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Abstract. This paper investigates the issue of multistatic 
target localization using measurements including angle of 
arrival (AOA), time delay (TD), and Doppler shift (DS). 
We delve into a practically driven nonideal localization 
scenario where the measurement noise powers remain 
unknown. An algorithm that jointly estimates target posi-
tion-velocity and measurement noise powers is proposed. 
Initially, an optimization model for the joint estimation is 
developed following the maximum likelihood estimation 
criterion. Subsequently, we cyclically minimize the optimi-
zation model to yield estimates for target position-velocity 
and measurement noise powers. The Cramér-Rao lower 
bound (CRLB) for this joint estimation is also derived. 
Contrary to existing algorithms, our proposed method 
eliminates the need for prior knowledge of measurement 
noise powers, simultaneously estimating the target posi-
tion-velocity and measurement noise powers. Simulation 
results indicate superior localization accuracy with our 
algorithm, particularly in scenarios with unknown meas-
urement noise powers. Furthermore, at moderate noise 
levels, the algorithm's estimation accuracy for target posi-
tion-velocity and measurement noise powers meets the 
CRLB.  

Keywords 
Multistatic target localization, angle of arrival, time 
delay, Doppler shift, measurement noise power 

1. Introduction 
Multistatic target localization techniques find 

extensive applications in various areas such as wireless 
sensor networks, multiple-input multiple-output (MIMO) 
radar, multistatic passive radar, navigation, atmospheric 
monitoring, ionospheric studies, and multi-antenna 
systems [1–4]. These systems leverage multiple 
transmitters and receivers to detect and pinpoint potential 
targets. The potential for enhanced resolution, resilience 
against channel fading and interference interception, and 

overall improvement in target localization has led to 
increased academic interest in this field over recent years. 

The commonly employed measurements in multistatic 
target localization are time delay (TD), Doppler shift (DS), 
and angle of arrival (AOA) of the target echo signal at the 
receivers. For target position estimation, some studies 
utilize TD information as the measurement, and presents 
some effective localization algorithms such as the singular 
value decomposition (SVD) algorithm in [5], the two stage 
weighted least squares (2WLS) algorithm in [6], the con-
vex optimization in [7], the majorization-minimization in 
[8], to estimate the target position. When the receiver has 
goniometric capability, TD and AOA measurements can be 
jointly used to enhance localization accuracy, such as the 
2WLS solution in [9], the one stage weighted least squares 
(1WLS) solution in [10], [11], quadratic constraint [12], 
and the convex solution in [13]. For the position and veloc-
ity estimation of moving targets, DS measurement can also 
be used in addition to TD measurement to estimate accu-
rately the target position and velocity, such as the iterative 
Lagrange programming neural network based algorithm in 
[14], the TSWLS and its variants in [15–19]. However, the 
above mentioned studies employ either one (TD-based 
localization [5–8]) or two (hybrid TD-AOA localization 
[9–13], hybrid TD-DS localization [14–19]) of the TD, DS 
and AOA measurements for target location. The hybrid 
TD-DS-AOA localization method, which uses all three 
types of measurements, offers theoretically higher localiza-
tion accuracy and robustness by providing estimates for 
both target position and velocity. Consequently, to further 
improve the performance of multistatic localization sys-
tems, there has been growing interest in TD-DS-AOA-
based multistatic target localization, and some effective 
algorithms have been developed. 

Li et al. [21] categorized TD-DS-AOA measurements 
into distinct groups based on different receivers, employing 
the classic multi-stage weighted least squares (mWLS) 
approach [22] to generate a target position and velocity 
estimate from each measurement group. The final estimate 
of the target position and velocity was then obtained by 
merging these group estimates through linear weighted 
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least squares. However, Li et al.'s algorithm assumes that 
measurement noises in different groups are independent, 
an assumption that often fails in practice and can lead to di-
minished localization performance. Alternatively, Yang et 
al. [23] proposed an mWLS-based localization algorithm 
without such grouping. They transformed the TD-DS-AOA 
measurement equations into pseudo-linear matrix equations 
by introducing multiple auxiliary variables simultaneously. 
Then, they used the mWLS processing to extract the target 
position and velocity estimate from these equations. While 
Yang et al.'s algorithm is theoretically and numerically 
shown to achieve the estimation accuracy of the Cramér-
Rao lower bound (CRLB) at sufficiently small measure-
ment noise levels, the multi-stage processing can lead to 
error propagation between stages, making the algorithm 
sensitive to measurement noises. To address this issue, Wei 
et al. [24] combined the AOA measurements with TD and 
DS measurement equations and linearized the TD-DS-
AOA measurement equations without introducing any 
auxiliary variables. In contrast to the frequently used 
mWLS estimators, Wei et al.'s algorithm estimates the 
target position and velocity using only a single-stage WLS 
minimization, thereby avoiding interstage error propaga-
tion. However, these existing algorithms rely on prior 
knowledge of the measurement noise powers, which is not 
always feasible in practical scenarios. Therefore, there is 
an urgent need to develop a localization algorithm that 
does not require prior knowledge of the measurement noise 
powers. 

Motivated by these considerations, our investigation 
extends to multistatic target localization using TD-DS-
AOA measurements. The main contributions of this work 
include: 

(a) A multistatic localization system with multiple 
transmitters and multiple receivers is considered, but 
unlike previous studies, the measurement noise 
powers are assumed unknown, which is closer to the 
actual non-ideal scenario.  

(b) We propose an estimator that jointly determines tar-
get position-velocity and measurement noise 
powers. Firstly, a joint optimization model for target 
position-velocity and measurement noise powers is 
deduced based on the maximum likelihood estima-
tion (MLE) criterion. To counter the nonconvexity 
and nonlinearity of the optimization model, we ap-
ply a cyclical minimization optimization strategy to 
obtain the target position-velocity and measurement 
noise power estimates.  

(c) CRLB analysis and numerical simulations are con-
ducted to validate the effectiveness and superiority 
of our proposed algorithm. 

This paper is organized into six sections. Section 2 
formulates the problem of multistatic target localization. 
Section 3 presents our proposed localization algorithm. In 
Sec. 4, we derive the CRLB for the joint estimation of 
target localization and measurement noise powers. Sec-

tion 5 involves numerical simulations to evaluate the per-
formance of our proposed algorithm. Finally, conclusions 
are drawn in Sec. 6. 

2. Problem Formulation 
In the scenario depicted in Fig. 1, we consider a mul-

tistatic localization system comprising Nt transmitters and 
Nr receivers, aimed at locating moving targets within 
a three-dimensional (3-D) space. For the thi  transmitter 
and the thj  receiver, their respective positions are symbol-
ized as st,i = [xt,i, yt,i, zt,i]T and sr,i = [xr,i, yr,i, zr,i]T, while their 
velocities are represented as ṡt,i = [ẋt,i, ẏt,i, żt,i]T and 
ṡr,i = [ẋr,i, ẏr,i, żr,i]T, for i = 1,2,…, Nt, j = 1,2,…,Nr. The 
target position is represented as u = [xo, yo, zo]T, with its 
velocity denoted as u̇ = [ẋo, ẏo, żo]T. Each receiver extracts 
Nt TDs, Nt DSs, and one pair of AOA (an azimuth and an 
elevation) measurements. These TD-DS-AOA measure-
ments, corresponding to each receiver, are forwarded to the 
fusion center for centralized localization. 

Each receiver measures a pair of AOA (an azimuth 
φj

o∈ (–π, π) and an elevation θj
o∈ (0, π)), provided by the 

following expression: 
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where arctan( )∗  signifies the inverse tangent function. 

By multiplying the TD of the (i, j)th transmitter-
receiver pair by the signal propagation speed, we can con-
vert it into the bistatic range (BR). The BR is defined as the 
sum of transmitter-to-target and target-to-receiver ranges: 
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Fig. 1.  A typical scenario of multistatic target localization. 



RADIOENGINEERING, VOL. 32, NO. 3, SEPTEMBER 2023 417 

 

Similarly, the DS of the (i, j)th transmitter-receiver 
pair can be converted into the bistatic range rate (BRR) by 
multiplying it by the signal wavelength. The BRR is de-
fined as the sum of transmitter-to-target and target-to-
receiver range rates, expressed as: 

 oo
, t,

o
r,i j i jRr R= + 

  (6) 
where 
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Given that measurement noise is unavoidable in prac-
tical applications, the exact values of azimuth, elevation, 
BR, and BRR are not directly accessible. Instead, we can 
only obtain the respective measurements affected by noise: 

 o
j j jθ θ θ= + ∆ , (9) 
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j j jϕ ϕ ϕ= + ∆ , (10) 

 o
, , ,i j i j i jr r r+ ∆= , (11) 

 o
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where θj, φj, ri,j, and ṙi,j represent the noisy measurements 
of azimuth, elevation, BR, and BRR, respectively, and Δθj, 
Δφj, Δri,j, and Δṙi,j signify their respective measurement 
noises. We define the following vectors: 
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Without loss of generality, we assume that the azi-
muth, elevation, BR, and BRR measurement noise vectors 
independently follow a zero-mean Gaussian distribution 
with covariance matrices: 

 2 2 2 2
1 1 1 2 2 2 3 3 3 4 4 4, , ,σ σ σ σ= = = =Q H Q H Q H Q H  (16) 

where σ1
2, σ2

2, σ3
2, and σ4

2 represent the measurement 
noise powers of azimuth, elevation, BR, and BRR respec-

tively, while H1, H2, H3, and H4 indicate the structures of 
the respective covariance matrices Q1, Q2, Q3, and Q4. 
Notably, in contrast to previous studies, the measurement 
noise powers σ1

2, σ2
2, σ3

2, and σ4
2 are considered unknown. 

Subsequently, the azimuth-elevation-BR-BRR meas-
urements can be formulated as vector equations: 

 o= + ∆m m m  (17) 

where m = [m1
T, m2

T, m3
T, m4

T]T symbolizes the vector of 
azimuth-elevation-BR-BRR measurements, mo = [(m1

o)T, 
(m2

o)T, (m3
o)T, (m4

o)T]T represents the vector of actual azi-
muth-elevation-BR-BRR values, and Δm = [Δm1

T, Δm2
T, 

Δm3
T, Δm4

T]T represents the vector of azimuth-elevation-
BR-BRR measurement noises. This noise vector is a zero-
mean Gaussian random vector with the covariance matrix: 

 m 1 2 3 4blkdiag ),( , ,=Q Q Q Q Q . (18) 

This paper considers a localization scenario in which 
unknown parameters encompass not only the target posi-
tion uo and velocity u̇o, but also the noise powers σ1

2, σ2
2, 

σ3
2, and σ4

2 associated with azimuth-elevation-BR-BRR 
measurements. Henceforth, the target position and velocity 
will be collectively referred to as vector ηo = [(uo)T, (u̇o)T]T, 
and the measurement noise powers will be represented as 
vector σ2 = [σ1

2, σ2
2, σ3

2, σ4
2]T. The central aim of this 

paper is to accurately estimate the target position-velocity 
ηo, using the azimuth-elevation-BR-BRR measurements m, 
even when the noise powers σ2 remain unknown. 

3. Proposed Algorithm 

3.1 Maximum Likelihood Estimator 
Based on the assumptions previously discussed, we 

can express the joint conditional probability density func-
tion for the azimuth-elevation-BR-BRR measurements as: 

 ( )

4
o 2

1
1 22 2 2

o T 1 o

2

1( | , )
(2 )

( ) ( )exp
2

k kN N
k

k k

k k k k k

k

p
π σ

σ

=

−

=

 − −
× − 

 

∏m η σ
H

m m H m m
 (19) 

where N1 = N2 = Nr and N3 = N4 = Nt Nr. As a result, the log-
likelihood function is represented as: 
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where κ denotes a constant. Consequently, from (20), the 
MLE for both the target position-velocity and the meas-
urement noise powers can be derived as the following 
optimization problem: 
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As is evident, the objective function in (21) is both 
nonconvex and nonlinear. In the subsequent discussion, we 
will employ a cyclic iteration optimization strategy to min-
imize the objective function in (21). 

3.2 Joint Target Localization and 
Measurement Noise Power Estimation 
The objective function in (21) can be minimized cy-

clically with respect to ηo and σ2. More specifically, given 
an initial estimate for the target position-velocity η, we 
derive the partial derivative of (21) with respect to σ2 and 
set it to zero. This yields an estimate of the measurement 
noise powers as follows: 
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Upon substituting this estimate of σ2 into (21), we can 
derive the update of the target position-velocity estimate 
via the subsequent minimization: 

 
o

o T 1 o4

2
1

( ) ( )min k k k k k

kk σ

−

=

− −∑
η

m m H m m . (23) 

Here, we approximate the nonlinear ML problem in 
(23) as a linear WLS problem. To this end, by applying the 
tangent function to (1) and (2), we can reformulate the 
azimuth and elevation equations as: 
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We can organize (24) corresponding to j = 1,2,…,Nr 
into vector form as follows: 
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To linearize the BR measurements, we rewrite (3) as 
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By defining a unit vector pointing from the jth 
receiver to the target as follows: 

 
To o o o o ocos( )cos( ),cos( )sin( ),sin( )j j j j j jϕ θ ϕ θ ϕ =  ρ  (33) 

we can derive from the polar coordinates of the target that 
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By arranging (36) for i = 1,2,…,Nt, j = 1,2,…,Nr in 
matrix form, we can deduce that: 
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In order to linearize the BRR measurements in (12), 
we take the derivative of (32) with respect to time, result-
ing in the following pseudo-linear equation: 
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Jointly using (8) and (35) yields 
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Equation (41) for i = 1,2,…,Nt, j = 1,2,…,Nr, can be written 
in matrix form as: 
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Combining (28), (29), (37), and (42) together, we have 
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a linear set of azimuth-elevation-BR-BRR equations as 
follows: 
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However, in practice, the true azimuth-elevation-BR-
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azimuth-elevation-BR-BRR noises as follows: 
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with its inner elements given by 
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for i = 1,2,…,Nt, j = 1,2,…,Nr, and zeros elsewhere. 

From (47) and (48), the azimuth-elevation-BR-BRR 
measurement noise vector can be approximated as: 

 1 o( )−∆ = −B h Gηm . (51) 

By substituting (50) into (23), the nonlinear ML prob-
lem can be derived as the following linear minimization 
problem: 
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The target position-velocity estimate can be derived 
from (51) using WLS as: 

 T 1 T( )−=η G WG G Wh . (54) 

When the measurement noise powers σ2 are known, 
we only need to iteratively compute (52) and (53), thereby 
minimizing the objective function in (51). However, when 
given a target position-velocity estimate η, it is also neces-
sary to iteratively update σ2. Thus, in each cycle of itera-
tion, we update the target position-velocity estimate η 
using (52) and (53) once, and then update σ2 using (22), 
and so on. 

The implementation of the proposed algorithm is 
summarized as follows: 
 

Algorithm: Joint Target Localization and Measurement Noise 
Power Estimation. 

Input: azimuth-elevation-BR-BRR measurements m 

Output: target position-velocity estimate η, measurement 
noise powers σ2 

Initialize: 0t ← , (0) T 1 T( )−= G G G hη   

Repeat: 

Compute ( 1)t+η  using (52) 

Computing 2 ( 1)( ) t+σ  using (22) 

Set 1t t← +  

until convergence 

Usually, repeating the cycle of iteration two to three 
times is sufficient to yield an estimate reaching the CRLB 
accuracy. More repetitions will not enhance accuracy nor 
degrade it. 

4. CRLB Analysis 
In this section, we derive the CRLB for the proposed 

algorithm, a theoretical lower error bound commonly used 
for any unbiased estimate of deterministic parameters. For 
the localization issue described in this paper, the unknown 
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parameters include the target position-velocity ηo and the 
measurement noise powers σ2, combined here as a vector 
ψ = [(ηo)T, σ2]T. 

Invoking the definition, we have the CRLB for ψ as 
follows 
 1CRLB( ) FIM( )−=ψ ψ  (55) 

where FIM(ψ) denotes Fisher's information matrix (FIM) 
defined as: 

 
T
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m ψ m ψψ
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Substitute (20) into (54) and use the following 
statistical properties of a Gaussian variable: 

 2 3 4E( ) 0,E( ) 1,E( ) 0,E( ) 3x x x x= = = =  (57) 

which can deduce, after some algebraic manipulations, the 
CRLB of the target position-velocity ηo and the measure-
ment noise powers σ2 as: 
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where o o∂ ∂m η  can be derived as: 
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with 
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5. Simulation and Discussions 
In this section, we assess the localization performance 

of the proposed algorithm through numerical simulations. 
We measure the localization performance by the root mean 
square error (RMSE) of the target position-velocity and the 
measured noise powers, calculated as: 
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where u(l), u̇(l), and σk
2(l) are estimates of uo, u̇o, and σk

2 at 
the lth run, respectively, and L = 1000 is the total number 
of simulation runs. The simulation scenario is illustrated in 
Fig. 2. 

As depicted in Fig. 2, we consider a multistatic 
localization system with Nt = 4 transmitters and Nr = 5 
receivers. Their positions and velocities are listed in 
Tab. 1. The R value is the radius of the circle in which the 
transmitters/receivers are located in Fig. 2, and in this case, 
it is measured as R = 1000 m. The azimuth, elevation, BR, 
and BRR measurement noise covariances are set to: 

 
Fig. 2.  Localization geometry. 
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Tx no. i xt,i 
(m)  

yt,i 
(m) 

zt,i 
(m) 

ẋt,i 
(m/s) 

ẏt,i 
(m/s) 

żt,i 
(m/s) 

1 R cos(45°) R sin(45°) 300 10 10  10 
2 R cos(135°) R sin(135°) 250 20 0  0 
3 R cos(225°) R sin(225°) 400 10 100  10 
4 R cos(315°) R sin(315°) 100 20 15 10 

Rx no. j xr,j 
(m) 

yr,j 
(m) 

zr,j 
(m) 

ẋr,j 
(m/s) 

ẏr,j 
(m/s) 

żr,j 
(m/s) 

1 0 0  100  30 –20 20 
2 R cos(0°) R sin(0°) 200 –30 10 20 
3 R cos(90°) R sin(90°) 350 10 –20 10 
4 R cos(180°) R sin(180°) 250 10 20 30 
5 R cos(270°) R sin(270°) 400 –20 10 10 

Tab. 1. Positions and velocities of transmitters and receivers. 

Q1 = σ1
2INtNr, Q2 = σ2

2INtNr, Q3 = σ3
2INr, Q4 = σ4

2INr, where 
the measurement noise standard deviations σ1, σ2, σ3, and 
σ4 are set to σ1 = 0.1 σm (deg), σ2 = 0.1 σm (deg), 
σ3 = σm (m), and σ1 = 0.01 σm (m/s), respectively, with σm 
controlling the overall measurement noise level in the 
simulations. 

5.1 Convergence of the Algorithm 
To visualize the convergence process of our proposed 

algorithm, we plot the target position-velocity estimate and 
the corresponding objective function versus the number of 
iterations during the calculation process. Here, one itera-
tion signifies one update of the target position-velocity 
estimate η and the measurement noise power σ2. The simu-
lation results are depicted in Fig. 3 and Fig. 4. 

As depicted in Fig. 3, it is evident that the localization 
results produced by the proposed algorithm rapidly reduce 
the objective function as the number of iterations increases. 
Upon conducting multiple simulations, we generally found 
that the objective function converges to a sufficiently small 
value and remains practically unchanged after 2 to 3 itera-
tions. Thus, increasing the number of iterations at this stage 
would not enhance the target localization accuracy, but 
would instead add to the time cost. Additionally, as indi-
cated in Fig. 4, the WLS solution used by the proposed 
algorithm for the initial iteration is positioned close to the 
true location of the target, ensuring quick convergence of 
the iterations to the true location of the target. 

 
Fig. 3.  Variation of the objective function with the number of 

iterations. 

 
Fig. 4.  Variation of the target position estimate with the 

number of iterations. 

5.2 Localization RMSE of the Algorithm at 
Different Measurement Noise Levels 
We now compare the localization RMSE of the pro-

posed algorithm with existing algorithms, as well as with 
the CRLB. The benchmark algorithms include those devel-
oped in references [18], [20], and [21], conveniently ab-
breviated as mWLS-Li, mWLS-Yang, and 1WLS-Wei, 
respectively. The overall measurement noise level is set 
between –10 dB to 50 dB. As mentioned earlier, the im-
plementations of mWLS-Li, mWLS-Yang, and 1WLS-Wei 
algorithms require the measurement noise powers. This 
paper considers a more practical non-ideal localization 
scenario, where the measurement noise powers are as-
sumed unknown. In this section, we proceed to evaluate the 
localization performance of the algorithms in this non-ideal 
scenario, hence the measurement noise powers are not 
available. In this case, the measurement noise powers can 
be artificially specified to certain values. Obviously, the 
values of the measurement noise powers have a significant 
impact on the algorithm performance; the closer they are to 
the true measurement noise powers, the better the localiza-
tion performance, and vice versa. In order to compare the 
simulation performance fairly, we set the measurement 
noise powers to be randomly distributed within their range 
of values, in order to minimize the effect of subjective 
settings on the simulation results. The estimation RMSEs 
of the algorithms on target position and velocity are plotted 
in Fig. 5. 

The RMSEs of the algorithms for target position-
velocity estimation at measurement noise levels from –
10 dB to 40 dB are provided in Fig. 5. It is observed that 
when the measurement noise powers are unknown, the 
localization RMSEs of mWLS-Li, mWLS-Yang, and 
1WLS-Wei algorithms do not reach the CRLB at different 
measurement noise levels. Contrastingly, the localization 
RMSE of our proposed algorithm is significantly lower and 
approximates the CRLB at mild measurement noise levels 
(20 lg(σm) ≤ 40 dB). Due to the nonlinearity of the loca-
lization issue, the target position-velocity RMSE curves of 
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(a) 

 
(b) 

Fig. 5. Localization RMSE of the algorithms at different 
measurement noise levels. (a) Target position 
estimation. (b) Target velocity estimation. 

   
                                (a)                                                          (b) 

   
                                (c)                                                          (d) 

Fig. 6.  Estimation performance of the measurement noise 
powers. (a) Azimuth measurement noise power estima-
tion. (b) Elevation measurement noise power estima-
tion. (c) BR measurement noise power estimation. 
(d) BRR measurement noise power estimation. 

the proposed algorithm slightly deviate from the CRLB at 
large measurement noise levels (20 lg(σm) > 40 dB). How-
ever, the localization RMSE of the proposed algorithm is 
about an order of magnitude smaller than that of existing 
algorithms. 

While the proposed algorithm estimates the target 
position and velocity, it also estimates the measurement 
noise powers. The corresponding simulation results are 
illustrated in Fig. 6. 

As existing algorithms fail to estimate the measure-
ment noise powers, Figure 6 includes only the RMSEs of 
the measurement noise powers estimated by the proposed 
algorithm. The RMSEs of the estimated measurement noise 
powers by the proposed algorithm approximate the CRLB 
at measurement noise levels of 20 lg(σm) < 40 dB. As an-
ticipated, the RMSE curves deviate from the CRLB under 
large measurement noise conditions of 20 lg(σm) > 40 dB. 
This is mainly due to the higher-order error terms discard-
ed by the proposed algorithm when linearizing the azimuth, 
elevation, BR, and BRR measurement equations. Note that 
Figure 6(d) is different form remaining sub-plots, the 
RMSE curve of σ4 deviating from the CRLB at a threshold 
of 30 dB, about 10 dB smaller than other sub-plots. This is 
because the relative value of the BRR measurement noise 
power σ4 to the overall measurement error power σm is 
smaller than that of the other measurement noise powers 
σ1, σ2, σ3, which causes the RMSE of σ4 to deviate more 
easily from the CRLB compared to σ1, σ2, σ3. 

5.3 CDOP Analysis 
Sections 5.1 and 5.2 analyze the localization perfor-

mance of the algorithm for only one transmitter/receiver 
geometry. To further explore the impact of different trans-
mitter/receiver geometries on the localization accuracy, we 
introduce here the Geometric Dilution Of Precision (GDOP) 
factor for target localization. The GDOP plot shows the 
localization accuracy achievable with a particular geometry 
of the MIMO radar, where the color bar represents the nor-
malized localization error. Lower values indicate that the 
geometry provides higher localization accuracy. 

Figure 7 shows the GDOP contour plots for target lo-
calization by the distributed MIMO radar with symmetric 
and asymmetric geometries for a measurement noise level 
of 20 lg(σm) = 30 dB and a target height of z = 0.5R and 
z = 5R. It can be found that the localization accuracy de-
creases for targets farther away from the central coverage 
area where the distributed MIMO radar is located. Moreo-
ver, the target localization accuracy is highest at the loca-
tion of the MIMO radar area. Comparing the contours in 
Fig. 7(a) and (b) shows that the distance of the target from 
the center region has less effect on the target localization 
accuracy when the target height is higher. Comparing the 
contours in Fig. 7(a) and (c) shows that the MIMO radar 
with symmetric geometry has better localization performance 
compared to the MIMO radar with asymmetric geometry. 
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                 (a)                                   (b)                                    (c) 

Fig. 7.  GDOP plot for different geometries. (a) Symmetrical 
geometry, z = 0.5R. (b) Symmetrical geometry, z = 5R. 
(c) Asymmetric geometry, z = 0.5R. 

 

Algorithm Average Computational Time (ms) 
mWLS-Li 1.410130  

mWLS-Yang 0.942750 

1WLS-Wei 1.112495 
Proposed 2.812392  

Tab. 2.  Average computational time of the algorithms. 

5.4 Comparison of Computation Efficiency 
Finally, we conduct simulations using the algorithms 

on the same computer and calculate the average time re-
quired for a single run of the algorithms to quantitatively 
evaluate their computational complexity. The main specifi-
cations of the computer are as follows: CPU: Intel(R) 
Core(TM) i7-8550U @1.80 GHz; RAM: 16 GB DDR4 
2666 MHz; Operating system: Windows 10; Software: 
MATLAB R2021b. The simulation results are displayed in 
Tab. 2. 

As evident in Tab. 2, the average computational time 
of the proposed algorithm is 1.4 ms, 1.9 ms and 1.7 ms 
higher than that of the mWLS-Li, mWLS-Yang, and 
1WLS-Wei algorithms. This is owing to the additional 
computation required for measuring noise powers during 
the iteration. However, since the proposed algorithm only 
requires two to three iterations to converge, compared to 
the mWLS-Li, mWLS-Yang, and 1WLS-Wei algorithms, 
the computational time of the proposed algorithm is of the 
same order of magnitude as that of the existing algorithms. 
Moreover, considering that the proposed algorithm does 
not necessitate prior knowledge of the measurement noise 
powers while maintaining solid localization performance, 
the slight increase in computational time is acceptable. 

6. Conclusion 
In this paper, we have investigated the multistatic target 

localization issue with AOA, TD, and DS measurements 
under conditions of unknown measurement noise powers. 
We have proposed a joint target localization and measure-
ment noise power estimation algorithm based on cyclical 
iterations. Compared with existing algorithms, the pro-
posed algorithm does not require any prior knowledge of 
the measurement noise powers and can estimate both the 
target position-velocity and the measurement noise powers, 
making it more versatile in practice. Simulation results 
demonstrate that the proposed algorithm has superior local-

ization accuracy compared to existing algorithms under 
conditions of unknown measurement noise powers, and 
can approximate the CRLB at mild measurement noise 
levels. The instability of the proposed algorithm at large 
measurement noise levels has been found through the 
simulation and theoretical analysis. In our further study, we 
will take this issue as the key point and find an improved 
method to avoid this problem. 

References 
[1] DONTAMSETTI, S. G., KUMAR, R. V. R. A distributed MIMO 

radar with joint optimal transmit and receive signal combining. 
IEEE Transactions on Aerospace and Electronic Systems, 2021, 
vol. 57, no. 1, p. 623–635. DOI: 10.1109/TAES.2020.3027103 

[2] ZAIMBASHI, A. A unified framework for multistatic passive 
radar target detection under uncalibrated receivers. IEEE 
Transactions on Signal Processing, 2021, vol. 69, p. 695–708. 
DOI: 10.1109/TSP.2020.3048800 

[3] FUGENSCHUH, A. R., CRAPARO, E. M., KARATAS, M., et al. 
Solving multistatic sonar location problems with mixed-integer 
programming. Optimization and Engineering, 2019, vol. 21, 
p. 273–303. DOI: 10.1007/s11081-019-09445-2 

[4] SAHR, J. D., LIND, F. D. The Manastash Ridge radar: A passive 
bistatic radar for upper atmospheric radio science. Radio Science, 
1997, vol. 32, no. 6, p. 2345–2358. DOI: 10.1029/97RS02454 

[5] NOROOZI, A., SEBT, M. A. Target localization in multistatic 
passive radar using SVD approach for eliminating the nuisance 
parameters. IEEE Transactions on Aerospace & Electronic 
Systems, 2017, vol. 53, no. 4, p. 1660–1671. DOI: 
10.1109/TAES.2017.2669558 

[6] AMIRI, R., BEHNIA, F., ZAMANI, H. Asymptotically efficient 
target localization from bistatic range measurements in distributed 
MIMO radars. IEEE Signal Processing Letters, 2017, vol. 24, 
no. 3, p. 299–303. DOI: 10.1109/LSP.2017.2660545 

[7] AMIRI, R., BEHNIA, F., SADR, M. A. M. Exact solution for 
elliptic localization in distributed MIMO radar systems. IEEE 
Transactions on Vehicular Technology, 2018, vol. 67, no. 2, 
p. 1075–1086. DOI: 10.1109/TVT.2017.2762631 

[8] PANWAR, K., BABU, P., STOICA, P. Maximum likelihood 
algorithm for time-delay based multistatic target localization. IEEE 
Signal Processing Letters, 2022, vol. 29, p. 847–851. DOI: 
10.1109/LSP.2022.3158592 

[9] NOROOZI, A., SEBT, M. A. Algebraic solution for three-
dimensional TDOA/AOA localisation in multiple-input–multiple-
output passive radar. IET Radar, Sonar & Navigation, 2018, 
vol. 12, no. 1, p. 21–29. DOI: 10.1049/iet-rsn.2017.0117 

[10] AMIRI, R., BEHNIA, F., ZAMANI, H. Efficient 3-D positioning 
using time-delay and AOA measurements in MIMO radar systems. 
IEEE Communications Letters, 2017, vol. 21, no. 12, p. 2614 to 
2617. DOI: 10.1109/LCOMM.2017.2742945 

[11] KAZEMI, S. A. R., AMIRI, R., BEHNIA, F. Efficient closed-form 
solution for 3-D hybrid localization in multistatic radars. IEEE 
Transactions on Aerospace and Electronic Systems, 2021, vol. 57, 
no. 6, p. 3886–3895. DOI: 10.1109/TAES.2021.3082664 

[12] LIU, M. M., GAO, W., ZHAO, Y. An efficient estimator for 
source localization using TD and AOA measurements in MIMO 
radar systems. IEEE Sensors Letters, 2021, vol. 5, no. 3, p. 1–4. 
DOI: 10.1109/LSENS.2021.3057363 



424 J. YANG, C. LIU, J. HUANG, ET AL., OVERCOMING UNKNOWN MEASUREMENT NOISE POWERS IN MULTISTATIC TARGET … 

[13] KAZEMI, S. A. R., AMIRI, R., BEHNIA, F. Efficient convex 
solution for 3-D localization in MIMO radars using delay and 
angle measurements. IEEE Communications Letters, 2019, vol. 23, 
no. 12, p. 2219–2223. DOI: 10.1109/LCOMM.2019.2948175 

[14] ZHU, L., WE, G., SONG, H., et al. Robust moving target localiza-
tion in distributed MIMO radars via iterative Lagrange program-
ming neural network. IEEE Sensors Journal, 2020, vol. 20, no. 21, 
p. 13007–13017. DOI: 10.1109/JSEN.2020.3003349 

[15] NOROOZI, A., AMIRI, R., NAYEBI, M. M., et al. Efficient 
closed-form solution for moving target localization in MIMO 
radars with minimum number of antennas. IEEE Transactions on 
Signal Processing, 2020, vol. 68, p. 2545–2557. DOI: 
10.1109/TSP.2020.2986163 

[16] ZHANG, F., SUN, Y., ZOU, J., et al. Closed-form localization 
method for moving target in passive multistatic radar network. 
IEEE Sensors Journal, 2020, vol. 20, no. 2, p. 980–990. DOI: 
10.1109/JSEN.2019.2944957 

[17] SONG, H., WEN, G., ZHU, L. An approximately efficient 
estimator for moving target localization in distributed MIMO radar 
systems in presence of sensor location errors. IEEE Sensors 
Journal, 2020, vol. 20, no. 2, p. 931–938. DOI: 
10.1109/JSEN.2019.2943738 

[18] KAZEMI, S. A. R., AMIRI, R., BEHNIA, F. An approximate ML 
estimator for moving target localization in distributed MIMO 
radars. IEEE Signal Processing Letters, 2020, vol. 27, p. 1595 to 
1599. DOI: 10.1109/LSP.2020.3020505 

[19] ZHAO, Y., ZHAO, C., LIANG, J. New algebraic algorithm for 
moving target localization in distributed MIMO radar systems. 
Journal of Electronics & Information Technology, 2018, vol. 40, 
no. 3, p. 548–556. DOI: 10.11999/JEIT170510 

[20] JABBARI, M. R., TABAN, M. R., GAZOR, S. A robust TSWLS 
localization of moving target in widely separated MIMO radars. 
IEEE Transactions on Aerospace and Electronic Systems, 2023, 
vol. 59, no. 2, p. 897–906. DOI: 10.1109/TAES.2022.3194112 

[21] LI, W., TANG, Q., HUANG, C., et al. Location algorithms for 
moving target in non-coherent distributed multiple-input multiple-
output radar systems. IET Signal Processing, 2017, vol. 11, no. 5, 
p. 503–514. DOI: 10.1049/iet-spr.2016.0323 

[22] CHAN, Y. T., HO, K. C. A simple and efficient estimator for 
hyperbolic location. IEEE Transactions on Signal Processing, 
1994, vol. 42, no. 8, p. 1905–1915. DOI: 10.1109/78.301830 

[23] YANG, L., YANG, L., HO, K. C. Moving target localization in 
multistatic sonar using time delays, Doppler shifts and arrival 
angles. In IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP). New Orleans (LA, USA), 2017, 
p. 3399–3403. DOI: 10.1109/ICASSP.2017.7952787 

[24] WEI, Y., LI, W., TANG, Q., et al. A closed-form location 
algorithm without auxiliary variables for moving target in 
noncoherent multiple-input and multiple-output radar system. 
IEEE Access, 2020, vol. 8, p. 69496–69508. DOI: 
10.1109/ACCESS.2020.2984825 

About the Authors … 
Jing YANG was born in 1985. She received her M.Sc. 
from the National Digital Switching System Engineering 
and Technological Research Center in 2011. Her research 
interests include target location, parameter estimation, and 
target detection of passive radar.  

Chengcheng LIU (corresponding author) was born in 
1986. He received his Ph.D. from the National Digital 
Switching System Engineering and Technological Re-
search Center in 2014. His research interests include wide-
band array signal processing. 

Jie HUANG was born in 1973. She received her Ph.D. 
from the National Digital Switching System Engineering 
and Technological Research Center in 2017. Her research 
interests include target detection and acquisition. 

Dexiu HU was born in 1983. He received his Ph.D. from 
Tsinghua University in 2017. His research interests include 
electron reconnaissance. 

Chuang ZHAO was born in 1978. He received his Ph.D. 
from the National Digital Switching System Engineering 
and Technological Research Center in 2019. His research 
interests include electron reconnaissance. 

 


	1. Introduction
	2. Problem Formulation
	3. Proposed Algorithm
	3.1 Maximum Likelihood Estimator
	3.2 Joint Target Localization and Measurement Noise Power Estimation

	4. CRLB Analysis
	5. Simulation and Discussions
	5.1 Convergence of the Algorithm
	5.2 Localization RMSE of the Algorithm at Different Measurement Noise Levels
	5.3 CDOP Analysis
	5.4 Comparison of Computation Efficiency

	6. Conclusion

