
RADIOENGINEERING, VOL. 32, NO. 3, SEPTEMBER 2023 381 

DOI: 10.13164/re.2023.0381  

Spatial Localization of Electromagnetic Radiation 
Sources by Cascade Neural Network Model  

with Noise Reduction 

Milan ILIC 1, Zoran STANKOVIC 2, Natasa MALES ILIC 2 

1 Inst. of Networked and Embedded Systems, Alpen-Adria-University Klagenfurt, Universitätsstraße 65/67,  
9020 Klagenfurt, Austria 

2 Dept. of Telecommunication, University of Nis, Faculty of Electronic Engineering, Aleksandra Medvedeva 14,  
18000 Nis, Serbia 

ilic@lakeside-labs.at, {zoran.stankovic, natasa.males.ilic}@elfak.ni.ac.rs 

Submitted February 28, 2023 / Accepted June 21, 2023 / Online first July 31, 2023 

 
Abstract. In this paper, the Direction of Arrival - DoA 
estimation for two mobile sources was performed by using 
the Single Multilayer Perceptron (MLP) neural network 
model (SMLP-DoA) and the Cascade MLP model(CMLP). 
The latter model consists of two neural networks connected 
in a cascade where the outputs of the first MLP that rejects 
noise represent the inputs to the second network in a cas-
cade. The outputs of the neural network models determine 
the direction of arrival of the incoming signals. Two cases 
were considered, in the first case the neural networks were 
trained on the samples that were without noise, and in the 
second with samples containing noise. Both considered 
neural network models were tested with noisy samples. The 
results of these two neural models are compared to the 
results achieved by the RootMUSIC algorithm. The pre-
sented results show that the proposed CMLP model has 
a higher accuracy in determining the angular positions of 
sources compared to the classical SMLP-DoA model and 
the RootMUSIC algorithm. Moreover, the CMLP model 
executes significantly faster compared to the model based 
on the RootMUSIC algorithm. 
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1. Introduction 
Estimation of the direction of arrival (DoA) from data 

collected by sensor arrays is essential for various applica-
tions such as radars, sonars, wireless communications, 
geophysics, biomedical engineering, and others. In the last 
three decades, there has been significant progress in the 
development of algorithms that are applied to solving the 
problem of determining the direction of incoming electro-

magnetic (EM) signals. With the emergence of new tech-
nologies applied in today's 5G systems, which include 
massive MIMO systems and adaptive beamforming, the 
application of DoA estimation for obtaining information 
about the direction of the user's signal in mobile communi-
cation systems is especially important. Space signal pro-
cessing by using an adaptive antenna array is one approach 
to reducing the impact of interference and noise on the 
signal and increasing the capacity and speed of the channel 
in wireless communication systems. The vital parts in the 
antenna array beamforming are the methods for deriving 
the position and space localization in 1D and 2D spaces of 
the incoming wave called the direction of arrival, DoA, 
estimation. Based on the obtained data, it is possible to 
direct the radiation characteristics of the antenna array 
toward a specific user, while minimizing interference from 
other mobile users [1].  

Classical approaches in DoA estimation that are based 
on the application of superresolution algorithms (MUSIC 
and its modifications [1–4], ESPRIT [1]) provide results of 
high accuracy. However, they require a powerful hardware 
platform and a significant amount of time to complete very 
complex matrix calculations. These disadvantages in con-
ditions of limited hardware resources make superresolution 
algorithms quite unsuitable for real-time applications. 
An alternative approach in DoA estimation based on the 
application of artificial neural networks, ANN, [5–7] can 
enable the creation of DoA neural models whose accuracy 
is in the range of accuracy of superresolution algorithms. 
In addition, the calculation speed of these models is much 
higher than by using the superresolution algorithms since 
ANN-based models do not require a powerful hardware 
platform for performing complex matrix calculations. 
These facts can be approved by the papers that apply the 
ANN in DoA estimation in wireless communications  
[8–15], and papers relating to the application of ANN in 
DoA estimation in acoustics such as the analysis and re-
sults given in [16]. It is shown that in conditions of in-
creased noise power, the accuracy of DoA neural models 
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can significantly decrease [10], [11]. Accordingly, the main 
idea of this paper is to develop an ANN model that will be 
more accurate for DoA estimation in high noise power 
conditions. The neural network-based models used in this 
paper for DoA estimation are the Single MLP (Multi-Layer 
Perceptron) model (SMLP-DoA) and the two-stage cas-
cade MLP model (CMLP). The first stage in the CMLP 
model is formed to reduce the noise in the spatial correla-
tion matrix, while the second stage should determine the 
DoA angles. Since the second stage receives a matrix that 
is largely cleaned of noise, it will be able to determine DoA 
angles with better punctuality than neural models that per-
form DoA estimation directly over the noisy matrix. 

The paper is organized as follows: After the Introduc-
tion, in Sec. 2 and Sec. 3, the architecture of the models is 
described. Section 4 relates to the application scenarios of 
two neural network models. The results obtained by apply-
ing these models to specific examples for two users are 
presented, under different scenarios, which include noise-
less and noisy conditions for different values of the signal-
to-noise ratio (SNR) and the number of samples for training 
the network. The achieved results are compared to the 
results obtained by the RootMUSIC algorithm. In this 
paper, the simulation of neural models is performed in 
a real environment when uncorrelated White Gaussian 
noise is present on the antenna array. Comparison of the 
accuracy of the developed SMLP-DoA and CMLP neural 
models with the RootMUSIC algorithm is performed by 
analyzing the root mean square error (RMSE) and the root 
mean value of Cramer-Rao Lower Bound (rmCRLB) that 
those models expressed on the test samples. Moreover, the 
time required for DoA estimation using the mentioned 
neural models and the RootMUSIC algorithm is compared. 
In Sec. 5, the Conclusion is given and after that an over-
view of the used literature. 

2. Single MLP-DoA Model 
The single MLP-DoA model consists of an MLP 

neural network and its architecture is shown in Fig. 1. 

For the development of neural models, the first row of 
the spatial correlation matrix, without the R11 element, is 
used as given by (1), which is normalized by the power prin 
and is shown by (2). 
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By excluding the R11 element (autocorrelation element) 
from the training of the neural model, the influence of 
noise present on the main diagonal of the correlation ma-
trix is removed. The goal of forming the normalized vector 
p is the invariance of its elements when changing the dis-
tance of the signal source r as well as its power prin. 
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Fig. 1. Architecture of the SMLP-DoA neural network for 1D 

DoA estimation. 

The task of the SMLP model is to extract information 
about the position of the user in the signal space, which is 
contained in the elements of the first row of the spatial 
correlation matrix without the first element, and to deter-
mine the position of the user in the 1D DoA space using 
this information. The vector of azimuth coordinates of K 
user sources is represented by the following expression: 

 ( )T
1 2 SMLP-DoAs K fθ θ θ θ… … =   p  (3) 

where fSMLP-DoA(∙) represents the transfer function of the 
MLP model. The transfer function of the MLP model is 
described by the transfer function of the MLP neuron [10], 
[11] as: 

 ( )1 ,     1, 2, ,i i i iF i H−= + = …y w y b  (4) 

where yi – 1 vector represents the output of the (i – 1) hidden 
layer, wi represents the matrix of connection weights be-
tween neurons of the (i – 1)th hidden layer and neurons of 
the ith hidden layer, bi is a vector containing the thresholds 
of the ith hidden layer and H represents the number of hid-
den layers. The transfer function of the neurons in the 
hidden layers F is the hyperbolic tangent sigmoidal func-
tion [7]: 
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The real and imaginary parts of the spatial correlation 
matrix are fed separately to the input of the MLP neural 
network. Otherwise, bringing complex quantities to the 
input of the MLP network complicates the architecture and 
implementation of the network model as well as its train-
ing. The input layer of the neural network is: 
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The output of the neural network is represented by the 
following expression, [11]: 

 T
1 2 1s K H Hθ θ θ θ +… … =   w y  (7) 

where wH + 1 represents the matrix of connection weights 
between neurons in the last hidden layer and neurons in the 
output layer. During the neural network training process, 
the weight matrices w1, w2,…,wH, wH + 1, and threshold 
values are optimized to achieve satisfactory mapping accu-
racy. The notation used to define the MLP neural network 
is MLPNl-Ni-NH where Nl is the total number of layers, H is 
the total number of hidden layers, and Ni is the total num-
ber of neurons in the ith hidden layer. 

3. Cascade MLP Neural Model 
(CMLP) 
The cascade model, shown in Fig. 2, is composed of 

two MLP neural models that are connected in a cascade 
where the outputs of the first model represent the inputs of 
the second one.  

The first model in the cascade is the Noise Reduction 
MLP neural network (MLP-NR), which has the task of 
reducing the presence of noise in the elements of the first 
row of the correlation matrix without the first element. The 
second model in the cascade consisting of an MLP neural 
network (MLP-DoA) should determine the user's azimuth 
position in 1D DoA space. The architecture of the MLP-
DoA network is the same as the architecture of the SMLP-
DoA neural network. The vector of azimuth coordinates of 
K user sources is given by the expression: 
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where fCMLP(∙) represents the transfer function of the cas-
cade model, CMLP. The transfer functions of the MLP-NR 
model, fMLP-NR, and MLP-DoA model, fMLP-DoA, are de-
scribed by the transfer function of the MLP neuron as 
given by (4). Inputs of the MLP-NR in the CMLP model 
are as given by (6). The outputs of the MLP-NR are fed to 
the MLP-DoA neural model, whereas the outputs of the 
MLP-DoA neural network are the same as the outputs of 
the SMLP-DoA model, as given by (7). 
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Fig. 2. Architecture of the CMLP neural model for 1D DoA 

estimation.  

4. Training and Testing Data 
All models analyzed in the paper, the RootMUSIC 

and the neural network models (SMLP-DoA and CMLP), 
were programmed in the MATLAB environment, which 
was installed on the hardware platform (AMD Phenom™ 
II X4 965 processor-3.4 GHz, RAM-4 GB).  

The parameters generated for the training and testing 
of two MLP neural network models – the SMLP-DoA and 
CMLP are listed in Tab. 1. The Levenberg-Marquardt 
algorithm was used for training the MLP network using 
MATLAB software. Simulation of two signal sources that 
can be found in the azimuth position from the range of  
–30° to 30° (azimuth angle beamwidth of the antenna ar-
ray) was considered. The antenna array with four elements, 
which are distanced by half wavelength, was used for sam-
pling the signals emitted from the sources. The values of 
the signal-to-noise ratio range from –10 dB to 15 dB. 

The training and test sets are formed as follows: 
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The neural network is trained in the same manner for 
samples without noise and samples with noise. In the first 
case, an ideal correlation matrix is used, which is formed 
on signal samples from the antenna array that do not have 
noise, so that only the values of the user's position θ t1 and 
θ t2, are used to form the training set. The step value for 
training the network is θ tstep = 0.5 for both users and 7 260 
samples were generated. The data set for testing the net-
work was formed under the influence of noise.  

In the second case, a real correlation matrix is used, 
which is formed on signal samples from the antenna array, 
which have noise. The parameter values for the training 
process in the case of both users are θ tstep = 1, SNRt

step = 1.8, 
while the values for the test are θ tstep = 1.3, SNRt

step = 2. The 
sample number used for training is 25 620, while 14 053 
samples were formed for the test.  

Based on our earlier research in the field of applica-
tion of the classical MLP model in DoA estimation [10], 
[11], when applying a uniform distribution of network 
samples, the selected sampling steps provide the required 
amount of data for training DoA neural models with satis-
factory accuracy. This avoids generating a too large train- 
 

Azimuth angle beamwidth of the 
antenna array [θmin, θmax] = [–30°, 30°] 

Signal source number K = 2 

Signal-to-noise ratio range [SNRmin, SNRmax] =  
[–10 dB, 15 dB] 

Array antenna number N = 4 
Array element distance d = λ/2 

Tab. 1. Parameters used in training and testing neural models 
for the case of two users. 
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ing set which will significantly slow down the neural mod-
els' training algorithm. Also, the chosen step for test sam-
ples is adequate for evaluating the performance of the de-
veloped models for estimating DoA in a large number of 
points of their input-output space. 

It should indicate that in the case of the CMLP model, 
training of the cascaded MLP-NR and MLP-DoA networks 
is not performed simultaneously, i.e. the weights and biases 
of the two networks are changed independently. 

4.1 SMLP Model Application Results 
The first step in the analysis of DoA estimation at one 

dimension-1D in the azimuth plane was carried out by the 
Single Multilayer Perceptron neural network model- SMLP 
for two users. The following metrics were used in the neu-
ral network testing process: worst-case error (WCE), aver-
age test error (ATE), and Pearson product-moment correla-
tion coefficient (rPPM) [7].  

They were considered for SNR from –6 dB to 15 dB 
to estimate the best results of the SMLP network. As can be 
 

MLP 
network WCE [%] ATE [%] rPPM 

MLP4-18-14 21.6303 0.7929 0.9983 

MLP4-23-23 21.0274 0.8557 0.9977 

MLP4-20-10 25.1206 0.8459 0.9976 

MLP4-22-22 21.8815 0.9741 0.9966 

MLP4-9-7 22.1416 1.028 0.997 

MLP4-22-20 22.3558 0.9221 0.9972 

Tab 2. Test results for SNRt ∈ [–6 : 15], of six SMLP-DoA 
networks with the best features, trained on noiseless 
samples.  

 

MLP 
network WCE [%] ATE [%] rPPM 

MLP4-20-10 20.4665 0.737 0.9984 

MLP4-20-12 19.6322 0.925 0.9976 

MLP4-16-11 22.3673 0.9032 0.9976 

MLP4-18-7 23.0322 0.9058 0.9977 

MLP4-10-10 21.4057 0.9426 0.9974 

MLP4-18-16 22.5696 0.9807 0.9969 

Tab. 3. Test results for SNRt ∈ [–6 : 15], of six SMLP-DoA 
networks with the best features, trained on noisy 
samples.  

 

DoA model WCE [%] ATE [%] rPPM 

RootMUSIC 199.3053 4.6599 0.7415 

Tab. 4. Test results of RootMUSIC algorithm for  
SNRt ∈ [– 6 : 15]. 
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Fig. 3. Scatterplot of the SMLP-DoA model on the test set for 
SNRt ∈ [–6 : 15] when the model was trained on 
noiseless samples, a) θ1 output, b) θ2 output. 

seen from Tab. 2 to Tab. 4, the values of the neural 
network model are better than those of RootMUSIC which 
shows the largest WCE, the ATE within the usable limits, 
and a small value of the correlation coefficient. The 
performed analysis indicates that the results of the 
RootMUSIC model, in the case of high noise and close 
sources, may deviate significantly in the determination of 
the source angular position compared to the proposed 
neural model. 

The best neural model selected in the case of training 
on samples without noise is MLP4-18-14, whereas, in the 
case of training on samples with noise, the neural network 
MLP4-20-10, which has the highest value of the correla-
tion coefficient and the lowest value of the mean test error, 
was used for the realization.  

The results of DoA estimation in noiseless and noisy 
networks for the first and second sources are shown as the 
scatterplot in Fig. 3 and Fig. 4 respectively, along with the 
results provided by RootMUSIC. It can be seen that, for 
this range of SNR, the SMLP-DoA model gives satisfactory 
results, while RootMUSIC makes large errors. 
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Fig. 4. Scatterplot of the SMLP-DoA model on the test set for  
SNRt ∈ [–6 : 15] when the model was trained on noisy 
samples, a) θ1 output, b) θ2 output. 

4.2 CMLP Model Application Results 
The cascade model was developed to obtain better 

DoA estimation results compared to the previously devel-
oped SMLP model. It consists of two cascaded MLP mod-
els where the first model should reduce the influence of 
noise appearing on the elements of the correlation matrix. 
For the training of the first MLP network (MLP-NR), six 
elements of an ideal correlation matrix that does not con-
tain noise are used. In this way, inputs that include noise 
should be brought closer to values that do not contain noise 
and thereby refine the first row of the correlation matrix 
without the autocorrelation element. The elements of the 
correlation matrix purified in this procedure are put into the 
next MLP model in the cascade, which determines the 
position of the user in the 1D azimuth plane. The name of 
the second model in the cascade is MLP-DoA and it was 
trained by both noiseless and noisy samples. The training 
set of 7 260 samples for the case without noise, and 25 620 
training and 14 053 testing samples for the case with noise 
were formed in the same manner as for the SMLP-DoA 
model. 
 

MLP network WCE [%] ATE [%] rPPM 

MLP4-23-23 29.7866 1.1074 0.9964 

MLP4-22-22 30.4 1.0793 0.9964 

MLP4-23-23 28.25 1.0974 0.9963 

MLP4-22-20 28.5278 1.1087 0.9963 

MLP4-22-20 29.0264 1.1269 0.9961 

MLP4-23-23 30.7966 1.1342 0.9962 

Tab. 5. Test results of six MLP-NR networks with the best 
characteristics. 

 

MLP network WCE [%] ATE [%] rPPM 

MLP4-23-23 8.3219 0.6559 0.9993 

MLP4-13-13 7.8419 0.8085 0.999 

MLP4-22-20 8.5658 0.7636 0.999 

MLP4-16-4 8.672 0.9561 0.9987 

MLP4-22-20 8.7465 0.7078 0.9992 

MLP4-18-14 9.0153 0.8007 0.9991 

Tab. 6. Test results for SNRt ∈ [–6 : 15] of six MLP-DoA net-
works with the best features, trained on noiseless 
samples. 

 

MLP network WCE [%] ATE [%] rPPM 

MLP4-20-10 8.0734 0.7211 0.9991 

MLP4-18-16 8.1875 0.7326 0.9992 

MLP4-20-10 9.0931 0.6796 0.9992 

MLP4-23-23 9.1663 0.689 0.9992 

MLP4-16-11 9.174 0.7096 0.9992 

MLP4-14-14 9.9398 0.7131 0.9992 

Tab. 7. Test results for SNRt ∈ [–6 : 15] of six MLP-DoA net-
works with the best features, trained on noisy samples. 

The statistical results of the six best MLP-NR models 
are shown in Tab. 5. The MLP-NR model selected for 
further simulation is MLP4-23-23, which has the best ratio 
of worst-case error, average test error, and correlation 
coefficient compared to other models. Then, the purified 
values from the noise are passed through the second MLP-
DoA model in cascade, which has the task of determining 
the users' positions in the azimuth plane. Tables 6 and 7 
show the test values for SNR range –6 dB to 15 dB for the 
case of training the MLP-DoA model with samples without 
noise and for the case of training with noisy samples, re-
spectively. Compared to Tab. 4 which includes the charac-
teristics of the RootMUSIC algorithm, significantly better 
results for the MLP-DoA models can be seen.  
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The MLP4-23-23 neural network trained with noise-
less samples and the MLP4-20-10 neural network trained 
on noisy samples were selected for the implementation of 
the CMLP neural model for DoA estimation since they 
have the highest rPPM and the lowest ATE. 
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Fig. 5. Scatterplot of the CMLP model on the test set for 
SNRt ∈ [–6 : 15] when the model was trained on noiseless 
samples, a) θ1 output, b) θ2 output.  

 
a) 

 
b) 

Fig. 6. Scatterplot of the CMLP model on the test set for 
SNRt ∈ [–6 : 15] when the model was trained on noisy 
samples, a) θ1 output, b) θ2 output. 

The outputs of the CMLP model trained without and 
with noise are shown in Fig. 5 and Fig. 6, respectively 
where the results for the first source are presented under a), 
and for the second source under b), together with the re-
sults provided by RootMUSIC. It can be seen that the 
CMLP model achieves more accurate results in determin-
ing the angular position of the users than the SMLP-DoA 
model by refinement of the correlation matrix with noise. It 
can be noticed that the model trained on samples without 
noise offers better results than the model trained on sam-
ples with noise and RootMUSIC algorithm for the ob-
served parameter values. 

4.3 Simulation of SMLP-DoA and CMLP 
Model Application in the Real Scenario 
In this part of the paper, the SMLP-DoA and CMLP 

neural models were applied in the system architecture 
shown in Fig. 7 which simulates a real environment where 
two useful signals are present. The MATLAB software was 
used to estimate the time needed for the execution of the 
system when the already developed SMLP-DoA or CMLP 
neural model was implemented within the DoA module 
and to compare these times with super-resolution 
RootMUSIC algorithms. It is necessary to determine the 
distance between the N elements of the antenna array (N 
has to be greater than the number of sources K), on the 
bases of the selected receiver sampling frequency f, i.e. 
d = λ/2 = c/(2f). To generate a certain number of snapshots 
of the signal from the antenna array in a short time interval 
(Ns - number of snapshots) and to create the appropriate 
form of that signal for further processing the usage of a fast 
A/D converter and FPGA module is suggested. As men-
tioned earlier, the neural DoA model utilizes only the cor-
relation matrix without the first element: 
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where xi
(s) is the complex value of the signal at the output 

of the ith antenna sensor where the sth snapshot was taken. 
The values of the first row of the correlation matrix calcu-
lated in this way were divided by the reference value of 
power prin according to (2). Consequently, a normalized 
sample p, independent of the input reference power prin, is 
obtained from the signal space and is transferred to the 
input of the neural DoA model. The neural DoA model, 
depending on the input pattern p, determines the angular 
position of the signal source. 

To simulate signal reception on the antenna array in 
the conditions in which uncorrelated White Gaussian noise 
of power σn

2 is present on the antenna array, the MATLAB 
function wgn was used. The output of the antenna array x, 
which includes noise, was formed by adding the noise 
vector obtained at the output of the antenna array by the 
function wgn to the output of the antenna array that origi-
nates from the clean signal. The accuracy of the neural 
model was calculated for different values of SNR. 

The neural model exactness was evaluated using the 
root mean square error (RMSE) on the outputs of the neural 
model tested with the noisy test set. The RMSE value of the 
sth output of the model on the test set is defined as follows 
[7], [11]: 

 ( ) ( )( )
T 2

1T

1 ,      1,  2,   ,  
N

i i
k k k

i

RMSE k K
N =

= − = …∑ θ θ  (11) 

where θk
(i) represents the kth output of the neural model 

when the value of the ith sample is at the input of the mod-
el, θ̃k(i) represents the exact value of the angular position of 
the kth signal source for the ith sample, and NT is the number 
of test samples. 

Simulation parameters for two mobile users are given 
in Tab. 8.  

Samples containing noise were fed to the input of  
the model during the simulation in the form  
{pt( (θ t1, θ t2, SNR), θ t1, θ t2)} and were taken from the test 
set generated as follows: 

[ ]
[ ]

[ ]

t
1

t t t
2 1 2

30 :1.3 : 30 ,
30 :1.3 : 30  ,    ,

10 : 2 :15SNR

 ∈ −
 ∈ − > 
 ∈ − 

θ
θ θ θ . (12) 

The test set of 1 081 samples per one SNR value from the 
set of values {–10 dB, –6 dB, –2 dB, 0 dB, 2 dB, 6 dB, 
10 dB, 14 dB} was used. The SMLP-DoA and CMLP 
models trained on noiseless samples, as well as the 
RootMUSIC algorithm, are observed and compared in 
Tab. 9 and Fig. 8. 

After observing the trained models on samples with-
out noise, the SMLP-DoA and CMLP models trained on 
samples with noise are analyzed and are also compared 
with the RootMUSIC algorithm (Tab. 10 and Fig. 9). 

The presented results for two users indicate that the 
application of neural models achieves a much smaller error 
compared to the error of the RootMUSIC algorithm for 
both cases of training the network on samples with and 
without noise, as well as that the error achieved by the 
CMLP model is the smallest, which is especially pro-
nounced for the SNR in range –10 dB to 0 dB. 

Additionally, with the aim of a more complete analy-
sis of the performance of the mentioned models, the de-
pendence  of the root  mean  value of CRLB  (Cramer-Rao 
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Fig. 7. System architecture for spatial localization of electro-

magnetic radiation sources based on the antenna array, 
FPGA module used for spatial correlation matrix cal-
culation, and DoA estimation module. 

 

Azimuth angle beamwidth of the 
antenna array [θmin

, θmax] = [–30°, 30°] 

Signal source number K = 2 
Array antenna number  N = 4 
Array element distance d = λ/2 

The distance of the user from the 
antenna array r0 = 100 m 

Referent signal power the sensor of the 
antenna array  

prin = 0.00795 mW  
(–21 dBm) 

Number of signal samples from the 
antenna array Ns = 500 

SNR values considered in simulations 
of all models 

SNR ∈  
{–10 dB, –6 dB, –2 dB, 
0 dB, 2 dB, 6 dB, 10 dB, 
14 dB} 

Tab. 8. Simulation parameters in the case of two mobile users. 
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Model 
Model 

computation time 
for 1 081 samples 

RMSE [°] (Model errors for different signal-to-noise ratios) 

SNR –10 dB –6 dB –2 dB 0 dB 2 dB 6 dB 10 dB 14 dB 

SMLP-DoA 0.0027 s Source 1 4.57 1.83 0.76 0.51 0.39 0.27 0.26 0.25 
Source 2 5.77 2.32 0.95 0.62 0.43 0.27 0.24 0.24 

CMLP 0.0064 s Source 1 2.86 1.04 0.56 0.47 0.44 0.41 0.42 0.42 
Source 2 2.93 1.09 0.53 0.44 0.41 0.36 0.36 0.36 

RootMUSIC 0.64 s Source 1 14.10 14.15 10.21 8.32 8.81 6.23 4.51 0.76 
Source 2 28.77 22.82 18.02 16.61 13.61 10.99 6.32 0.63 

rmCLRB Source 1, Source2 7.25 4.57 2.89 2.29 1.82 1.15 0.72 0.46 

Tab. 9.  Comparing the performance of neural models trained on noiseless samples and RootMUSIC for a test set of 14 053 samples for the 
two-user case. 

 

Model 
Model 

computation time 
for 1 081 samples 

RMSE [°] (Model errors for different signal-to-noise ratios) 

SNR –10 dB –6 dB –2 dB 0 dB 2 dB 6 dB 10 dB 14 dB 

SMLP-DoA 0.0027 s Source 1 4.45 1.79 0.77 0.51 0.37 0.25 0.24 0.23 
Source 2 5.14 2.09 0.92 0.58 0.39 0.24 0.19 0.18 

CMLP 0.0064 s Source 1 2.81 1.03 0.54 0.44  0.41 0.38 0.38 0.37 
Source 2 2.74 1.08 0.58 0.52 0.49 0.45 0.45 0.45 

RootMUSIC 0.64 s Source 1 14.11 14.16 10.22 8.32 8.82 6.23 4.51 0.76 
Source 2 28.77 22.82 18.02 16.62 13.61 10.99 6.33 0.63 

rmCLRB Source 1, Source2 7.25 4.57 2.89 2.29 1.82 1.15 0.72 0.46 

Tab. 10. Comparing the performance of neural models trained on noisy samples and RootMUSIC for a test set of 14 053 samples for the two-
user case. 
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Fig. 8. Model output errors for different SNR values (neural models are trained on noiseless samples) for the case of two users:  
(a) Output 1, (b) Output 2. 
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Fig. 9. Model output errors for different SNR values (neural models are trained on noisy samples) for the case of two users:  
(a) Output 1, (b) Output 2. 
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Model  
(Case K = 2) Root MUSIC SMLP-DoA CMLP 

Time  
(14 053 samples) 8.36 s 0.036 s 0.083 s 

Time per sample 0.595 ms 2.562 µs 5.91 µs 

Tab. 11. Time required for DoA estimation of different models. 

Lower Bound) [17], [18] of each source on the SNR value 
for the test set, represented by (13), is shown in Tab. 9 and 
Tab. 10, and Fig. 8 and Fig. 9. 

   
T ( )

T 1

1( ) ( , ) , 1,...,
N

i
k k

i
rmCRLB SNR CRLB SNR k K

N
θ

=
= =∑ .(13) 

It can be seen that the RMSE values of the SMLP-DoA and 
CMLP models outperform the rmCRLB curve. The reason 
for this is that the proposed neural models show signifi-
cantly better accuracy in DoA estimation compared to 
classic unbiased DoA estimator (RootMUSIC) in cases 
where the signal sources are very close to each other. The 
results also indicate that the ANN-based DoA estimators 
are biased, which is hinted in [19]. 

Table 10 provides a comparison of the time required 
to process all samples as well as the time required per sam-
ple for the case of two users. The results shown in Tab. 11 
indicate that the simulation execution time by using artifi-
cial neural models is much faster (of the order of 100 
times) compared to the time required by the RootMUSIC 
algorithm. In addition, the SMLP-DoA model executes 
twice as fast compared to CMLP, which is expected given 
the more complex architecture of the CMLP model.  

The main disadvantage of the RootMUSIC algorithm 
is that it uses intensive matrix calculations, which in this 
case where four antennas were used does not represent 
a serious problem for calculation because the matrices are 
relatively small. However, if the number of antennas in-
creases to support a larger number of users, RootMUSIC 
will operate significantly slower due to the processing of 
a large number of matrix elements. 

5. Conclusion 
In this paper, the angle of the incoming wave (Direc-

tion of Arrival, DoA) was determined by processing the 
data of the spatial correlation matrix of signals collected by 
the sensors of the antenna array using the application of 
artificial neural network models. Two Multilayer Percep-
tron-MLP neural models were used for DoA estimation, 
the Single MLP model (SMLP-DoA) and the Cascade 
MLP model (CMLP). DoA estimation was performed for 
two users, where the models were trained on samples with-
out the presence of noise or with noise for different values 
of signal-to-noise ratio, SNR. For signal sampling in all 
scenarios, the antenna array of four elements at a distance 
of λ/2 was used, and White Gaussian noise is present. It 
can be inferred that the RootMUSIC algorithm makes large 
errors when determining the angular positions of the signal 

sources in conditions of increased noise (below 0 dB). 
Accordingly, this algorithm is not usable for the entire 
range of SNR values. Both neural models accomplish better 
results than the RootMUSIC algorithm. The CMLP model 
is more accurate than the SMLP-DoA model for all ana-
lyzed signal-to-noise ratio values. Moreover, the CMLP 
model trained on noiseless samples achieves better results 
than the model trained on samples including noise for the 
range of the analyzed parameters. Comparing the time 
required to determine the user angular positions by neural 
network models and RootMUSIC, it can be concluded that 
the CMLP model, due to the more complex architecture, 
has a slightly lower execution time of DoA estimation 
compared to the SMLP-DoA model. However, this speed 
is still significantly higher (approximately 100 times 
higher) compared to the model based on the RootMUSIC 
algorithm, which is the result of avoiding complex matrix 
calculations. 
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