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Abstract. Focusing on the real-time tracking of the ex-
tended target labeled multi-Bernoulli (ET-LMB) filter, this 
paper proposes an extended target fast labeled multi-
Bernoulli (ET-FLMB) filter based on beta gamma box 
particle (BGBP) and Gaussian process (GP), called ET-
BGBP-GP-FLMB filter. First, a new ET-FLMB filter is 
derived to reduce the computational complexity of the ET-
LMB filter. Then, by modeling the target state as an aug-
mented state including detection probability, measurement 
rate, kinematic state and extension state, the BGBP-GP 
implementation of the ET-FLMB filter is presented. Com-
pared with the traditional sequential Monte Carlo (SMC) 
implementation, the proposed implementation can not only 
greatly reduce the number of particles and the amount of 
computation, but also estimate the detection probabilities, 
measurement rates and extension states while estimating 
the number and kinematic states of extended targets. Final-
ly, the simulation results show that the proposed filter can 
significantly reduce the computational burden and improve 
the real-time performance. 

Keywords 
Extended target tracking, fast labeled multi-Bernoulli 
filter, beta gamma box particle, Gaussian process 

1. Introduction 
Target tracking plays an extremely important role in 

both military and civilian fields. According to the number 
of measurements obtained from a target at each time step, 
the target can be divided into a point target or an extended 
target. Point target means that one target can obtain at most 
one measurement at each time step, while extended target 
means that one target can obtain multiple measurements at 
each time step. In this way, target tracking can be divided 
into point target tracking [1–4] and extended target track-
ing [5–25]. With the continuous advancement of sensor 
technology, the sensor resolution is getting higher and 
higher, resulting in more and more measurement infor-
mation available for each target. Therefore, extended target 
tracking algorithms become more and more important. 

In recent years, multiple extended target tracking 
algorithms based on random finite set (RFS) have attracted 

the attention of many scholars [5–23]. The extended target 
probability hypothesis density (ET-PHD), extended target 
cardinalized PHD (ET-CPHD), extended target cardinality 
balanced multi-target multi-Bernoulli (ET-CBMeMBer), 
extended target generalized labeled multi-Bernoulli (ET-
GLMB), extended target labeled multi-Bernoulli (ET-LMB) 
and extended target Poisson multi-Bernoulli mixture (ET-
PMBM) filters have been proposed in [5–9]. Compared 
with the early ET-PHD [5], ET-CPHD [6] and ET-
CBMeMber [7] filters, the ET-GLMB [8], ET-LMB [8] and 
ET-PMBM [9] filters have better estimation performance 
under poor detection conditions. Moreover, the ET-GLMB 
and ET-LMB filters are based on labeled RFS, and they can 
output target tracks. The ET-LMB filter is an effective 
approximation of the ET-GLMB filter, which has less 
computational burden with slight performance loss. How-
ever, the computational complexity of the ET-LMB filter is 
still high. Therefore, this paper first improves the ET-LMB 
filter to improve its real-time performance. 

The implementation methods of the above filters 
mainly include Gaussian mixture (GM) implementation  
[6, 10, 11], sequential Monte Carlo (SMC) implementation 
[12], [13], gamma Gaussian inverse Wishart (GGIW) im-
plementation [8, 9, 14] and box particle implementation 
[15–17]. As early implementation methods, GM and SMC 
implementations can only estimate the number and kine-
matic states of extended targets [6], [10–13]. The GGIW 
implementation can not only estimate the number and kin-
ematic states of targets, but also estimate their extension 
states and measurement rates [8, 9, 14]. However, the 
GGIW implementation can only estimate the extension 
states as ellipses. For non-elliptic extension states, some 
improved algorithms of the above filters are proposed in 
[18–21]. However, like the GM and GGIW implementa-
tions of these filters, most of these improved algorithms are 
based on the linear Gaussian assumption. For extended 
target tracking under nonlinear conditions, the SMC or box 
particle implementations of these filters are required. The 
SMC implementation often requires a large number of 
particles, and the computational burden is heavy. Therefore, 
the box particle implementation is used to reduce the 
amount of computation. However, the existing filters im-
plemented by SMC or box particles, including the standard 
PHD and LMB filters implemented by box particles for 
extended target tracking [22], [23], either do not consider the 
extension states of targets [15, 22, 23], or only consider the 
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extension states of simple shapes [16], [17]. As far as we 
know, there is no report on non-elliptic extension state 
estimation using RFS filter implemented by box particles. 
In addition, the existing filters based on box particle and 
RFS cannot handle the extended target tracking under the 
condition of unknown detection probability. Therefore, we 
improve the box particle implementation and propose 
a method based on beta gamma box particle and Gaussian 
process (BGBP-GP) to implement the improved ET-LMB 
filter. 

The main contributions of this paper are summarized 
as follows. 

(1) At the filter level, an improved ET-LMB filter, 
namely the extended target fast LMB (ET-FLMB) filter, is 
proposed. It combines the prediction step and update step 
of the ET-LMB filter into one step, and uses Gibbs 
sampling to select the high weight hypothesis components, 
effectively reducing the computational complexity of the 
ET-LMB filter.  

(2) At the implementation level, the BGBP-GP im-
plementation of the proposed ET-FLMB filter is given, 
which is called ET-BGBP-GP-FLMB filter. Compared 
with the SMC implementation, the box particle implemen-
tation can significantly reduce the number of particles and 
computational burden. In addition, the detection probabil-
ity, measurement rate and extension state are modeled as 
beta distribution, gamma distribution and Gaussian process 
[24] respectively. The proposed implementation can not 
only estimate the number and kinematic states of extended 
targets, but also estimate their detection probabilities, 
measurement rates and extension states.  

(3) A likelihood function that considers the detection 
probability, measurement rate and kinematic state is pro-
posed to form the closed recurrence of the ET-FLMB filter. 
What’s more, a separate extension state likelihood function 
is also presented, which enables the proposed filter to esti-
mate extension states with arbitrary star-convex shapes.  

(4) In terms of performance evaluation, the OSPA 
distance variants of the extension states and detection 
probabilities of multiple extended targets are given. 

The remainder of the paper is organized as follows. 
Section 2 mainly introduces the extended target state mod-
els, measurement model and GP principle. The main steps 
of the proposed ET-FLMB filter are presented in Sec. 3. In 
Sec. 4, the specific form of measurement likelihood func-
tion is given, and the BGBP-GP implementation of the ET-
FLMB filter is presented. Then, the performance evalua-
tion criteria are introduced, and the advantages of the pro-
posed filter are discussed. The simulations and analyses are 
given in Sec. 5. The last section presents the conclusions 
and future work. 

2. Extended Target Models 
In this section, we mainly introduce the extended tar-

get state models, measurement model and GP principle. 
For readability, some notations are first introduced in 
Sec. 2.1. 

2.1 Some Notations 
(1) The generalized Kronecker delta function and 

generalized inclusion function are respectively defined as 
1, if 

( )
0,   otherwiseY

X = Y
X 




δ and
1, if 

1 ( )
0,   otherwiseY

X Y
X

⊆



 , where 

X and Y are unlabeled state sets. 

(2) The multi-target exponential function is defined 
as [ ( )] ( )X

X

h h
∈

⋅ ∏
x

x , where ( )h x is a real valued function 

and 1h∅ = . 

(3) The label indicator function is defined as 
1, if | ( )| | |

( )
0, if | ( )| | |

=
 ≠

X X
X

X X
 




, where X is a labeled state set, 

( )X is the set of unique labels in this set, and | |X  is the 
number of elements in X. 

(4) 1 1( ; , ) (1 ) ( , )s tD s t D D B s t− −= −β is the beta 
probability density function, where [0,1]D∈ , 0s > , 0t > , 

( , ) ( ) ( ) ( )B s t s t s t= Γ Γ Γ + , and ( )Γ ⋅ is the gamma function. 

(5) 1( ; , ) ( ( )) eα α βγγ α β β α γ − −= Γ is the gamma 
probability density function, where 0>γ , 0>α , 0>β . 

2.2 Extended Target State Models 
In this work, the state set of extended targets at 

time k is expressed as follows 

 | |( ) ( ) ( ) ( ) ( ) K,( ) E,( )
1={( , )} ,  ( , , , )ki i i i i i i

k k k i k k k k kDξ ξ γ=
XX l x x   (1) 

where kX is the state set of extended targets, | |kX the 
number of extended targets in this set, ( )i

kξ the state of 
the thi extended target, ( )i

kl the target label, ( )i
kD the detec-

tion probability, ( )i
kγ the measurement rate, K,( )i

kx the kine-
matic state, and E,( )i

kx the extension state. The evolution 
models of detection probability, measurement rate, kine-
matic state and extension state of each extended target are 
as follows. 
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(1) Detection probability: It is modeled as a beta 
distribution, and the prediction parameters are as follows 

 ( ) ( ) ( ) ( ) 2 ( )
| 1 , | 1 , | 1 , | 1 , | 1( (1 ) ( ) 1)i i i i i

k k D k k D k k D k k D k ks μ μ σ μ− − − − −= − − ,   (2) 

   ( ) ( ) ( ) ( ) 2 ( )
| 1 , | 1 , | 1 , | 1 , | 1( (1 ) ( ) 1)(1 )i i i i i

k k D k k D k k D k k D k kt μ μ σ μ− − − − −= − − − ,  (3) 

 ( ) ( ) ( ) ( ) ( )
, | 1 , 1 1 1 1( )i i i i i

D k k D k k k kμ μ s s t− − − − −= = + ,  (4) 

   
( ) ( )

( ) 2 ( ) 2 1 1
, | 1 , 1 ( ) ( ) 2 ( ) ( )

1 1 1 1

( ) ( )
( ) ( 1)

i i
i i k k

D k k D D k D i i i i
k k k k

s t
σ υ σ υ

s t s t
− −

− −
− − − −

= =
+ + +

(5) 

where ( )
, | 1

i
D k kμ − and ( ) 2

, | 1( )i
D k kσ − are the predicted mean and 

variance, respectively. In general, we choose 1Dυ > , which 
means that the mean of detection probability does not 
change, and the variance becomes larger. In addition, for 
consistency reasons, the choice of parameters must satisfy 
condition ( ) 2 ( ) ( )

, | 1 , | 1 , | 1( ) (1 )i i i
D k k D k k D k kσ μ μ− − −< − . 

(2) Measurement rate: It is modeled as a gamma 
distribution, and the predicted parameters are as follows 

 ( ) ( )
| 1 1
i i

k k kα α ηγ− −= , ( ) ( )
| 1 1
i i

k k kβ β ηγ− −=    (6) 

where 1ηγ > is an exponential forgetting factor. 

(3) Kinematic state: Under the framework of interval 
analysis, its prediction process is expressed as follows 

 K
K,( ) K,( ) K,( )

1, | 1
[ ] [ ]([ ]) [ ]i i i

k k kk k
f −−

= +
x

x x w    (7) 

where K,( )[ ]i
kx is the kinematic state with interval form, 

K , | 1
[ ]

k k
f

−x
 the transfer function, and K,( )[ ]i

kw the process 

noise. 
(4) Extension state: It is described by a star-convex 

shape [24]. Thus, it can be denoted by a vector composed 
of radial function values. In this work, we sample 

EN points in interval [0, 2π]  at equal intervals, i.e. 
E

E E E T
1( , , )

N
θ θ=θ  . Then, the extension state can be de-

noted by their corresponding radial function values, i.e. 
E E

E E E T E E E E T
1 1( , , ) ( ( ), , ( )) .

N N
r r f θ f θ= =x   The star-

convex shape and corresponding radial function are shown 
in Fig. 1. 

In Fig. 1(a), a star-convex shape is shown in the 
global coordinate system. The measurements and target 
kinematic state are described in this coordinate system. The 
radial function is described in the local coordinate system. 
The origin of local coordinate system is the position of 
target centroid. The radial function corresponding to the 
star-convex shape is shown in Fig. 1(b). 

The transition process of extension state is as follows 

 E,( ) E E,( ) E,( )
1

i i i
k k k−= +x F x w , E,( ) E( , )i

kw 0 Q  ,   (8) 

 
EE = e α T−F I , 

EE 2 E E E(1 e ) ( , )α T−= −Q C θ θ ,   (9) 

  
(a) Star-convex shape.                       (b) Radial function. 

Fig. 1.  The star-convex shape and corresponding radial 
function. 

 
E
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E E E E E E
1 1 1

E E E

E E E E E E
1

( , ) ( , )
( , )

( , ) ( , )

N

N N N

c θ θ c θ θ

c θ θ c θ θ

 
 =  
  

C θ θ


 



  (10) 

where FE is the extension state transition matrix, and ( )E, i
kw  

the extension state process noise. αE can be regarded as 
a forgetting factor, and a larger αE means that less weight is 
given to older measurements. T is the sampling interval, 
I the identity matrix, and E E E( , )C θ θ an NE dimensional 
covariance matrix. The covariance function is designed as 

 
2 E E 2(2sin (| | 2) )E E E 2 2( , ) e m nθ θ l

m n f rc θ θ σ σ− −= +  (11) 

where E
mθ and E

nθ are any two angles in interval [0, 2π] , fσ  
is the priori standard deviation of signal amplitude, l is the 
length scale of radial function, and rσ is the contribution 
from the unknown mean function. 

2.3 Extended Target Measurement Model 
In this paper, it is assumed that the measurements 

generated by each extended target originate from the target 
contour. Thus, the measurement equation can be written as 

 ( ) ,( ) E,( ) E,( ) E,( ) E,( ) ( )
, , , ,( ) ( )i c i i i i i i

k j k k k j k k j k jθ f θ= + +z x p ν ,  (12) 

 E,( ) E,( ) E,( ) E,( ) T
, , ,( ) (cos( ),sin( ))i i i i

k k j k j k jθ θ θ=p   (13) 

where ,( ) K,( ) K,( ) T
, ,( , )c i i i

k x k y k=x x x is the position of the thi  

extended target at time k , 
( )
,( )

, 1{ }
i
kNi

k j j=
zz are the ( )

,
i
kNz  measure-

ments generated by this extended target, E,( )
,

i
k jθ is the angle 

of measurement ( )
,
i

k jz in the local coordinate system, ( )
,
i

k jν is 
a zero mean Gaussian measurement noise with covari-
ance R , and T( )⋅ denotes the transpose operation. Note that 
the radial function is modeled as a GP. Therefore, the GP 
principle is introduced in the following. 

2.4 GP Principle 
Typically, the GP is used to learn an unknown 

function from the training data. Consider the following 
measurement model 
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 E E E E
, , ,( )k j k k j k jz f θ v= + , E E

, (0, )k jv R    (14) 

where E
,k jz is the measurement corresponding to the training 

input E
,k jθ , and it is formed by adding a Gaussian noise E

,k jv  

to a radial function value E E
,( )k k jf θ . Our goal is to learn the 

function value E
E E E E E T

,1 ,
( ( ), , ( ))k k k k k N

f fθ θf    corre-

sponding to the given test input E
E E E T

,1 ,
( , , )k k k N
θ θθ    by 

the given measurement set E E E T
,1 ,( , , )

zk k k Nz zz   and its 

corresponding input E E E T
,1 ,( , , )

zk k k Nθ θθ  

  . 

According to [24], the measurement E
,k jz and the 

function value E
kf are jointly Gaussian, 

 
E E E E E E EE

, , ,,
E E E E E EE

,

( , ) ( , )
0,

( , ) ( , )
k j k j k j kk j

k k j k kk

c Rz θ θ θ
θ

    +
          

C θ
C θ C θ θf


  





.(15) 

Thus, the extension state likelihood can be written as 

 
EE E E E E E

, ,( | ) ( ; , )g
k j k k j k k kg z z R=f H f ,   (16) 

 E E E E E E E E 1
, ,( ) ( , )( ( , ))k k j k j k k kθ θ −=H C θ C θ θ  ,   (17) 

 
E E E E E E

, , ,
E E E E E 1 E E E
, ,

( ) ( , )
( , )( ( , )) ( , ).

g
k k j k j k j

E
k j k k k k k j

R c Rθ θ θ
θ θ−

= + −
C θ C θ θ C θ

  

 

 (18) 

Further, according to (16) and [24], the measurement 
Equation (12) can finally be written as 

 ( ) ( ) ,( ) E,( ) ( )
, , ,= ( , )i i c i i i

k j k j k k k jh +z x f v , ( ) ( )
, ,(0, )i i

k j k jv R ,  (19) 

   ( ) ,( ) E,( ) ,( ) E,( ) E,( ) E,( ) E,( ) E,( )
, , ,( , ) ( ) ( ) ,i c i i c i i i i i i

k j k k k k k j k k j kh θ θ= +x f x p H f  (20) 

 
E( ) E,( ) E,( ) E E,( ) E,( ) T

, , , ,( ) ( )( ( ))i i i g i i
k j k k j k k j k k jRθ θ θ= +R p p R .  (21) 

Considering that the measurement noise is already included 
in (21), the RE in (18) can be omitted. 

3. ET-FLMB Filter 
In this section, the measurement likelihood function is 

first introduced. And then, the main steps of the ET-FLMB 
filter are presented, which fuses the prediction and update 
into one step and uses Gibbs sampling to calculate the 
hypothesis components with larger weights. 

3.1 Measurement Likelihood Function 
The measurement likelihood function used in this 

paper is similar to the ET-LMB filter [8]. It is given as 

 
1

( )
1 ( ) ( )

( ( ))

( | ) ( ) [ ( ; )]
k

k

k
k i k

k

k k C k Z
i Z Z

Z

g Z g Z ψ
+

= ∈
∈Θ

= ⋅∑ ∑
|X |

XX
θ

θ
 



, (22) 

 ( )
( )

K E
( ) ( )

K E

( )

( , ; ) ( , , , , ; )

( ) ( ( ) | , , , )
, ( ) 0

[ ]
1 ( ), ( ) 0

k k

kk

Z k k Z k k k k k

k k k k k k k
kZ

k k k

ψ ψ D

D g Z

D

θ

θ

ξ θ γ θ

γ
θ

κ
θ

=


>

= 
 − =

k

l

l

l x x l

l x x l
l

l l



 




 (23) 

where ,1( ) e K
Cg K κ κ−= , κ is the intensity function of 

clutter Poisson RFS .K ( )i kZ is the set of measurement 
partitions that just divide the measurement set kZ into i  
groups, ( ) ( )k i kZ Z∈   is a particular partition of ( )i kZ . 

( ( ))kZΘ  is the space of association mappings 
: ( ) {0,1, ,| ( ) |}k kZθ →X   , where ( ) ( ) 0k kθ θ ′= >l l  

means k k′=l l . K E
( )( ( ) | , , , )

k k k k k kg Zθ γl x x l   is the likelihood 

function for a single measurement partition cell ( ) ( )
k kZθ l . 

3.2 The Main Steps of the ET-FLMB Filter 
(1) Joint prediction and update: Suppose that the 

multiple extended target posterior density at time 1k −  can 
be denoted by an LMB RFS [8] with parameter 
set 1 1

1 1

( ) ( )
1 1 1{( , )}k k

k kk k k lr p− −

− −− − − ∈= l lπ  , where 1( )
1
k

kr −
−
l  and 1( )

1
k

kp −
−
l  de-

note the existence probability and probability density of 
target 1k−l  respectively, and 1k−  denotes the label space at 
time 1k − . At the same time, suppose that the newborn 
multiple extended target density at time k  can be denoted 
by an LMB RFS with parameter set 

( ) ( )
, , ,{( , )}k k

k kB k B k B kr p ∈= l l
lπ  , where ( )

,
k

B kr l and ( )
,
k

B kp l  denote the 
existence probability and probability density of newborn 
target respectively, and k  denotes the label space of the 
newborn target at time k . Then, the multiple extended 
target posterior density after joint prediction and update at 
time k  can be written as 

1
( , ) ( )

( )
( ) 1 ( ) ( )

( ( ))

( | ) ( )

( ( ))[ ( | ( ))] ,
k

k k

k k
k k k i k

k

k k k k

I
Z I k k k

I i Z Z
Z

Z

w p Z
+

∈ = ∈
∈Θ

= ∆ ⋅

⋅∑ ∑ ∑
|X |

X

π X X

Xθ θ

θ

δ



  





   (24) 

 
1

1

( , )
( ) Θ( ) 1 , | 1

( )
1 , | 1 , , ( )

1 ( )[1 ]

[ ] [1 ] [ ] [ ] ,

k k k

k k

k k k k k k k

k

I θ I
Z I k S k k

I I I Iθ
k S k k B k B k Z

w θ r η

r η r r ψ

−

−

−
− −

−
− −

∝ − ⋅

− 







  
  (25) 

 
1

, | 1 , 1 1

( )
| 1 1 1 1 1

( ) ( , )

 ( | , ) ( ) d d ,k

S k k k S k k k

k k k k k k k k k

η p ξ

f ξ ξ p ξ ξ ξ−

− − −

− − − − −

= ⋅∫ ∫
l

l l

l
   (26) 

 ( )( )
( ) | 1 ( )( ) ( ) ( , ; ) dk

k k

θ
Z k k k k Z k k kψ p ξ ψ ξ θ ξ−= ∫ ll l  ,   (27) 

 

1

1

( )
| 1

( )
, 1 1 | 1 1 1 1 1

, | 1

( )
,

( ) 1 ( )

( , ) ( | , ) ( ) d

( )

1 ( ) ( ),

k

k

k

k

k

k k k k

S k k k k k k k k k k k

S k k k

k B k k

p ξ

p ξ f ξ ξ p ξ ξ

η

p ξ

−

−
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− − − − − − −

−

= ⋅
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( )
| 1 ( )( )

( )
( )

( ) ( , ; )
( , | ( ))

( )

k

k

k

k k k Z k kθ
k k k k θ

Z k

p ξ ψ ξ θ
p ξ Z

ψ
−=

l l
l

l




   (29) 

where 1 1= ( = )k k k k k− − ∅       is the label space at 

time k , ( , )
( )
k

k

I θ
Zw  the weight of different GLMB components, 

( )
| 1 ( )k

k k kp ξ−
l  the single target prediction density, 

, 1 1( , )S k k kp ξ − −l  the survival probability, | 1 1( | , )k k k k kf ξ ξ− − l  
the state transition function, and ( ) ( , | ( ))θ

k k k kp ξ Zl   the 
single target posterior density. Equation (24) is actually 
a GLMB density [8], and it needs to be approximated as 
an LMB to form a closed recurrence. By first-order mo-
ment matching, this GLMB density can be approximated as 
an LMB RFS with parameter set ( ) ( ){( , )}k k

k kk k kr p ∈= l l
lπ  , 

where 

 
| | 1

( ) ( , )
( )

( ) 1 ( ) ( )
Θ( ( ))

1 ( )
k

k k

k k
k k k i k

k

I
I θ

k Z I k
I i Z Z

θ Z

r w
+

∈ = ∈
∈

= ∑ ∑ ∑l l



  



,   (30) 

   

( ) ( )

| | 1
( , ) ( )

( )
( ) 1 ( ) ( )

Θ( ( ))

( ) 1

1 ( ) ( , | ( )).

k k

k
k

k k
k k k i k

k

k k k
I

I θ θ
Z I k k k k k

I i Z Z
θ Z

p ξ r

w p ξ Z
+

∈ = ∈
∈

= ⋅

∑ ∑ ∑

l l

l l



  



   (31) 

(2) Cost matrix and Gibbs sampling: In the above 
joint prediction and update, in order to compute the 
hypothesis components with larger weights, an extended 
cost matrix needs to be calculated, which comprehensively 
considers survival, death, birth, detection and missed 
detection. 

Here, we consider a fixed 1:( ) { },k MZ W=  

1 1:{ },k RI − = l  and +1:{ }k R P= l , where W is a measurement 
partition cell in ( )kZ . Our goal is to search for a set of 
pairs ( , ) ( ) Θ( )k k kI θ I∈ ×  with significant weight 

( , )
( )
k

k

I θ
Zw . For each pair ( , )kI θ , 1:=( ) { 1: }P

P M∈ −   is 
defined by 

 
( ), if 

=
1,  otherwise.

i i k
i

Iθ ∈
−

l l
     (32) 

Considering that   inherits the positive 1-1 property of θ , 
there is no difference , {1: }i i P′∈  with = 0i i′ >  . We use 
Γ to denote the set of all positive 1-1 elements of 
{ 1: }PM− . Thus, there is Γ∈  , and we can recover the 
labels kI  and associations : {0 : }kθ I M→  by 

1{ : 0}k i ik kI I −= ∈ ≥l    and ( ) iiθ l   , respectively. 

For all {1: }i P∈ , we define 

 

( )
, | 1 1

( ) ( )
, | 1 1 ( )

,
( )

, ( )

1 ( ) ,            1 , 0
( ) ( ),  1 , 0

( )
1 ( ),                 1 , 0

( ) ( ),       1 , 0

i

i

k

k

S k k i k
j

S k k i k Z i
i

B k i
j

B k i Z i

η r i R j
η r ψ i R j

η j
r R i P j

r ψ R i P j

− −

− −

 − ≤ ≤ <
 ≤ ≤ ≥= 
− + ≤ ≤ <

 + ≤ ≤ ≥

l

l

l
l l

l
l l





  (33) 

where 1 i R≤ ≤  corresponds to the surviving targets and 
1R i P+ ≤ ≤  the newborn targets. { 1: }j M∈ −  denotes 

the index of the cell W assigned to track lj, where j = −1 
denotes the death of track li, and j = 0 the missed detection 
of track li. Further, (25) can be written as 

( , )
( ) Γ

1

1 ( ) ( )k

k

P
I θ

Z
i

iiw η
=

∝ ∏   , where Θ( )Γ1 ( ) 1 ( )
kI θ=



 . Thus, 

searching the set of pairs ( , ) ( ) Θ( )k k kI θ I∈ ×   with sig-

nificant weight ( , )
( )
k

k

I θ
Zw  is equivalent to searching the set of 

positive 1-1 vectors  with significant 
1

( )
P

i i
i

η
=
∏  . This can 

be achieved by solving a ranked assignment problem 

 
2

T
, ,

1 1
tr( )

P M P

i j i j
i j

+

= =

= ∑ ∑S C C S ,   (34) 

, {1: }1 ( ) ( ) ( ) (0) ( ) ( 1)
i i iM i M ij M Pi j δ j δ j δ δ j δ+ + += + + −S    , (35) 

 ,

ln ( ),        {1: }
ln (0),         
ln ( 1),  
,                      otherwise

i

i
i j

i

η j j M
η j M i
η j M P i

− ∈
 − = +=  − − = + +
∞

C   (36) 

where Si,j is an assignment matrix, and Ci,j an extended cost 
matrix. Each  corresponds to an S, Ttr( )S C  is the cost of 

S, and T

1

exp( tr( )) ( )i

P

i
i

η
=

− =∏S C  . Here, we use Gibbs 

sampling to solve this ranked assignment problem. 

We regard each   as a realization of a random varia-
ble that obeys the probability distribution π on { 1: }PM− . 
By sampling from π, candidate   are generated. π is con-
structed as follows 

 Γ
1

( ) 1 ( ) ( )i

P

i
i

π η
=

∝ ∏

   .   (37) 

Since it is very difficult to sample directly from the above 
distribution, the Gibbs sampler is used. We start from 
an initial solution 1:( )P   , and the next solution 

1:( )P′ ′    can be obtained by sampling from a series of 
conditional distributions 1: 1 1:( | , )n n n n Pπ − +′ ′   , {1: }n P∈ , 
where 1: 1n−′  and 1:n P+  are the newly sampled associations 
and the associations from the previous solution, respective-
ly. Although the Gibbs sampler is computationally effi-
cient, it requires that the conditional distributions be easily 
computed and sampled. Therefore, we here provide 
a closed form expression for each conditional distribution 
so that they can be calculated or sampled at a low cost. For 
each {1: }n P∈ , 

 {1: }( | ) ( ) (1 1 ( ) ( ))
nn n n n nn M

i
i

n

π η δ
∈

∝ −∏       (38) 

where {1: } { }n P n= − , 1: 1 1:( , )n n n P− +=   . Then, for 
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a non-positive j, ( | ) ( )nnnπ ηj j∝ , and for {1: }j M∈ , 

1: 1 1:,{ }( | ) ( )(1 1 ( ))
n n Pn nnπ j η j j
− +′∝ −   . Thus, sampling from 

the conditional distributions is easy and cheap. It only has 
a linear complexity in the number of measurement partition 
cells. Finally, given that Gibbs sampling may return the 
same hypotheses, copies must be removed. 

4. ET-BGBP-GP-FLMB Filter 
In this section, the BGBP-GP implementation of the 

ET-FLMB filter is given, and its key is the derivation of 
likelihood function. Therefore, the specific form of likeli-
hood function is presented first. 

4.1 Measurement Likelihood Function 

Since the prediction and update of extension state E
kx  

involves operations on high-dimensional vectors and 
matrices, if E

kx  is estimated recursively along with the box 
particles, a lot of running time will be consumed. For real-
time consideration, this paper handles the extension state 
separately in the specific implementation. Thus, the  
target state can be reconstructed as 

E K E( , ) (( , , ), ).k k k k k k kDξ ε γ= x x x  In joint prediction and 
update, only εk is calculated. Then, in the GLMB compo-
nents obtained after joint prediction and update, the posi-
tion of each hypothesis track is preliminarily extracted and 
used for the extension state update. In this way, the exten-
sion state of each hypothesis track is filtered only once, 
which can effectively reduce the computational burden. In 
addition, it should be pointed out that, in joint prediction 
and update, the correspondences between the hypothesis 
tracks and the measurement partition cells are saved to 
facilitate the subsequent extension state update. Based on 
the above considerations, the measurement likelihood func-
tions of augmented state εk and extension state E

kx  are 
introduced separately. The likelihood function of aug-
mented state εk is presented in the following, and the likeli-
hood function of extension state E

kx  can be found in 
Sec. 2.4. 

Assuming that the detection set Wk is generated by 
target εk, the measurement likelihood function can be 
expressed as 

 
K

K
( | ) ( | , , )

( | ) ( | ) ( | ).
k k k k k k k k

k k k k k k k k k

p W p W D
p W D p W p W

ε γ
γ

=
∝

x
x   (39) 

The above equation is based on the assumption that the 
detection probability, measurement rate and kinematic state 
are mutually independent [25]. Under the framework of 
interval analysis, it can be defined as 

K([ ] | [ ]) ( | ) (| || ) ([ ] | [ ])k k k k k k k k k k k kp W p W D p W p Wε γ x (40) 

where [Wk] is the interval measurement formed by Wk, 
and | |kW the number of measurements in Wk. 

( | )k k kp W D , (| || )k k kp W γ  and K([ ] | [ ])k k kp W x  are the 
likelihood functions of detection probability, measurement 
rate and kinematic state, respectively. 

In this paper, the detection probability is assumed to 
be an unknown constant, and its likelihood function can be 

expressed as
,     

( | )
1 ,

k k
k k k

k k

D W
p W D

D W
≠ ∅

=  − = ∅
. Poisson distri-

bution is used to model the number of measurements 
produced by each target, so the likelihood function of 
measurement rate can be expressed as 

| |(| || ) e | | !k kW
k k k k kp W Wγγ γ −= . The likelihood function of 

kinematic state is defined as 
K K K([ ] | [ ]) | [ ]([ ],[ ],[ ]) | | [ ] |k k k CP k k k kp W h Wx x ν x , where 

K| [ ] |kx  denotes the area of box particle K[ ]kx , and 
K| [ ]([ ],[ ],[ ]) |CP k k kh Wx ν  the area of the box particle con-

tracted by [ ]kW [17]. Finally, ([ ] | [ ])k k kp W ε  can be written 
as 

| | K

K

([ ] | [ ])
e | [ ]([ ],[ ],[ ]) |

, ,
| | ! | [ ] |

1 ,                                               .

k k
k k k

W
k CP k k k

k k
k k

k k

p W
h W

D W
W

D W

−
=


⋅ ≠ ∅


 − = ∅

x ν
x

γ
ε

γ
(41) 

4.2 The BGBP-GP Implementation of the  
ET-FLMB Filter 
(1) Measurement pretreatment: Same as our previous 

work [17], the measurement pretreatment step also includes 
clutter measurement elimination, measurement partition 
and box measurement generation. Among them, clutter 
measurement elimination and measurement partition are 
identical to [17]. In this work, we also use Z̃k to denote the 
measurement set after clutter removal, and ( , )p l

kW to denote 
the lth measurement partition cell of the pth partition. Since 
the measurement model is different from [17], the box 
measurement generation method is different from [17]. The 
box measurement ( , )[ ]p l

kW  corresponding to the cell ( , )p l
kW  

is generated as follows 

 
( , ) ( , ) ( , ) T

, ,
( , ) ( , ) ( , ) ( , ) T
, , , ,

[ ] ([ ],[ ])
([ , ],[ , ]) ,

p l p l p l
k x k y k

p l p l p l p l
x k x k y k y k

W W W
W W W W

=

   (42) 

     ( , )
, ,min{ } 3p l

x k x k xW σ= −z , ( , )
, ,max{ } 3p l

x k x k xW σ= +z ,  (43) 

 ( , )
, ,min{ } 3p l

y k y k yW σ= −z , ( , )
, ,max{ } 3p l

y k y k yW σ= +z  (44) 

where T
, ,( , )k x k y kz z z , ( , )p l

k kW∈z , xσ  and yσ  denote the 
standard deviation of measurement noise on the X-axis and 
Y-axis respectively. 
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(2) Joint prediction and update: In this step, we first 
complete the joint prediction and update of augmented 
state kε , and then predict and update the extension state E

kx  
in the obtained GLMB components. 

①  Joint prediction and update of augmented state kε : 
Suppose that the multiple extended target posterior density 
at time k – 1 can be expressed as an LMB RFS with 
parameter set 1 1

1 1

( ) ( )
1 1 1{( , )}k k

k kk k kr p− −

− −− − − ∈= l l
lπ  , where 1( )

1
k

kp −
−
l  is 

approximated by a weighted beta gamma box particle set 
1 1( )

, 1 1 , 1 1 1{( ( ),[ ( )])} k kN
i k k i k k iw ε − −

− − − − =
ll l , i.e., 

 
1 1

1

, 1 1

( )
( )

1 1 , 1 1 [ ( )] 1
1

( ) ( ) ( )
k k

k

i k k

N

k k i k k ε k
i

p ε w U ε
− −

−

− −− − − − −
=

≈ ∑
l

l
ll  (45) 

where U[∙](∙) denotes the uniform probability density func-
tion over [∙]. Suppose that the newborn multiple extended 
target density at time k can be expressed as an LMB RFS 
with parameter set ( ) ( )

, , ,{( , )} ,k k

k kB k B k B kr p ∈= l l
lπ   where ( )

,
k

B kp l  is 
approximated by a weighted beta gamma box particle set 

( )
, , , , 1{( ( ),[ ( )])} k kB

B i k k B i k k iw ε =
ll l , i.e., 

 
, ,
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1

( ) ( ) ( )
k k

k

B i k k

B

B k k B i k k ε k
i

p ε w U ε
=

≈ ∑
l

l
ll .   (46) 

Then, the multiple extended target posterior density after 
joint prediction and update at time k can be expressed as  

1
( , ) ( )

( )
( ) 1 ( ) ( )

( ( ))

( | ) ( )

( ( ))[ ( | ( ))] .
k

k k
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⋅∑ ∑ ∑
|X |

X

π X X

Xθ θ

θ

δ



  





   (47) 

In this equation, the weight ( , )
( )
k

k

I
Zw θ

  is calculated as follows 
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 (51) 

   
1 1

, 1 1 , , 1 1 1
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1
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where , | 1[ ( )]i k k kε − l  is the predicted beta gamma box particle, 
and , | 1( ) ([ ( )], ; )

k i k k k kZψ ε θ− l l
  the likelihood function. They 

can be calculated as follows 

 ,

K
, | 1 , | 1 , | 1 , | 1

K
, | 1 , | 1 , | 1
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 , | 1 , | 1 , | 1 , | 1( ) ( ) ( ( ) ( ))i k k k i k k k i k k k i k k kD s s t− − − −= +l l l l , (54) 
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 , | 1 , | 1 , | 1( ) ( ) ( )i k k k i k k k i k k kγ α β− − −=l l l ,   (59) 

, | 1 , 1 1( ) ( )i k k k i k k γα α η− − −=l l , , | 1 , 1 1( ) ( )i k k k i k k γβ β η− − −=l l , (60) 
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 (63) 

In the above equations, ( )[ ( )]
k kZθ l
 denotes the box meas-

urement corresponding to the cell ( ) ( ),
kl kZθ
  and it is 

equivalent to a box measurement ( , )[ ]p l
kW  formed in the 

measurement pretreatment. After that, the single target 
probability density ( ) ( | ( ))k kp Zθ ⋅  in (47) is calculated as 
follows 
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   (65) 
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where ,[ ( )]i k klε  is the updated beta gamma box particle. It 
can be calculated as follows 
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    (73) 
where [h] is the inclusion function corresponding to h, and 

K
, | 1[ ( )]i k k k−x l  the contracted version of K

, | 1[ ( )].i k k k−x l  Follow-
ing [17], we also use the CP algorithm to contract 

K
, | 1[ ( )].i k k k−x l  The position dimensions of K

, | 1[ ( )]i k k k−x l  are 

contracted by ( )[ ( )]
k kZl


θ , and its velocity dimensions are 
contracted by the preset velocity intervals. Finally, it 
should be emphasized that, in (47), the hypothesis compo-
nents with larger weights are computed by the extended 
cost matrix and Gibbs sampling, which can be seen in 
Sec. 3.2. 

②  Prediction and update of extension state E
kx : Each 

hypothesis track in the GLMB components obtained after 
joint prediction and update not only contains the updated 
beta gamma box particle set, but also saves the extension 
state of the extended target at the last moment and the 
measurement partition cell corresponding to the extended 
target. Here, we consider a given hypothesis track ( , )k k′ lξ  
and its corresponding measurement partition cell 

( ) ( ),
k kZl


θ  where E K E
1 1( , ) (( , , ), ),k k k k k k kD− −′ = =x x xξ ε γ  
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θ

θ
 , K

kx  can be approximated by 
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K K
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1
mid([ ( )])

k kN

k i k i k k
i

w
=

= ∑
l

x x l , K K T
, ,( , )c

k x k y k=x x x , and mid(∙) 

is the function to compute the box particle center. 

The extension state can be filtered by the extended 
Kalman filter (EKF). Its prediction step is as follows 

 E E E
| 1 1k k k− −=x F x , E E E E T E

| 1 1( )k k k− −= +P F P F Q .  (74) 

Its update step is as follows 
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where ⊕  denotes the vertical vectorial concatenation. 
Thus, the updated extension state E

kx  of track lk is obtained. 

③  Approximating GLMB as LMB: Finally, in order to 
close the recursion, the obtained GLMB density needs to 
be approximated as LMB. The calculation of the trans-
formed LMB parameters can be seen in Sec.  3.2, and the 
extension state takes the weighted average result of differ-
ent hypothesis components. 

(3) Track pruning, truncation and resampling: After 
joint prediction and update, the LMB components need to 
be pruned, truncated and resampled. The pruning and trun-
cation methods are the same as the ET-LMB filter [8]. The 
box particle resampling adopts the division resampling 
strategy presented in [1], but it should be noted that the 
detection probability and measurement rate parameters are 
directly copied in this process. 

(4) State estimation: The number of extended targets 
is estimated according to the maximum a posteriori (MAP) 
criterion, i.e., ˆ = arg max ( ),k kN nρ  where ( )k nρ  is the 
cardinality distribution of LMB parameter set [3]. The 
extended target states are estimated as 

 ˆ( ) ( )
1

ˆˆ ˆ{( , )} kNj j
k k k j==X lξ ,    (85) 

 ( )E,( ) ( ) ( ) K,( )ˆ ˆ ˆ ˆ ˆ(( , , ), )jj j j j
k k k k kD= x xξ γ , ( )ˆ j

k kI∈l ,    (86) 
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l
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k k k=x x l . (88) 
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4.3 Performance Evaluation Criteria 
This paper uses the OSPA distance [26] to evaluate 

the estimation performance of multiple extended target 
detection probabilities, measurement rates, kinematic states 
and extension states. The original OSPA distance is 
defined as follows 
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where 1 2{ , , , }mx x x=X   denotes the real extended target 
state set, 1 2

ˆ ˆ ˆ ˆ{ , , , }nx x x=X   the estimated extended target 
state set, c the cutoff distance, and n∏ all permutations on 
{1,2, , }n . In this paper, the real target state set and  
the estimated target state set are ( ) ( )

1{( , )} kNi i
k k i=lξ   

and ˆ( ) ( )
1

ˆ ˆ{( , )} kNj j
k k j=lξ  respectively, where 

( ) ( ) ( ) K,( ) E,( )(( , , ), ),i i i i i
k k k k kD= x xξ γ  ( ) ( ) ( ) K,( ) E,( )ˆ ˆ ˆ ˆ ˆ(( , , ), ).j j j j j

k k k k kD= x xξ γ  
For the detection probabilities, measurement rates, 
kinematic states and extension states, ( )

( )ˆ( , )c
i id x xπ  in (89) 

is respectively defined as follows 

 ( ) ( ) ( ( )) ( ) ( ( ))ˆ ˆ( , ) min( ,| |)Dc i i i i
k k D k kd D D c D Dπ π− ,   (90) 

 ( ) ( ) ( ( )) ( ) ( ( ))ˆ ˆ( , ) min( ,| |)c i i i i
k k k kd cγ π π

γγ γ γ γ− ,  (91) 
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 E
E

( ) E,( ) E,( ( )) E,( ) E,( ( ))ˆ ˆ( , ) min( ,|| ||)c i i i i
k k k kd c −x

x
x x x x

π π    (93) 

where | |⋅  is the absolute value, and || ||⋅ the Euclidean norm. 

4.4 Discussions 
The main advantages of the proposed filter are as 

follows.  

(1) The ET-LMB filter needs to convert LMB into 
GLMB before the measurement update, which leads to 
a large number of the hypothesis components participating 
in the measurement update. The proposed filter integrates 
prediction and update into one step, which can avoid the 
high number of hypothesis components and reduce the 
amount of computation. In addition, instead of Murty’s 
algorithm, the proposed filter uses Gibbs sampling to cal-
culate the hypothesis components with larger weights, 
further reducing the computational complexity. The com-
putational complexity of Murty’s algorithm is the fourth 
power of the number of measurement partition cells, while 
Gibbs sampling has a linear complexity in the number of 
measurement partition cells [4].  

(2) The proposed filter is implemented by box parti-
cles. Compared with the traditional SMC implementation, 
it greatly reduces the number of particles and computa-
tional burden.  

(3) In the concrete implementation, the detection 
probability, measurement rate and extension state of each 
extended target are also estimated recursively. The pro-
posed filter can not only estimate the extension states with 
arbitrary star-convex shapes, but also be applicable to the 
case of unknown detection probability. The above ad-
vantages are verified in the subsequent simulations. 

5. Simulations and Analyses 
To verify the effectiveness of the proposed ET-

BGBP-GP-FLMB filter, two simulations are set up here, 
including a linear scenario and a nonlinear scenario. The 
software platform of simulations is MATLAB R2018b 
with INTLAB toolbox, and it is installed on the personal 
computer with Intel(R) Core(TM) i5-8250U CPU @ 
1.60 GHz 1.80 GHz processor and 16.0 GB RAM. 

5.1 Simulation 1 
The algorithms compared in this simulation include 

the ET-BP-PHD, ET-GSMC-GP-LMB, ET-GBP-GP-
LMB, ET-GBP-GP-FLMB and ET-BGBP-GP-FLMB 
filters. The ET-BP-PHD filter is an upgraded version of the 
ET-Box-PHD filter [22]. For a fair comparison, the ET-
BP-PHD filter adopts the measurement pretreatment meth-
od presented in this paper. In addition, the ET-BP-PHD 
filter adopts an improved k-means clustering to improve 
the extraction effect of target states, that is, the global op-
timal solution is approximated by the local optimal solution 
obtained after multiple clustering. The ET-GSMC-GP-
LMB filter is the GSMC-GP implementation of the ET-
LMB filter, the ET-GBP-GP-LMB filter is the GBP-GP 
implementation of the ET-LMB filter, and the ET-GBP-
GP-FLMB filter is the GBP-GP implementation of the ET-
FLMB filter. 

This simulation is a linear scenario with surveillance 
area [–1000, 1000] m × [–1000, 1000] m. The monitoring 
duration is 100 s, and the sampling interval is T = 1 s. 
A total of five targets with different shapes appeared suc-
cessively in the surveillance area. The first target is a rec-
tangle with length 6 m and width 4 m. Its survival time is 
1–85 s. The second target is a star-convex shape. Its major 
axis is 8 m, minor axis is 6 m, and the width of both axes is 
2 m. Its survival time is 5–90 s. The third target is 
an ellipse with major axis 6 m and minor axis 4 m. Its sur-
vival time is 10–95 s. The fourth target is a circle with 
radius 3 m, and its survival time is 15–100 s. The fifth 
target is a circle with radius 3 m, and its survival time is 
20–100 s. The motion of each target is modeled as the 
constant velocity (CV) model with the following dynamic 
equation 
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where K K K K K T
, , , ,( , , , )k x k x k y k y kx x x x x 

 , and K
1k−w  is a zero mean 

Gaussian process noise with the standard deviation 
K

1k
σ

−
=

w 4 m/s2. The extension state dynamic equation can 
be found in Sec. 2.2, and the extension state dimension is 
50 dimensions, i.e., NE = 50. The GP parameters are 
σr = 2 m, σf = 2 m, and l = π/8 rad. The measurement 
equation is shown in Sec. 2.3. The measurement rate and 
detection probability of each target are 20 and 0.9999, 
respectively. The standard deviation of measurement noise 
is σx = σy = 0.1 m/s2. In the surveillance area, the clutter is 
evenly distributed, and its number follows Poisson distri-
bution with mean 1. The target survival probability is 
ps = 0.999.  

In the filtering process, the ET-GSMC-GP-LMB filter 
uses 500 and 2000 particles respectively, and they are 
denoted as ET-GSMC-GP-LMB-500 and ET-GSMC-GP-
LMB-2000. Other filters implemented by box particles use 
10 box particles. For newborn targets, this paper adopts the 
measurement driven method to detect them [17]. In the 
SMC implementation, 50 particles are sampled to detect 
newborn targets, while in the box particle implementation, 
only one box particle is sampled. In addition, in the ET-
GSMC-GP-LMB, ET-GBP-GP-LMB, ET-GBP-GP-FLMB 
and ET-BGBP-GP-FLMB filters, the maximum track num-
ber is 100, the track pruning threshold is 1e–3, and the 
requested number of hypothesis components for GLMB 
update is 250. Finally, the parameters of the OSPA dis-
tance used to evaluate the detection probability, measure-
ment rate, kinematic state and extension state estimation 
effect are cD = 1 and pD = 1, cγ = 50 and pγ = 1, K 50c =

x  
Kand 1p =

x , E E50 and 1c p= =
x x , respectively. Note that 

the parameter c in the OSPA distance is the cutoff distance, 
which is used to truncate and adjust the influence of cardi-
nality error. Generally, c is taken as 100, or larger or 
smaller. This paper sets c = 50. However, for the OSPA 
distance parameter c of detection probability, we set c = 1. 
This is because the range of detection probability is 0 to 1, 
and it is sufficient to truncate with c = 1. What’s more, the 
change range of detection probability is small, and it is 
difficult to observe the change of the detection probability 
OSPA distance if the cardinality penalty is too large. The 
single tracking result of the ET-BGBP-GP-FLMB filter is 
shown in Fig. 2. 

In Fig. 2, the black solid lines denote the real tracks 
and shapes of extended targets, the circles and triangles 
denote the initial and terminal positions of targets respec-
tively, and different colors denote different labels, which 
represent the tracking  results  of different  targets. It can be 

 
Fig. 2.  The single tracking result of the ET-BGBP-GP-FLMB 

filter. 

seen that, the ET-BGBP-GP-FLMB filter can not only 
effectively estimate the position and extension state of each 
extended target, but also output their tracks. 

The average results of 100 Monte Carlo simulations 
are shown in Fig. 3 and Tab. 1. It should be pointed out 
that the proposed filter can estimate the detection probabil-
ity of each target, so the detection probability estimation is 
also evaluated by the OSPA distance. Further, considering 
that the detection probability of each target is the same in 
this simulation, their average value is calculated as the 
estimation of detection probability. The real detection 
probability and estimated detection probability are plotted 
in Fig. 3(e), which more intuitively shows the estimation 
effect of detection probability. 
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(a) The average cardinality estimations. 
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(b) The average OSPA distances of kinematic states. 
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(c) The average OSPA distances of measurement rates. 
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(d) The average OSPA distances of extension states. 
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(e) The average detection probability estimation. 
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(f) The average OSPA distance of detection probabilities. 

Fig. 3.  The average results of 100 Monte Carlo simulations. 
 

Filter Run time (s) 
ET-GSMC-GP-LMB-500 236.3330 
ET-GSMC-GP-LMB-2000 753.7002 

ET-GBP-GP-LMB 103.1447 
ET-GBP-GP-FLMB 42.1879 

ET-BGBP-GP-FLMB 48.5068 
ET-BP-PHD 28.3481 

Tab. 1.  The average running time statistics. 

It can be seen from Fig. 3 that, under ideal detection 
conditions, all filters can obtain good estimation results. 
The estimation performance of different filters is similar, 
but there are also some differences. Table 1 shows the 
average running time of each filter. In the aspect of cardi-
nality estimation, all filters have delays at the target birth 
moments. This is because the filters use the measurement 
driven method to detect newborn targets, which requires 
sampling at the measurement locations at the previous 
moment. The delays of the proposed filter are slightly 
longer than that of other filters. This is because the detec-
tion probability of each target in the proposed filter is esti-
mated in real-time. The initial detection probabilities of 
newborn targets are low, which leads to their slower detec-
tion. At the target death moments, the cardinality estima-
tion of the proposed filter is delayed. This is also because 
the detection probability of each target is estimated in real-
time. Although the detection probability estimation of each 
target becomes more and more accurate with the accumula-
tion of measurements, when a target dies, its detection 
probability estimation may still be less than the survival 

probability, resulting in a missed detection cost less than 
death. Therefore, in the optimal hypothesis component, the 
target is temporarily judged to be missed. When the meas-
urements are still not detected at the subsequent time, it is 
determined that the target is dead, and the target number is 
estimated to decrease. When there are errors in target num-
ber estimation, the OSPA distances of kinematic states, 
measurement rates, extension states and detection probabil-
ities will produce a spike. It can be seen from the local 
enlargement of Fig. 3(b) and (d) that, the estimation per-
formance of the ET-GSMC-GP-LMB filter is improved 
with the increase of particle number. However, it can be 
seen from Tab. 1 that this is at the cost of huge runtime. 
Compared with the ET-GSMC-GP-LMB filter, the  
ET-GBP-GP-LMB filter greatly reduces the number of 
particles and computational burden. Compared with the 
ET-GBP-GP-LMB filter, the ET-GBP-GP-FLMB filter is 
based on the ET-FLMB filter proposed in this paper, which 
greatly reduces the number of hypothesis components and 
further reduces the computational complexity. On this 
basis, the proposed ET-BGBP-GP-FLMB filter increases 
the estimation of the detection probability with a small time 
cost, and broadens the application range of the filter. It can 
be seen from Fig. 3(e) that, with the increase of observa-
tion time, the average detection probability estimation is 
getting closer to the real detection probability. The running 
time of the ET-BP-PHD filter is the least, however, it can 
only estimate the number and kinematic states of extended 
targets. 

In order to further verify the estimation effect of the 
proposed ET-BGBP-GP-FLMB filter, the real detection 
probability is set to 0.88 for simulation, and other parame-
ters remain unchanged. Considering the huge computa-
tional burden of the SMC implementation, only the ET-
GBP-GP-LMB, ET-GBP-GP-FLMB, ET-BGBP-GP-FLMB 
and ET-BP-PHD filters are compared here. The average 
results of 100 Monte Carlo simulations are shown in Fig. 4 
and Tab. 2. 

It can be seen from Fig. 4 that the estimation perfor-
mance of the filters decreases when the detection probabil-
ity is low. However, the estimation performance of ET-BP-
PHD filter is greatly reduced, while the estimation perfor-
mance of the other three filters is similar and the degrada-
tion is not significant. This is because the ET-BP-PHD 
filter is based on traditional RFS, which is the first moment 
approximation of the multi-target Bayesian filter and 
a suboptimal solution. Other filters are based on labeled 
RFS and are approximate solutions under the optimal 
framework. They can avoid many disadvantages of the ET-
BP-PHD filter. At the target death moments, the cardinality 
estimations of the ET-GBP-GP-LMB, ET-GBP-GP-FLMB 
and ET-BGBP-GP-FLMB filters are all delayed. This is 
because, as the detection probability decreases, the possi-
bility of missed detection of each target gradually in-
creases. When a target disappears, the three filters are more 
likely to temporarily judge the dead target as a missed 
detection, which is more likely to cause a delay in cardinal- 



RADIOENGINEERING, VOL. 32, NO. 3, SEPTEMBER 2023 367 

 

0 10 20 30 40 50 60 70 80 90 100

Time(s)

0

2

4

6

8
C

ar
di

na
lit

y
true

ET-GBP-GP-LMB

ET-GBP-GP-FLMB

ET-BGBP-GP-FLMB

ET-BP-PHD

 
(a) The average cardinality estimations. 
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(b) The average OSPA distances of kinematic states. 
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(c) The average OSPA distances of measurement rates. 
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(d) The average OSPA distances of extension states. 
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(e) The average detection probability estimation. 
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(f) The average OSPA distance of detection probabilities. 

Fig. 4.  The average results of 100 Monte Carlo simulations. 
 

Filter Run time (s) 
ET-GBP-GP-LMB 101.1277 

ET-GBP-GP-FLMB 38.6171 
ET-BGBP-GP-FLMB 44.7009 

ET-BP-PHD 20.9468 

Tab. 2.  The average running time statistics. 

ity estimation. Due to the low detection probability in this 
simulation, the possibility of continuous missed detection 
of each target is increased, so the three filter cardinality 
estimation delays are aggravated. It can be seen from 
Fig. 4(e) that, when the detection probability is low, the 
proposed ET-BGBP-GP-FLMB filter can still obtain 
a relatively accurate estimation of detection probability. It 
can be seen from Tab. 2 that the running time of the ET-
GBP-GP-FLMB filter is significantly shorter than that of 
the ET-GBP-GP-LMB filter, and the ET-BGBP-GP-FLMB 
filter is similar to the ET-GBP-GP-FLMB filter. 

5.2 Simulation 2 
To further verify the tracking performance of the pro-

posed filter, a nonlinear scenario is set up in this simula-
tion. Similarly, considering the huge computational burden 
of the SMC implementation, this simulation only compares 
the ET-GBP-GP-LMB, ET-GBP-GP-FLMB, ET-BGBP-
GP-FLMB and ET-BP-PHD filters. The surveillance area 
of this simulation is [0, π] (rad) × [0, 2000] (m), and the 
monitoring duration is 1–100 s. A total of four targets with 
different shapes appeared successively in the surveillance 
area, and their real shapes are shown in Fig. 5(a). In this 
simulation, the extension states are all set to irregular 
shapes. The motion of each target is still modeled as a CV 
model with a process noise standard deviation  

K
1

2=10 m/s
k

σ
−w . The detection probability and the average 

number of clutter are set to 0.88 and 10, respectively. The 
sensor is at the origin, the measurement sources are distrib-
uted on the target contour. The relationship between meas-
urement source and measurement is as follows 

 
,( )k s k kh= +z x v ,   (96) 

 ( )T
2 2

, , , , , , , , ,( ) arctan( ),s k s y k s x k s x k s y kh = +x x x x x ,   (97) 

 E E E E
, ( ) ( )c

s k k k k k kθ f θ= +x x p   (98) 

where xs,k = (xs,x,k, xs,y,k)T is the measurement source, θk
E 

obeys a uniform distribution over[0, 2π]. The measurement 
noise obeys a Gaussian distribution with zero mean, and its 
standard deviations in the polar angle and polar radial di-
rections are σθ = 0.01° and σr = 0.1 m, respectively. The 
clutter is evenly distributed in the surveillance area. The 
survival time of the first target is 1–80 s, the survival time 
of the second target is 5–90 s, the survival time of the third 
target is 10–100 s, and the survival time of the fourth target 
is 15–100 s. Considering that the shape of each target is 
irregular in this simulation, the extension state of each 
target is set to 100 dimensions, i.e., NE = 100. In addition, 
for the ET-GBP-GP-LMB, ET-GBP-GP-FLMB and ET-
BGBP-GP-FLMB filters, the requested number of hypoth-
esis components for GLMB update is set to 100. The set-
tings of other simulation parameters are the same as those 
in Sec. 5.1. The single tracking result of the ET-BGBP-GP-
FLMB filter is shown in Fig. 5(b). The average results of 
100 Monte Carlo simulations are shown in Fig. 6 and 
Tab. 3. 
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In Fig. 5(b), the meanings of black solid lines, circles, 
triangles and different colors are the same as those in 
Fig. 2. It can be seen that the proposed ET-BGBP-GP-
FLMB filter can still track each extended target well and 
maintain their tracks, although the detection condition is 
poor in this simulation. It can be seen from Fig. 6 that the 
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(a) The real shapes. 

 
(b) The single tracking result of the ET-BGBP-GP-FLMB filter. 

Fig. 5.  The real shapes and single tracking result. 
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(a) The average cardinality estimations. 
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(b) The average OSPA distances of kinematic states. 
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(c) The average OSPA distances of measurement rates. 
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(d) The average OSPA distances of extension states. 
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(e) The average detection probability estimation. 
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(f) The average OSPA distance of detection probabilities. 

Fig. 6.  The average results of 100 Monte Carlo simulations. 
 

Filter Run time (s) 
ET-GBP-GP-LMB 136.4984 

ET-GBP-GP-FLMB 43.0297 
ET-BGBP-GP-FLMB 45.3201 

ET-BP-PHD 16.2161 

Tab. 3.  The average running time statistics. 

ET-GBP-GP-LMB, ET-GBP-GP-FLMB and ET-BGBP- 
GP-FLMB filters have similar estimation performance, 
which is significantly better than the ET-BP-PHD filter, 
and their cardinality estimations are delayed at target birth 
and death moments. In terms of running time, the same 
conclusion can be drawn from Tab. 3 as Tab. 2. See 
Sec. 5.1 for a theoretical analysis of these phenomena. 

6. Conclusions 
This paper proposes a new ET-FLMB filter, and its 

BGBP-GP implementation is given. Compared with the 
ET-LMB filter, the proposed ET-FLMB filter effectively 
reduces the number of hypothesis components and compu-
tational complexity. Compared with the traditional SMC 
implementation, the box particle implementation effective-
ly reduces the number of particles and computational bur-
den. In addition, the proposed filter can recursively esti-
mate the unknown detection probability, measurement rate 
and extension state with arbitrary star-convex shape of 
each extended target, effectively expanding its application 
scope. In practical applications, the proposed filter can be 
embedded into a DSP signal processing board and con-
nected to the actual tracking system to achieve extended 
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target tracking. What’s more, based on the proposed filter, 
we can also consider the classification and recognition of 
targets according to their different shapes in future work. 
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