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Abstract. In this paper, a dual-band three-way power di-
vider with unequally high power split ratio is proposed. 
The dual-band operation is achieved by using a two-
section impedance transformer, and to reach a high split 
ratio, transmission lines with impractical high characteris-
tic impedances are replaced with dual-band T-shaped 
structures. The design is conducted with a thorough analy-
sis and systematic design procedure for facilitating the 
rapid development of the prototypes. To verify the effec-
tiveness of the proposed design method, an example of 
a power divider with a power split ratio of 7 : 5 : 1 is inves-
tigated, fabricated, and measured on a Rogers RO4003C 
substrate. Good agreements between the simulation and 
measurement results are obtained. Compared with several 
three-way unequal dual-band power dividers in previous 
works of the others, our proposed power divider delivered 
high power split ratio while still retaining good perfor-
mances of insertion loss, return loss, and isolation between 
output ports.  

Keywords 
Wilkinson power divider, dual-band, high power split 
ratio, dual-band T-shaped structure, unequal division 

1. Introduction 
Power dividers are a key component that is widely 

used in many telecommunication subsystems, such as an-
tenna feeding networks, mixers, and power amplifiers. 
Recently, there are increasing demands for PDs with the 
dual-band operation capability in relation to the multi-band 
microwave components. Various types of dual-band power 
dividers with equal [1–4] or unequal split ratios [5–7] have 
been proposed. Besides, many design methods for dual-
band power dividers have been reported, such as using 
lumpled-elements [2], [8], two-section impedance trans-
former [9], open/shorted stubs [1], [2], and using  
T-configuration [10]. Although these prior PDs are good 
for an even number of output ports, it is still difficult to 
design unequal power dividers with an odd number of 

output ports. Especially, relatively few works have been 
focused on dual-band three-way power dividers with high 
power split ratio. In [11], a dual-band three-way power 
divider has been reported with a power split ratio of 
3 : 1.5 : 1, showing that the maximum power split ratio only 
reached 3 : 1. The main problem in the design of a power 
divider with a large split ratio is it requires a branch with 
transmission lines of very large characteristic impedance, 
and the width of these transmission lines becomes too 
narrow to manufacture, while the limit values of the char-
acteristic impedance of transmission lines are often less 
than 120 Ohms in general. On the other hand, in [12], 
a dual-band PD with a split ratio of 10 : 1 based on multi- 
T-section has been proposed, but this PD has only two 
output ports and has the disadvantage of relatively large 
dimensions. 

In this paper, we combine the above techniques to 
propose a novel dual-band three-way Wilkinson power 
divider with a high power split ratio. To achieve dual-band 
operation, two-section impedance transformer [9] is 
employed. To reach a high power division ratio, impracti-
cal high-impedance lines in PD are replaced with dual-
band T-shaped structures [12]. With this combination, the 
proposed PD exhibits high power split ratio and compact 
size simultaneously. The validity of the proposed method is 
confirmed by a design example in both simulation and 
measurement, and the comparison with the other designs. 

2. Theory and Design Equations 

2.1 Design a Three-Way Unequal Power 
Divider 
The conventional three-way unequal PDs are com-

posed of quarter-wavelength transmission lines with differ-
ent impedances to match impedance between input and 
output ports as shown in Fig. 1 [13].  

In Fig. 1, Z0 dennotes source impedance and is equal 
to 50 Ω; Z1, Z2, and Z3 are load impedances of output ports 
2, 3, and 4 respectively. Resistors RS1 and RS2 are used to 
increase isolation performance between output ports. 
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Fig. 1.  The conventional three-way unequal power divider. 
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Fig. 2. The modified three-way unequal PD with output 

impedances of 50 ohms.  

Assuming power split ratio is P2 : P3 : P4 = K1
2: K2

2: 1, 
then the following equations are obtained [13]: 
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From (1), the impedances Z1, Z2, and Z3 can be 
determined as follows:  
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where a is an arbitrary positive number. The value of a 
needs to be appropriately selected so that the circuit can be 
fabricated in practice. 

The PD in Fig. 1 has load impedances different from 
50 Ω - standard impedance. So, this circuit is not conven-
ient for use in practice. To overcome this shortcoming, we 
propose a modified PD (Fig. 2) of the PD in Fig. 1, in 
which quarter-wavelength transmission lines are employed 
to transform the values of Z1, Z2, and Z3 to 50 Ω.  

The values of Z1b, Z2b, and Z3b can be derived from the 
following:  

 b 50j jZ Z= ⋅ ,  j =1, 2, 3. (4) 

From the circuit in Fig. 2, the following equations can 
be obtained: 
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where Zinja and Zoutja are input and output impedances of 
section Zja; Zinjb and Zoutjb are input and output impedances 
of section Zjb. 

2.2 Design a Dual-band Three-Way Power 
Divider with Unequally High Power Split 
Ratio 
To design a dual-band three-way PD, two-section im-

pedance transformer [9] is applied to the scheme PD in 
Fig. 2. According to this method, the impedance Zin will be 
matched with impedance Zout at two arbitrary frequencies f1 
and f2 (f1 < f2) using two transmission lines with character-
istic impedances and electrical lengths Zc1, θ and Zc2, θ 
respectively (Fig. 3). 

The values Zc1, Zc2 and θ can be determined as 
follows: 
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Applying two-section impedance transformer into the 
scheme in Fig. 2, each quarter-wavelength transmission 
line of the PD needs to be transformed into two sections 
with characteristic impedances and electrical lengths de-
fined by (9)–(13). Thus, the proposed dual-band three-way 
PD is presented in Fig. 4. 
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Fig. 3.  Two-section dual-band transformer. 
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Fig. 4. The proposed dual-band three-way unequal power 

divider. 
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Resistors RS1, RS2, RS3, and RS4 are used to increase 
the isolation performance of the PD. 

Assuming a power split ratio is P2 : P3 : P4 = K1
2: K2

2: 1, 
then the output power at port 4 is the smallest compared 
with the other outputs. From (2)–(4) we get:  

2
3a 1 1a ,Z K Z= 2

3a 2 2a ,Z K Z= 2 2
3a 1b 1 1 21 ,Z Z K K K= + +

2 2
3a 2b 2 1 21 ,Z Z K K K= + + 2 2

3a 3b 1 21 .Z Z K K= + +   

That is, Z3a is the largest impedance of the PD circuit 
presented in Fig. 2. After converting the circuit in Fig. 2 to 
the circuit in Fig. 4 using the two-section transformer tech-
nique, each transmission line is replaced with two seg-
ments. Transmission line with the largest characteristic 
impedance Z3a is converted into two transmission lines 
with characteristic impedances Z31a and Z32a and these im-
pedances also become the greatest values of the circuit in 
Fig. 4. 

To design a dual-band PD with a high power division 
ratio, we propose a new PD circuit, in which a dual-band 
T-shaped structure is used to replace transmission lines 
with the largest impedances Z31a and Z32a. The structure of 
a dual-band T-section is presented in Fig. 5 [12].  

The T-shaped structure consists of two transmission 
lines with impedance Zn and electrical length θn and one 
open stub with impedance Zm and electrical length θm.  

We need to define the design parameters of the  
T-section. Applying transmission line theory, the ABCD-
matrix of a T-shaped structure is defined as follows: 
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Meanwhile, the ABCD-matrix of a transmission line 
with high impedance Z and electrical length θ is 
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By matching the ABCD parameters of a dual-band T-
shaped structure with the transmission line with parameter 
Z and θ  we obtain the following equations: 
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Fig. 5. Schematic diagram of a transmission line with a high 

impedance Z and its equivalent dual-band T-shaped 
structure. 
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Fig. 6. The proposed dual-band three-way unequal PD with 

a high power split ratio.  

To maintain dual-band operation of T-section and 
structural compactness, the following conditions must be 
satisfied: 

 
2
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,
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n f
f
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+

  (18) 
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where f1 and f2 (f1 < f2) are designed operating frequencies. 

Finally, the proposed two-band three-way power 
divider with a large split ratio has the form depicted in 
Fig. 6. 

3. Simulations and Measurements  
To validate the proposed design method, a dual-band 

three-way PD is designed for two frequencies of 1 GHz 
and 2 GHz with a high power split ratio K1 : K2 : K3 = 
 7 : 5 : 1. The PD has been designed and fabricated on the 
Rogers RO4003C material with a thickness of 0.813 mm, 
a relative permittivity of 3.55, and a loss tangent of 0.0027. 

Firstly, the coefficient a in (3) needs to be defined. 
For this purpose, from (1)–(17) we plot the dependence of 
characteristic impedances of transmission lines in the PD 
against coefficient a (Fig. 7). From the graphs in Fig. 7, we 
determined coefficient a = 1.5 to ensure all characteristic 
impedances are in the range of 15 Ω to 120 Ω. 

It is found that, for a fixed power split ratio, the 
frequency ratio range between two operating frequencies is 



RADIOENGINEERING, VOL. 32, NO. 3, SEPTEMBER 2023 341 

  

0

20

40

60

80

100

120

140

160

0.0 0.5 1.0 1.5 2.0 2.5 3.0

L
in

e 
im

pe
da

nc
e 

(Ω
)

Coefficient a

Z11a(a) Z12a(a) Z11b(a) Z12b(a)
Z21a(a) Z22a(a) Z21b(a) Z22b(a)
Z31b(a) Z32b(a) Zn1(a) Zn2(a)
Zm1(a) Zm2(a)

a =1.5

 
Fig. 7.  Variation of characteristic impedances vs coefficient a. 

 

a f2/f1 
2.3 1.63–2.12 

2 1.65–2.14 

1.5 1.71–2.19 

1.3 1.73–2.22 

1 2.24–2.26 

Tab. 1. Variation of frequency ratio range versus coefficient a 
for power split ratio 7 : 5 : 1. 

changed by varying the coefficient a. Table 1 shows the 
variation of the frequency ratio range versus coefficient a 
with a power split ratio of 7 : 5 : 1. From Tab. 1, we can 
see that, when the coefficient a is decreased, the values of 
the upper limit and the lower limit of the frequency ratio 
are increased. Therefore, the proposed circuit can be used 
to design dual-band PDs with arbitrary frequency ratio. In 
addition, the frequency ratio range can be changed by 
changing the coefficient a. 

Next, we study the limitation of the power split ratio 
of the circuit to ensure that the circuit can be fabricated. 
The operating frequencies of the PD are fixed as 1 GHz 
and 2 GHz. Assuming a power split ratio is P2 : P3 : P4 = 
K1

2
 : K2

2
 : 1 and K1 > K2. Then, the fabrication ability of the 

circuit depends on the value of K1. Because K2 does not 
affect the fabrication ability of the scheme, without losing 
generality, we assume that K2

2 = K1
2/2. Figure 8 shows the 

dependence of characteristic impedances of transmission 
lines in the PD against the value of K1

2 (coefficient a = 1.5). 

As can be seen from Fig. 8, to maintain all character-
istic impedances in the range from 15 Ω to 120 Ω, the 
upper limit and the lower limit of the power split ratio K1

2 
is 10 and 3, respectively. 

For fixed operating frequencies, by varying the coef-
ficient a, the upper and lower limits of the power split ratio 
K1

2 are changed. Table 2 shows the variation of the upper 
and lower limits of power split ratio K1

2 versus coefficient 
a with operating frequencies 1 GHz and 2 GHz. 

Next step, the design parameters of the PD circuit in 
Fig. 2 are calculated: By using (3) the characteristic imped-
ances are calculated as Z1 = 10.71 Ω, Z2 = 15 Ω, Z3 = 75 Ω. 
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Fig. 8. Variation of characteristic impedances versus power 

split ratio K1
2. 

 

a K1
2 

0.5 2–4 

1 2.5–6 

1.5 3–10 

2 3.5–9 

Tab. 2. Variation of the upper and the lower limits of the 
power split ratio K1

2 versus coefficient a for operating 
frequencies 1 GHz and 2 GHz.   

From (4), we have Z1b = 23.15 Ω, Z2b = 27.39 Ω, 
Z3b = 61.24 Ω. Using (2), line impedances are computed as 
Z1a = 31.54 Ω, Z2a = 44.16 Ω, Z3a = 220.78 Ω. Next, charac-
teristic impedances of dual-band PD in Fig. 4 are defined: 
from (10), the electrical length of each transmission line is 
θ = 60°. By using (5)–(13) line impedances on three 
branches of the circuit are computed: 
Branch 1: Z11a = 43.84 Ω, Z12a = 22.7 Ω, Z11b = 18.11 Ω, 
Z12b = 29.59 Ω, 
Branch 2: Z21a = 61.37 Ω, Z22a = 31.77 Ω, Z21b = 22.53 Ω, 
Z22b = 33.29 Ω. 
Branch 3: Z31a = 306.86 Ω, Z32a = 158.87 Ω, Z31b = 65.51 Ω, 
Z32b = 57.25 Ω. 

As we can see, Z31a and Z32a have impractical high 
impedances of 306.86 Ω and 158.87 Ω. These transmission 
lines have a width of 0.000173 mm and 0.067 mm, respec-
tively, and they are unable to manufacture by normal PCB 
technology. Therefore, in the next step, transmission lines 
Z31a and Z32a are replaced with T-shaped structures. Using 
(14)–(17) the designed parameters of the T-shaped struc-
ture corresponding to Z31a are θn1 = 60°, θm1 = 120°, 
Zn1 = 102.29 Ω, Zm1 = 76.71 Ω. Similarly, for Z32a the cal-
culated parameters as θn2 = 60°, θm2 = 120°, Zn2 = 52.96 Ω, 
Zm2 = 39.72 Ω. To achieve good isolation, the optimum 
parameters of resistors RS1, RS2, RS3, and RS4 are selected as 
follows: RS1 = 30 Ω, RS2 = 68 Ω, RS3 = 300 Ω, RS4 = 1 kΩ. 

To demonstrate the effectiveness of the design 
approach, all characteristic impedance values of dual-band 
three-way PDs designed by the conventional method [9] 
and the proposed method are tabulated in Tab. 3.   
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Conventional method [9] Proposed method 

Impedance Value (Ω) Impedance Value (Ω) 

Z11a 43.84 Z11a 43.84 
Z12a 22.7 Z12a 22.7 
Z11b 18.11 Z11b 18.11 
Z12b 29.59 Z12b 29.59 
Z21a 61.37 Z21a 61.37 
Z22a 31.77 Z22a 31.77 
Z21b 22.53 Z21b 22.53 
Z22b 33.29 Z22b 33.29 
Z31a 306.86 Zn1 102.29 
Z32a 158.87 Zm1 76.71 
Z31b 65.51 Zn2 52.96 
Z32b 57.25 Zm2 39.72 

  Z31b 65.51 
  Z32b 57.25 

Tab. 3. Characteristic impedance values of the PD designed by 
the conventional method and the proposed method. 

 
Fig. 9. Photograph of the fabricated dual-band three-way 

power divider with a power split ratio of 7 : 5 : 1.  

From Tab. 3, it can be seen that the maximum charac-
teristic impedance of transmission lines in the proposed 
scheme (Fig. 6) is 102.29 Ω. This means the minimum 
width of transmission lines is 0.39 mm. Therefore, the 
proposed PD is easy to be fabricated by normal PCB tech-
nology. 

Figure 9 shows the fabricated prototype of the pro-
posed PD. The total area of the PD is 132.5 mm × 75.1 mm. 

The design program ADS 2019 is employed to make 
simulations and a Vector Network Analyzer PNA-X 
N5242A from Keysight is used to measure the perfor-
mances of the fabricated PD (Fig. 10).  

The simulated and measured insertion losses and in-
put return loss S11 of the PD are shown in Fig. 11. As we 
can see, simulated results agree well with the measured 
ones. The measured center frequencies are found to be 
0.98 GHz and 1.98 GHz, which are very close to the design 
frequencies 1 GHz and 2 GHz. The slight offset between 
design and measured results is due to tolerance in manufac-
turing. 

 
Fig. 10.  Experimental setup. 
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Fig. 11. Simulation and measurement results of insertion loss 

and input return loss of the proposed power divider. 

From graphs in Fig. 11, the insertion loss at two cen-
tral frequencies are: S21 = –3.29 dB, S31 = –4.47 dB, 
S41 = –10.96 dB at –0.98 GHz and S21 = –3.18 dB, 
S31 = –4.26 dB, S41 = –11.58 dB at 1.98 GHz (–2.69 dB,  
–4.15 dB, and –11.14 dB are the theoretical values for 
a 7 : 5 : 1 power divider). The measured input return loss at 
0.98 GHz and 1.98 GHz are –15.62 dB and –20.3 dB, 
respectively. 
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Fig. 12. Simulation and measurement of return loss S22 of the 

proposed power divider. 
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Fig. 13. Simulation and measurement of return losses S33 and 

S44 of the proposed power divider. 

The simulated and measured output return losses of 
the designed PD are presented in Fig. 12, and 13. It is clear 
that the measured results are highly consistent with the 
simulated ones. Output return losses are better than –11 dB 
at two central frequencies.  

Figures 14 and 15 show the simulation and measured 
isolation level between output ports of the designed PD. As 
can be seen from them, the measured isolation levels show 
good agreement with the simulation results. The measured 
isolation performances are better than –14.8 dB over two 
operating frequencies. Overall, the measured scattering 
parameters of the designed PD are tabulated in Tab. 4. 
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Fig. 14.  Simulation and measurement  parameter S23 of the 

proposed PD. 
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Fig. 15. Simulation and measurement of parameters S24 and 

S34 of the proposed PD. 
 

 980 MHz 1980 MHz 

S21 (dB) –3.29 –2.69 (ideal) –3.18 

S31 (dB) –4.466 –4.15 (ideal) –4.62 

S41 (dB) –10.96 –11.14 (ideal) –11.58 

S11 (dB) –15.62 –20.3 

S22 (dB) –17.87 –11.75 

S33 (dB) –18.28 –11.23 

S44 (dB) –14.81 –16.74 

S23 (dB) –18.58 –16.71 

S34 (dB) –20.26 –20.23 

S24 (dB) –17.71 –17.43 

Tab. 4. Measured scattering parameters of the fabricated PD. 
 

 This work [14] [15] [16] [17] 

f (GHz) 0.98/1.98 0.9/1.4 1/4 2.43/5.06 0.9/2.1 

K 7 : 5 : 1 1 : 4 : 1:  
2 : 8 : 2 2 : 1 1 : 1 2 : 1 

N 3 6 2 2 2 

Δ (dB) > –0.6 > –0.81 > –0.9 > –1.4 > –0.6 

IS (dB) < –16.7 < –5.33 < –18 < –19.8 < –26 

RL (dB) < –11.23 < –7.05 < –15  < –14.3  NI 

Tab. 5.  Comparisons of the proposed PD with other PDs.  

To evaluate the effectiveness of the design approach, 
the measured performances of the proposed dual-band 
three-way PD compared with other reported works are 
summarized in Tab. 5. 

In Tab. 5, we denote that Δ – The largest difference 
from ideal values of insertion loss; IS – Isolation; N– 
Number of output ports; K – Power split ratio;  RL – Re-
turn loss, NI – No information.  

Compared with other unequal and equal dual-band 
power dividers, we can see that the proposed power divider 
delivers a high power split ratio and low insertion loss. 
Other parameters, such as return loss and isolation between 
output ports are in good maintenance.  

4. Conclusions 
In this paper, a novel design approach of a dual-band 

Wilkinson PD with a high power split ratio is proposed. By 
replacing impractical high transmission lines with dual-
band T-shaped sections, the proposed PD can achieve 
a high split ratio. To validate the proposed approach, 
a dual-band PD with a power split ratio of 7 : 5 : 1 was 
designed, fabricated, and tested. The simulated and meas-
ured results are in good agreement. Compared with the 
results of earlier works, the proposed PD exhibited a high 
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split ratio, while still retaining good insertion loss, isola-
tion, and return loss. 
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