost handles the data loss better and there are
only minor differences present.

When observing the results obtained with the original
distribution kept in the training dataset, the best performance
can be analyzed from two distinct points. If the least number
ofmisclassified instances is considered, thenXGBoost shows
the best results. However, if the aim of the model is to never
miss an attack in the network traffic, the best performance can
be seen by Random Forest. A disadvantage to this benefit
is that the Random Forest model classifies a significant por-
tion of normal traffic as anomalous, resulting in the detection
of malicious traffic when there is none. Depending on the
trade-off required here, it would be easy to argue that the 5
misclassifications by XGBoost are not as significant because
these 5 instances are in accompaniment with corresponding
anomalous traffic, meaning those instances would trigger the
detection system.

4.1 Sampling Strategy Influence on the Models
We wanted to investigate the amount of data under-

sampling which can be performed before a significant dis-
tinction in misclassified anomalies can be seen. The test
was performed at 6 stages: the first with no undersampling,
and the remaining 5 with sampling strategies for the Ran-
domUnderSampler (0.1, 0.3, 0.5, 0.7, 1, where 1 represents
an equal number of samples in both classes or fully balanced
dataset).

The results are given in Tab. 4. From the table, it can be
seen that with the GaussianNB there is very little change in
the behavior of the classifier, but that is a consequence of the
classifier underperforming even when training with the entire
dataset. The behavior of the SVC, RF, and XGBoost is sim-
ilar. The attacks classified as attacks decrease as the sample
strategy increases (which is to be expected since increas-
ing the sampling strategy means that the number of attack
samples decreases and the model has fewer attack samples
to learn from). The decrease is steeper with SVC and RF,
where with a sample strategy of 1 the percentage of correctly
classified attacks is < 90%, whereas XGBoost reaches amini-
mum of 93.43% (from 93.59% total attacks). This shows that
the resistance against undersampling which XGBoost has is
better compared to the other two classifiers.

However, the results we obtained from the NNs show
that evenwithminor undersampling the networks cannot suc-
cessfully learn how to classify an attack and classify a sig-
nificant portion of the anomalies as normal traffic. From
Tab. 4 we can see that all NNs underperformed once training
data was reduced. As we previously discussed, the cause
of this behavior is the fact that NNs need to tune a lot of
parameters, and therefore struggle with data loss. This ob-
servation is further strengthened by the steady decline in the
percentages for accurately classified instances presented for
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Original Undersampled
Confusion Matrix Classification Report Confusion Matrix Classification Report

Gaussian Naive Bias

Accuracy: 0.54

Attack Normal
Precision 1.0 0.12
Recall 0.51 1.0
F1-score 0.67 0.22

Accuracy: 0.54

Attack Normal
Precision 1.0 0.12
Recall 0.51 1.0
F1-score 0.67 0.22

Support Vector Classifier

Accuracy: 0.98

Attack Normal
Precision 0.98 0.99
Recall 1.0 0.77
F1-score 0.99 0.87

Accuracy: 0.95

Attack Normal
Precision 1.0 0.57
Recall 0.95 0.95
F1-score 0.97 0.71

Random Forest

Accuracy: 0.95

Attack Normal
Precision 0.95 1.0
Recall 1.0 0.18
F1-score 0.97 0.30

Accuracy: 0.95

Attack Normal
Precision 1.0 0.57
Recall 0.95 0.94
F1-score 0.97 0.71

XGBoost

Accuracy: 1.0

Attack Normal
Precision 1.0 1.0
Recall 1.0 0.99
F1-score 1.0 1.0

Accuracy: 1.0

Attack Normal
Precision 1.0 0.97
Recall 1.0 1.0
F1-score 1.0 0.99

Neural Net (1 layer)

Accuracy: 1.0

Attack Normal
Precision 1.0 0.99
Recall 1.0 0.96
F1-score 1.0 0.97

Accuracy: 0.53

Attack Normal
Precision 1.0 0.12
Recall 0.5 1.0
F1-score 0.67 0.22

Neural Net (2 layers)

Accuracy: 1.0

Attack Normal
Precision 1.0 0.99
Recall 1.0 0.96
F1-score 1.0 0.97

Accuracy: 0.51

Attack Normal
Precision 1.0 0.12
Recall 0.48 1.0
F1-score 0.65 0.21

Neural Net (4 layers)

Accuracy: 1.0

Attack Normal
Precision 1.0 0.99
Recall 1.0 0.96
F1-score 1.0 0.98

Accuracy: 0.46

Attack Normal
Precision 1.0 0.11
Recall 0.43 1.0
F1-score 0.6 0.19

Tab. 3. Results from training on original (left) and undersampled (right) dataset, with a confusion matrix and a classification report for each. The
test dataset contains 125,083 samples, where attack samples are 117,068 (or 93.59%) and normal samples are 8,015 (or 6.41%).



262 B. VELICHKOVSKA, A. CHOLAKOSKA, V. ATANASOVSKI, MACHINE LEARNING BASED CLASSIFICATION OF IOT TRAFFIC

Sampling
Strategy Type

Algorithms
Gaussian Naive

Bias
Support Vector

Classifier
Random
Forest XGBoost Neural Net

(1 layer)
Neural Net
(2 layers)

Neural Net
(4 layers)

0

AA 47.32 93.52 93.59 93.59 93.54 93.53 93.53
AN 46.28 0.07 0 0 0.05 0.06 0.06
NA 0.03 1.46 5.28 0.04 0.28 0.27 0.25
NN 6.38 4.94 1.13 6.36 6.13 6.14 6.16

0.1

AA 47.32 93.4 93.59 93.59 47.72 43.68 40.35
AN 46.28 0.2 0 0.01 45.87 49.91 53.24
NA 0.03 1.35 4.65 0.04 0.02 0 0
NN 6.38 5.06 1.76 6.37 6.39 6.41 6.41

0.3

AA 47.32 91.88 93.54 93.56 46.95 45.21 41.64
AN 46.28 1.71 0.05 0.04 46.64 48.38 51.96
NA 0.03 0.83 2.04 0.03 0.01 0 0
NN 6.38 5.58 4.37 6.38 6.4 6.41 6.41

0.5

AA 47.32 89.52 93.28 93.53 47.37 45.46 40
AN 46.28 4.07 0.31 0.06 46.22 48.13 53.59
NA 0.0 0.47 1.39 0.03 0.01 0 0
NN 6.37 5.94 5.02 6.38 6.4 6.41 6.41

0.7

AA 47.32 89.3 91.75 93.49 46.68 42.73 41.15
AN 46.28 4.3 1.84 0.1 46.91 50.86 52.44
NA 0.03 0.4 0.91 0.03 0.01 0 0
NN 6.38 6.01 5.5 6.38 6.4 6.41 6.41

1

AA 47.31 89 88.97 93.43 47.05 45.06 39.39
AN 46.28 4.6 4.62 0.17 46.54 48.53 54.2
NA 0.03 0.34 0.37 0.03 0.02 0 0
NN 6.38 6.07 6.04 6.38 6.39 6.41 6.41

Tab. 4. The effect of sampling strategy in the results expressed in percentages from the total test dataset. The test dataset contains 125,083
samples, where attack samples are 117,068 (or 93.59%) and normal samples are 8,015 (or 6.41%). Type meanings: AA (attacks classified
as attacks), AN (attacks classified as normal), NA (normal classified as attacks), NN (normal classified as normal).

the NNs in Tab. 4. Namely, the percentages of misclassified
instances increase proportionately with the increase in sam-
pling strategy and the increase in the complexity of the NN.
To consider only one example from Tab. 4, if we observe
sampling strategy 1 and the values obtained for attacks mis-
classified as normal traffic, we can see that the values grow as
the complexity of the network increases. More specifically,
with the shallow NN the value of misclassified instances is
46.54% of the entire test dataset, which grows to 54.2% with
the 4-layered NN.Moreover, similar changes can be observed
along sampling strategies. This shows that as the complexity
of the network grows and as the data gets reduced, the models
struggle with tuning their parameters.

5. Conclusion
This paper proposes an approach to investigate differ-

ences between anomalous and normal network traffic and the
influence of data reduction on the performance of 4 classic
ML algorithms and 3 NNs. The obtained results show that
XGBoost provides the best overall performance, both before
and after undersampling the training data. The performance
of the NNs when trained on the original data distribution
is comparable with XGBoost. However, when the NNs are
trained on sampled data they misclassify a significant por-
tion of the anomalous traffic. This matches the fact that NNs
require big data for good performance.

Further research will expand on the results obtained
here in two aspects. First, we will expand the research from
binary to multiclass classification and observe if the same
behavior can be noted there. Second, since the dataset used
in this research is simulated, we will use real-time data ob-
tained from network traffic and observe if the same accurate
performance can be obtained there as well. Additionally, the
approach can be expanded to include new types of attacks in
order to give a more encompassing solution. The sampling
strategy had intriguing results with simulated data. There-
fore, we will perform an in-depth analysis of the behavior
of data sampling in real-time data and see if the results will
hold there.
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