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Abstract. This paper presents a detection method of DCAM-
YOLOv5 for ground penetrating radar (GPR) to address the
difficulty of identifying complex and multi-type defects in
tunnel linings. The diversity of tunnel-lining defects and the
multiple reflections and scattering caused by water-bearing
defects make GPR images quite complex. Although exist-
ing methods can identify the position of underground defects
from B-scans, their classification accuracy is not high. The
DCAM-YOLOv5 adopts YOLOv5 as the baseline model and
integrates deformable convolution and convolutional block
attention module (CBAM) without adding a large number
of parameters to improve the adaptive learning ability for
irregular geometric shapes and boundary fuzzy defects. In
this study, dielectric constant models of tunnel linings are es-
tablished based on the electromagnetic simulation software
(GPRMAX), including rebar and various structural defects.
The simulated and field GPR B-scan images show that the
DCAM-YOLOv5 method has better results for detecting dif-
ferent types of defects than other methods, which validates
the effectiveness of the proposed detection method.

Keywords
Ground penetrating radar, tunnel-lining defects,
YOLOv5, deformable convolution, CBAM, GPRMAX

1. Introduction
The tunnel lining is a crucial component of tunnel en-

gineerings. However, they have been affected by geological
conditions, leading to various underground defects such as
cracks, voids, and delamination. These defects not only re-
sult in the gradual deterioration of tunnel structures but also
pose a significant risk to safety of tunnels, such as instability
and partial collapse, threatening the safe operation of tun-
nels [1], [2]. In addition, rebars in tunnel linings is an impor-
tant component that carry the pressure and load of the entire
tunnel structure. Any issues with rebars may cause linings to
crack, deform, and affect the service life of tunnels [3], [4].

Ground penetrating radar (GPR) is an efficient, anti-
interference, and highly penetrating non-destructive testing
tool that provides more security and scientific support for
underground engineerings [5]. By emitting electromagnetic
waves and receiving reflection signals, the GPR can form B-
scan profiles and analyze underground defects in tunnel lin-
ings, inferring the location, shape, and type of defects [6], [7].
In tunnel lining inspection, traditional empirical interpreta-
tion of GPR images is time-consuming and prone to errors,
resulting in poor inspection quality [8]. To improve tun-
nel safety and reduce inspection costs, the automated detec-
tion has become an important means of infrastructure in-
spection and is gradually becoming a future development
trend [9], [10].

In GPR B-scans, cylindrical scatterers (such as re-
bars, pipelines, or circular voids) typically exhibit hyperbolic
reflection characteristics. Hough transform is a common
method for detecting hyperbolas in GPR B-scans [11–13].
However, the Hough transform is computationally expen-
sive. To reduce computational cost, some researchers have
used template matching and edge detection to fit hyperbolas
in GPR B-scans [14], [15]. However, these methods typi-
cally only apply to identify hyperbolas with relatively regular
reflection signals. In practical tunnel lining inspection, un-
derground defects often exhibit irregular geometric shapes
and present complex and irregular reflection curves in GPR
B-scans [16].

With the rapid development of artificial intelligence,
the automatic identification and analysis of GPR data has
become a hot research topic. Kim et al. [17] proposed a road
defect recognition method based on a convolutional neural
network (CNN), which uses CNN to locate road defects after
GPR image thresholding. Park [18] studied the performance
of the YOLOv3 algorithm in real-time prediction of rebar
diameters in facilities, and the result showed that the method
can achieve real-time prediction. Yang et al. [19] showed that
YOLOv5l can achieve the highest detection accuracy and ef-
fectively detected the coal fire range, providing a basis for
coal fire disaster control. In addition, Li [20] compared the
performance of YOLO series models in identifying and lo-
cating hidden cracks. Through the construction of a dataset
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and detection experiments of the model, it was found that
the method can accurately distinguish hidden cracks from
false cracks. Chen [21] used theMobileNetV3-Large-CBAM
model to process imbalanced datasets and hard samples, and
performed well in bridge crack classification and identifi-
cation. Huang [22] proposed an improved YOLO object
detection algorithm based on the deformable convolution,
which allows the network to adaptively learn the receptive
field of feature points, thereby extracting more effective fea-
tures for objects of different sizes and shapes and improving
detection accuracy.

The success of deep learning models in the field of the
GPR recognition suggests that identifying target objects from
B-scans will become a future development trend. However,
the diversity of tunnel-lining defects and the multiple reflec-
tions and scattering caused by water-bearing defects make
the recorded GPR images quite complex. Although exist-
ing methods can identify the position of underground defects
from B-scans, their classification accuracy is not high. To
address the challenge of accurately identifying tunnel-lining
defects, this study proposes a DCAM-YOLOv5 recognition
method, which enhances the adaptability to complex geomet-
ric defects by designing the DBS module that can adaptively
change according to the shape of defects. In addition, the
introduction of the CBAM module improves the recognition
accuracy of defects with unclear boundaries in GPR B-scans,
enabling accurate identification of the position and type of
tunnel-lining defects. Finally, the paper conducts numerical
simulation experiments and field tests, and analyzed and veri-
fied the identification results of underground defect positions
and types from GPR B-scans.

In this paper, the defect identification of irregular geom-
etry was studied in depth. Our method achieves a precision
of 90.81%, which is the best accuracy reported among all
methods, beating the best (YOLO model) previous preci-
sion by 12.24%. The remaining sections of this paper are
organized as follows: Section 2 describes the dataset used
in this study, Section 3 presents the construction method of
the DCAM-YOLOv5 defect detection model, Section 4 in-
troduces and analyzes the experimental results, and finally,
Section 5 summarizes the contributions and draws certain
conclusions.

2. Construction of Tunnel Lining
Underground Defect Dataset

2.1 Synthetic GPR B-Scans
Underground defects in tunnel linings include rebars

and various types of defects such as cracks, voids, and de-
lamination. These structural defects are further categorized
into water-bearing and water-free defects according to their
dielectric properties. In this study, the dielectric constants of
water-free defects, water-bearing defects, and rebars are 1, 81,
and 300, respectively. The dielectric constants of the lining

Forward simulation parameters Specific configuration
Size of models [m] 1 × 2

Lining-rock interface [m] 0.2–0.5
Size of a spatial grid [m] 0.002

Time (ns) 20–30
Antenna step spacing [m] 0.1
Number of channels 170

Type of excitation source Ricker
Frequency of excitation source [MHz] 400 600 900

Tab. 1. FDTD forward simulation parameters.

and surrounding rock are random and range from 6–7 and
8–10, respectively. Additionally, the interface between the
lining and the surrounding rock is considered to be a rough
and irregular surface. Based on the electromagnetic simu-
lation software (GPRMAX), 2D dielectric constant models
are developed to realistically simulate the internal structure
of tunnel linings, with a size of 1m × 2m and finite differ-
ence time domain (FDTD) forward simulation parameters as
shown in Tab. 1. Dielectric constant models maximally sim-
ulate the real situation of tunnel linings, including different
combinations of single defects, multiple defects, and rebars,
represented by different colors indicating water-free defects,
water-bearing defects, and rebars. In the tunnel lining de-
tection, GPR equipment with main frequencies of 400MHz,
600MHz, and 900MHz are relatively common. Therefore,
in this study, dielectric constant models were forward simu-
lated using the FDTD method based on Ricker wavelet with
main frequencies of 400MHz, 600MHz, and 900MHz, to
obtain synthetic GPR data with 170 channels. To increase the
diversity of data and enhance the adaptability of the network,
a total of 2400 synthetic GPR data with different frequen-
cies and conductivities were generated. Figure 1 illustrates
dielectric constant models and the corresponding synthetic
GPR B-scans before and after removing the direct wave. For
the code of the forward model, we have uploaded it to Github
at https://github.com/Crystal33-all/GPR.

2.2 Field GPR B-Scans
In order to verify the applicability of the proposed

method in practical situations, an on-site survey was con-
ducted using the Italian RIS radar. In this experiment, the
GPR device had amain frequency of 900MHz, 512 sampling
points, and a 0.01m spacing between traces. Experimental
walls were used to simulate the internal structure of tunnel
linings, where water-free boxes andwater-bearing boxes used
to simulate water-free voids and water-bearing voids inside
tunnel linings. In addition, steel meshes with different densi-
ties was deployed at different horizontal and depth positions
on the experimental wall to increase the diversity of field
GPR data.

Unlike synthetic GPR data, field GPR signals inevitably
contain noise due to the heterogeneity of the subsurface
medium, mutual wave interactions, and external conditions
during data acquisition. Therefore, preprocessing techniques
such as zero-offset correction, direct coupling removal,
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(a) Crack model

(b) Water-bearing crack-delamination model

(c) Water-free void-delamination model

(d) Rebar model

Fig. 1. Dielectric constant models and the corresponding synthetic GPR B-scans before and after removing the direct wave.
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automatic gain, and clutter suppression are required to vi-
sualize and enhance these data. After a series of preprocess-
ing techniques, field GPR data were obtained at a depth of
10 ns and a horizontal direction of 2m. Their morphological
patterns differ in terms of anomalous objects and complex
geological structures, and a total of 316 field GPR data were
obtained, including various reflection signals representing
rebars and various structural defects (including voids and
water-bearing voids). The synthetic GPR data in this paper
and the field GPR data collected through the Italian RIS are
referred to as the RGPR dataset.

The URIGPRv1.0 dataset contains easily detectable
sample images from with the low level of areas, resulting
in GPR images with minimal anomalies, as well as more
challenging samples from areas with significant deteriora-
tion in bridge deck height, resulting in GPR images with low
contrast and difficult-to-detect reflection hyperbolas [7]. The
Warren County Bridge dataset was collected by Kaur [23] us-
ing GSSI SIR-20 GPR. Irenexychen [24] used data provided
by Sensors and Software Inc. The GPR-SD dataset [25], [26]
consists of GPR B-scan images collected by Zhou and Wang
along cement and asphalt roads.

In this paper, five datasets were used to form the
DEFECT dataset, which include the URIGPRv1.0 dataset,
GPR-SDdataset,WarrenCountyBridge dataset, Irenexychen
dataset, aswell as theRGPRdataset presented in this paper.

3. Construction of DCAM-YOLOv5
Defect Detection Model

3.1 YOLOv5 Object Detection Model
YOLOv5 is an efficient, fast, and accurate detection

algorithm that has gained increasing attention due to its
outstanding performance and real-time detection capability.
Since its release, YOLOv5 has been updated several times,
and the paper selects the latest version 6.0 for research pur-
poses. YOLOv5 can be divided into five different network
models based on the depth and number of parameters in the
model. Considering the trade-off between model size and
accuracy, the paper chooses YOLOv5l as the baseline model
for network improvement.

The YOLOv5l network consists of four parts: input,
backbone, neck, and head, as shown in Fig. 2. The backbone
network consists of CBS (Conv-BN-SiLU), C3, and SPPF
modules. The version 6.0 and above have replaced the Focus
module with an equivalent CBS module. The CBS module
is composed of a convolutional layer, batch normalization
layer, and SiLU activation function layer, aimed at extract-
ing features. The neck network adopts the feature pyramid
structure of FPN+PAN for multi-scale fusion. FPN realizes
the transmission of high-to-low semantic information, while
PAN realizes the transmission of low-to-high localization
information.

3.2 Design of Deformable Convolutional
Module
Due to various geometric shapes of defects and differ-

ent materials in tunnel linings, the reflected signals in GPR
B-scans exhibit significant irregularity and diversity. In ad-
dition, there exist unpredictable interference noises in the
acquired GPR data, which further increases the complex-
ity and diversity of the reflected signals in the GPR B-scan.
YOLOv5 does not take geometric deformations into account
when extracting features because traditional convolution op-
erations fix their geometric structure, making the geometry
of their stacked convolutional networks fixed as well, thus
limiting the recognition ability of the model for objects with
large degrees of geometric deformation. To address this is-
sue, this paper adopts the modulated deformable convolution
to better extract image features.

The standard convolution operation consists of two
steps: first, sampling is performed on the input feature map
using a regular grid 𝑅 to obtain a set of sampling points;
second, the convolution kernel is used to perform weighted
calculations on these sampling points to obtain the convo-
lution result. The size and dilation rate of the regular grid
𝑅 define the receptive field size of the convolution kernel.
Equation (1) defines a convolution kernel with a size of 3× 3
and a dilation rate of 1:

𝑅 = {(−1,−1) , (−1, 0) , · · · , (0, 1) , (1, 1)} . (1)

For each position 𝑝0 on the output feature map:

𝑦 (𝑝0) =
∑︁
𝑝𝑛∈ 𝑅

𝜔 (𝑝𝑛) × 𝑥 (𝑝0 + 𝑝𝑛) (2)

where 𝑝𝑛 enumerates the positions in 𝑅. In the op-
eration of deformable convolution, an additional offset
{Δ𝑝𝑛 |𝑛 = 1, 2, . . . , 𝑁}, 𝑁 = |𝑅 | is added to the regular
grid 𝑅. At the same time, a weight Δ𝑚𝑛 is predicted for
each sampling point, which results in the deformable convo-
lution formula:

𝑦 (𝑝0) =
∑︁
𝑝𝑛∈ 𝑅

𝜔 (𝑝𝑛) × 𝑥 (𝑝0 + 𝑝𝑛 + Δ𝑝𝑛) × Δ𝑚𝑛. (3)

The paper introduces the deformable convolution into
the backbone network of YOLOv5l to enhance geometric
deformation feature extraction capability. Since 1 × 1 de-
formable convolution does not have the ability to change
the receptive field and suffers from instability in comput-
ing sampling point offsets, this article focuses on the 3 × 3
deformable convolution. To avoid overfitting, the batch nor-
malization and the SiLU activation function are added to the
deformable convolution. Specifically, this article replaces the
standard convolution in the third and fourth CBS modules
of the YOLOv5 backbone network with the same size de-
formable convolution to form the DBS module (see Fig. 3 for
details). This designed backbone network can better extract
geometric features and help to accurately detect targets.
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Fig. 2. The network architecture of YOLOv5l.

Fig. 3. The structure of the DBS module.

Fig. 4. The structure of the CBAM module.

3.3 Design of CBAM Module
Target reflection curves in the GPRB-scan are often ob-

scure and there may be multiple targets with different geome-
tries at the same level or depth. As the hyperbolic reflection
patterns of these targets tend to overlap, along with the pres-
ence of a large amount of background clutter, it is difficult
to distinguish subsurface infestations from the background.
Therefore, it is extremely important to classify and iden-
tify the details of reflection curves in complex backgrounds.

After feature extraction by convolutional networks, a large
amount of redundant information is introduced, leading to
mislocalisation of the target boundary and resulting in loss
of detection accuracy. To solve this problem, the Convolu-
tional Block Attention Module (CBAM) is introduced in the
YOLOv5 model, which is able to better represent the detail
content through attention extraction of weights at different
locations.

The CBAM was proposed by Woo [27] in 2018, and its
core idea is to capture information interactions on different
channels and spaces by computing Channel Attention Mod-
ule (CAM) and Spatial Attention Module (SAM), as shown
in Fig. 4.

The CAM generates a weight vector by calculating the
difference between the mean and maximum values of the
input tensor for each channel, and then applies this weight
vector to the input tensor, weighting the different channels.
The CAM can be expressed as:

𝑀𝑐 =
1

𝐻 ×𝑊

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝑥𝑖, 𝑗 ,𝑐 , (4)

𝐹𝑐 = 𝜎(𝑀𝐿𝑃𝐹𝑐
(𝑀)) (5)

where 𝑀𝑐 represents the mean of the 𝑐 channel and 𝐹𝑐 rep-
resents the attention tensor of the channel after processing by
the MLP layer and the Sigmoid activation function.
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The SAM module generates a weight vector by calcu-
lating the mean and maximum values of each channel of the
input tensor and then applies this weight vector to the input
tensor, weighting the different spatial positions. The SAM
can be expressed as:

𝑀s =
1
𝐶

𝐶∑︁
𝑐=1

𝑥𝑖, 𝑗 ,𝑐 , (6)

𝐹s = 𝜎(𝑀𝐿𝑃Conv (𝑀)) (7)

where 𝑀s represents the pixel average of all channels, and
𝐹s represents the spatial attention tensor after the MLP layer
and Sigmoid activation function.

The output of the CAM and the SAM module will
be multiplied together to produce the final CBAM module
output:

CBAM(𝑥) = 𝑥 · (𝑊𝑐 · 𝐹𝑐 (𝑥) ⊗𝑊s · 𝐹s (𝑥)) (8)

where𝑊𝑐 and 𝐹𝑐 are learnable weight matrices.

In target detection tasks, different scale feature maps
have different contributions to the performance and accuracy
of the model. In general, small-scale feature maps contain
more low-level features, medium-scale feature maps contain
more contextual information, and large-scale feature maps
contain more high-level features. Therefore, to make the
model pay more attention to important features and reduce
the interference of redundant information, theCBAMmodule
can be used to optimize the feature maps at different scales.

Adding the CBAMmodule to the different feature maps
of the YOLOv5 model maximizes its optimization effect and
make the model more flexible to adapt to different target
shapes and scales. At the same time, adding the CBAM to

the neck avoids compromising the speed and efficiency of the
model. As the smaller the feature map, the faster the process-
ing speed. Therefore, adding three CBAM modules to the
neck of the YOLOv5 model can improve model performance
and accuracy.

3.4 Design of DCAM-YOLOv5 Model
The YOLOv5l model performs very well in object de-

tection, achieving high levels of detection accuracy and ef-
ficiency. However, it was designed based on conventional
natural image detection and did not consider the geometric
variability and background complexity of targets. Therefore,
the paper proposes an improved YOLOv5 model structure
by combining the design contents in Sec. 3.2 and Sec. 3.3,
to better suit the detection of underground defects in tunnel
linings. Figure 5 shows the network structure of DCAM-
YOLOv5, with the improved parts highlighted in yellow
and blue boxes.Some convolutional modules in backbone
network are replaced by deformable convolutional modules
(DCNv2+BN+SiLU, DBS), the core of which is to replace
Conv in the convolutional module with a deformable con-
volution with modulation mechanism (DCNv2). The DBS
module adaptively learns the geometrical variability of sub-
surface diseases, thus enhancing themodel’s ability to extract
multi-morphological target features. CBAMs are introduced
into the neckbone network to extract attention to weights
at different locations with a small number of additional pa-
rameters, thus weakening the interference of the noisy back-
ground and allowing the model to focus more on subsurface
diseases. The introduction of these modules increases the ge-
ometric deformation feature extraction capability of DCAM-
YOLOv5, enhances the model’s response to important spatial
locations and suppresses the response to unimportant spatial
locations, making it more flexible to adapt to different types
of disease identification tasks.

Fig. 5. The network structure of DCAM-YOLOv5.
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Fig. 6. The complete process of defect detection based on DCAM-YOLOv5.

Experimental platform

Hardware equipment

CPU Intel 8700K
GPU GeForce GTX 1050Ti
Memory 16G
Hard disk 256G SSD + 1T HDD
Graphics card 4G

Software equipment

Operating system Ubuntu 16.04
CUDA version 9
cuDNN version 7.14
Framework PyTorch
Development library Anaconda
Programming language Python 3.8

Model training parameters Initial learning rate 1.0e–4
Batch size 1

Tab. 2. Experimental environment configuration.

Figure 6 illustrates the complete process of defect detec-
tion based on DCAM-YOLOv5. Firstly, the DEFECT dataset
needs to be preprocessed to highlight target reflection sig-
nals of GPR B-scans, including zero-point correction, direct
wave removal, automatic gain control, and clutter suppres-
sion. Secondly, the preprocessed dataset is normalized and
randomly divided into training and testing datasets in a 7 : 3
ratio. Then, the DBS and CBAM modules are embedded
into the YOLOv5 model, and training parameters, including
the initial learning rate, batch size, and number of iterations,
are set based on the configuration of the network structure.
If the accuracy requirement is satisfied, the trained DCAM-
YOLOv5 model can be obtained; otherwise, the position of
modules embedded in YOLOv5 will be further adjusted until
the DCAM-YOLOv5 model that meets the accuracy require-
ment is obtained. Finally, the detection capability of the
DCAM-YOLOv5 model for identifying the types and ranges
of underground defects is tested using untrained field GPR
data, realizing automatic detection of underground defects in
tunnel linings.

In this paper, Intel 8700K CPU and single GeForce
GTX 1050Ti graphics card are used as the main platform
for algorithm implementation, and PyTorch deep learning
framework is used to discuss the optimization of DCAM-
YOLOv5 network architecture. At the same time, NVIDIA
GPU drivers, CUDA and cuDNN environments are used to
achieve GPU acceleration, thus improving training batches
and accelerating training speed. Detailed information on
the configuration of the specific experimental environment is
shown in Tab. 2.

4. Results on Detection Performance
Based on DCAM-YOLOv5

4.1 Performance Evaluation
In order to demonstrate that the DCAM-YOLOv5 detect

model performs well, precision, recall, F1-score, and mean
Average Precision (mAP) are used to compare and analyze
detect results of four models. They are defined below:
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Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

F1-Score = 2 × Precision × Recall
Precision + Recall

, (11)

mAP =
1
𝑛

∑︁𝑛

𝑖=1
𝐴𝑃𝑖 (12)

where TP represents the number of true positives, FP rep-
resents the number of false positives, FN represents the
number of false negatives, and n represents the number of
categories. True positives refer to the number of samples
that the classifier correctly predicts as positive samples, false
positives refer to the number of samples that the classifier
incorrectly predicts as positive samples from negative sam-
ples, and false negatives refer to the number of samples that
the classifier incorrectly predicts as negative samples from
positive samples.

4.2 Simulation Data Detection Results
Figure 7 presents the training results of DCAM-

YOLOv5 and its variant architectures onGPRB-scans for var-
ious types of defects. DCN-YOLOv5 refers to the YOLOv5
structure with added deformable convolution (DCN) mod-
ules, while CBAM-YOLOv5 refers to the YOLOv5 structure
with added CBAM module. As can be seen from Fig. 7(a),
the final loss of the DCAM-YOLOv5 model is less than 0.05,
while the final loss of the other three models ranges from
0.05 to 0.1. The combined loss and mAP show that DCAM-
YOLOv5 outperforms the other three models, and the gra-
dient propagation is more stable, with no significant fluctu-
ations in the numerical curves, indicating that the DCAM-
YOLOv5 model fits tunnel-lining defects dataset better.

Compared to YOLOv5, DCN-YOLOv5 achieves per-
formance gains of 1.88% and 4.03% in F1-Score and mAP
respectively. In addition, adding CBAMs to YOLOv5 also
improvedmAP by 1.58% and precision by 2.45%. This con-
firms that both strong feature representation and attention
mechanism capabilities contribute to improved detection of
complex GPR images. According to Tab. 3, compared to
DCN-YOLOv5 and CBAM-YOLOv5, DCAM-YOLOv5 has
a great improvement in each index, with an increase of 2.03%
and 1.64% respectively in mAP, indicating that the DCAM-
YOLOv5 model can identify different categories of defects
and for each class of defects were identified relatively well.

The classification results of the DCAM-YOLOv5 and
its variant architecture models performed on the DEFECT
dataset are shown in Tab. 4. YOLOv5 achieved acceptable
results and made very accurate predictions of voids, delam-
ination and rebars. The loss function of YOLOv5 focuses
on probabilities per pixel, but is limited to the overall effect,
which results in lower resolution, making it difficult to iden-
tify small target defects. As a result, it performs poorly on
cracks and has the lowest precision. The identification of
cracks requires high resolution, which is even more difficult
for the identification problem. Secondly, GPR data is more
complex when multiple defects occur at different depths at
the same location. CBAM-YOLOv5 struggles to effectively
classify defects, particularly cracks and water-bearing de-
lamination. DCN-YOLOv5 outperforms CBAM-YOLOv5 in
terms of detection and can accurately identify defects with
different geometries, but the effect of water-bearing voids of
DCN-YOLOv5 is very poor. This is because the scattering
of water-bearing voids generates multiple waves, which can
easily lead to erroneous or redundant object detection frames
by DCN-YOLOv5.

Models Precision
[%]

Recall
[%]

F1-score mAP@0.5
[%]

YOLOv5 78.57 77.43 0.7787 84.56
DCN-YOLOv5 86.46 85.54 0.8537 88.49
CBAM-YOLOv5 82.96 84.31 0.8416 87.62
DCAM-YOLOv5 90.81 87.69 0.8917 90.07

Tab. 3. Comparison of evaluation metrics for different models.

(a) Loss curve (b) mAP curve

Fig. 7. The training results of different models.
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Evaluations Models Rebar Water-free defects Water-bearing defects
Crack Void Delamination Crack Void Delamination

Precision[%]

YOLOv5 95.67 48.48 79.08 81.21 81.10 69.65 77.11
DCN-YOLOv5 98.43 83.24 81.09 89.18 86.19 78.07 86.19
CBAM-YOLOv5 93.12 51.08 86.74 90.19 87.54 84.41 87.54
DCAM-YOLOv5 99.64 91.25 92.08 95.11 88.33 84.78 89.98

Recall [%]

YOLOv5 91.45 62.11 75.36 84.91 79.89 74.96 75.15
DCN-YOLOv5 97.69 84.95 80.01 87.30 85.29 76.29 85.29
CBAM-YOLOv5 92.01 68.89 83.35 89.23 87.03 83.79 87.03
DCAM-YOLOv5 97.41 83.39 88.69 89.60 87.40 84.03 87.15

F1-score

YOLOv5 0.9358 0.5446 0.7718 0.8302 0.8049 0.7221 0.7612
DCN-YOLOv5 0.9806 0.8409 0.8054 0.8823 0.8574 0.7717 0.8574
CBAM-YOLOv5 0.9256 0.5866 0.8501 0.8971 0.8728 0.8410 0.8728
DCAM-YOLOv5 0.9851 0.8714 0.9035 0.9227 0.8786 0.8440 0.8859

mAP@0.5 [%]

YOLOv5 92.56 50.75 83.13 85.54 76.85 62.95 77.23
DCN-YOLOv5 94.95 87.33 85.86 87.56 85.26 80.54 84.12
CBAM-YOLOv5 92.01 76.48 89.41 88.51 86.10 79.63 83.15
DCAM-YOLOv5 99.02 93.86 90.90 91.56 87.15 85.03 87.86

Tab. 4. Performance of different models in identifying different categories of defects.

Comparing all data in Tab. 4, it is easy to see that
DCAM-YOLOv5 performs the best performance among all
defects. It accurately predicts the location and type of cracks,
voids and delamination and proves to be suitable for detect-
ing reflective signals of any complex pattern in tunnel linings.
Good results can be obtained for smaller target defects such
as cracks and rebars. In general, most predicted results are
accurate. The presence of water-bearing may cause some
results to be incorrect, but the probability of error is very
low. This result demonstrates the validity of the proposed
method.

Figures 8 and 9 demonstrate the recognition results of
YOLOv5, DCN-YOLOv5, CBAM-YOLOv5, and DCAM-
YOLOv5 on simulated GPR B-scans, respectively. Accord-
ing to Figs. 8 and 9, (a) shows tunnel-lining models with
a single defect, (b), (c), (d) and (e) show recognition re-
sults of YOLOv5, DCN-YOLOv5, CBAM-YOLOv5, respec-
tively. As shown in Fig. 8(b), YOLOv5 can effectively rec-
ognize voids, delamination, and rebars, but it fails to iden-
tify small target cracks. According to Fig. 8(c) and (d),
both DCN-YOLOv5 and CBAM-YOLOv5 can locate single
defect in GPR B-scans and accurately identify the type of
defects. CBAM-YOLOv5 demonstrates high confidence in
recognizing different types of defects, while DCN-YOLOv5
can increase the receptive field and achieve precise defect
localization. These observation results suggest that the de-
formable convolution module providing accurate location
and the CBAM extracting shape features can collectively
improve the ability to detect various single and irregularly
shaped defects in tunnel linings.

According to Fig. 9, it can be seen that DCAM-YOLOv5
can accurately locate all defects in GPR B-scans, while the
detection results generated by the other three methods are
relatively poor. As shown in the first column of Fig. 9, when
two defects are located at different depths in the same posi-
tion, YOLOv5 can only recognize larger voids compared to

the crack, and CBAM-YOLOv5 has inaccurate positioning
for water-bearing voids. As shown in the second column
of Fig. 9, all four models have strong recognition ability
for regular rebars. From the third column of Fig. 9, DCN-
YOLOv5 is prone to identify noise as cracks, while YOLOv5
and CBAM-YOLOv5 may ignore shallow targets and treat
them as noise, which may result in missing, redundant, or
erroneous object detection boxes.

In summary, algorithms such as YOLOv5, DCN-
YOLOv5 and CBAM-YOLOv5 have been used in this pa-
per to detect defects in tunnel linings. However, these al-
gorithms suffer from a number of problems, such as the
inability to identify complex morphological defects, incor-
rect type identification and inaccurate location of defects. In
contrast, the DCAM-YOLOv5 shows good performance in
identifying multiple defectsand performs well in the case of
identifying multiple defects, which is especially suitable for
detecting multiple defects with complex and irregular shapes
in tunnel linings.

4.3 Application to Field GPR Datas
The DCAM-YOLOv5 has demonstrated excellent

adaptability in GPR B-scans obtained through forward sim-
ulation experiments. To validate the applicability of the
proposed method in engineering, the DCAM-YOLOv5 was
applied to automatically detect reflection signals in GPR im-
ages obtained from measurements of multiple tunnels. The
recognition results, as shown in Fig. 10, indicate that DCAM-
YOLOv5 can accurately identify the location and type of con-
cealed defects in tunnel linings, especially for small targets
such as deep voids and water-bearing cracks. Therefore, the
DCAM-YOLOv5 has good generalization ability and adapt-
ability to different scenarios and task requirements, except
for cases where reflection features are not clearly visible and
cannot be recognized.
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(a) 2D models

(b) YOLOv5

(c) DCN-YOLOv5

(d) CBAM-YOLOv5

(e) DCAM-YOLOv5

Fig. 8. The recognition single defect results of YOLOv5, DCN-YOLOv5, CBAM-YOLOv5, and DCAM-YOLOv5 on simulated GPR B-scans.
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(a) 2D models

(b) YOLOv5

(c) DCN-YOLOv5

(d) CBAM-YOLOv5

(e) DCAM-YOLOv5

Fig. 9. The recognition multiple defects result of YOLOv5, DCN-YOLOv5, CBAM-YOLOv5, and DCAM-YOLOv5 on simulated GPR B-scans.
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Fig. 10. Object detection results of CBAM-YOLOv5 applied on field GPR datas.

5. Conclusions
In this study, we proposed a DCAM-YOLOv5 method

for GPR data to automatically detect underground defects
in tunnel linings. Specifically, DBS modules were intro-
duced to replace two convolutional blocks in the YOLOv5
backbone network, which enables the network to adap-
tively learn the receptive field of feature points and ex-
tract more effective features for objects of different sizes
and shapes. Additionally, CBAMs were incorporated to
improve the weight of important regions while keeping the
model lightweight.Experimental results on the dataset con-
structed in this paper demonstrate that DCAM-YOLOv5 can
effectively improve target detection accuracy and robustness,
with mAP reaching 90.07%, a 5.51% increase compared to
YOLOv5. Additionally, DCAM-YOLOv5 exhibited satisfac-
tory results in field experiments, demonstrating its practical
applicability for real-world tunnel inspections.

Although DCAM-YOLOv5 obtained suitable results
when applied to synthetic and field GPR data, it had certain
limitations on the diversity of field GPR. Therefore, future
research needs to conduct further experiments on larger and
more diverse sets of real GPR images to verify the system’s
actual application performance.
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