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Abstract. With the advancement of various aerial plat-
forms, there is an increasing abundance of aerial images 
captured in various environments. However, the detection 
of densely packed small objects within complex back-
grounds remains a challenge. To address the task of detect-
ing multiple small objects, a multi-object detection algo-
rithm based on Distance Intersection Over Union loss Non-
Maximum Suppression (DIOU-NMS) integrated with You 
Only Look Once version 5 (YOLOv5) is proposed. Leverag-
ing the YOLOv5s model as the foundation, the algorithm 
specifically addresses the detection of abundantly and 
densely packed targets by incorporating a dedicated small 
object detection layer within the network architecture, thus 
effectively enhancing the detection capability for small 
targets using an additional upsampling operation. Moreo-
ver, conventional non-maximum suppression is replaced 
with DIOU-based non-maximum suppression to alleviate 
the issue of missed detections caused by target density. 
Experimental results demonstrate the effectiveness of the 
proposed method in significantly improving the detection 
performance of dense small targets in complex back-
grounds. 
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1. Introduction 
Object detection has widespread applications in vari-

ous fields, including autonomous driving, intelligent trans-
portation, security surveillance, etc. In real-world scenari-
os, aerial images often contain a multitude of dense small 
targets which may undergo deformations, occlusions, and 
susceptibility to adverse effects from complex backgrounds 
characterized by varying lighting and clutter interference. 
Consequently, motion object detection encounters signifi-
cant challenges in such scenarios.  

Object detection is a vital field in computer vision, in-
tegrating cutting-edge technologies from image processing, 
pattern recognition, automatic control, artificial intelli-
gence, and computer science etc., whose applications span 
diverse domains in both industrial and daily contexts [1]. 
As science and technology progress continuously, there is 
an escalating demand for enhancing stability and robust-
ness in detecting dense small targets. Overcoming real-
world challenges, such as mitigating interference from 
complex backgrounds and mitigating the impact of disturb-
ances on detection, represents critical issues in object de-
tection tasks [2]. In today's landscape, unmanned aerial 
vehicles (UAVs) are increasingly deployed in various 
global domains, elevating UAV-based aerial image recog-
nition and detection to a prominent research frontier. Aerial 
images are utility in forestry and agricultural crop detection 
[3], [4], [5], intelligent city transportation [6], urban plan-
ning [7], municipal management [8], [10], power line in-
spection [10], [11], emergency rescue operations [12], [13], 
[14], among other applications. Nevertheless, the detection 
of small targets in aerial images remains a significant chal-
lenges due to some factors such as lighting variations, 
angles, and obstructions. Additionally, high exposure and 
complex backgrounds for detecting small targets in images 
substantially intensify the difficulty, thereby imposing 
greater demands on current object detection algorithms. 

Aerial images, captured from an overhead perspec-
tive, inherently exhibit greater complexity and encompass 
a higher abundance of small objects compared to other 
image categories. The definition of small targets in object 
detection is approached using two methods including rela-
tive scale-based definition [15] and absolute scale-based 
definition [16]. In the relative scale-based approach, ob-
jects whose bounding box width and height are one-tenth 
of the original image width and height, respectively, are 
deemed small targets. The absolute scale-based approach 
designates targets with pixel values ranging from 20 to 32 
as small targets, while targets with pixel values ranging 
from 2 to 20 are further classified as tiny targets. Given the 
intricacies of real-world aerial scenes, the proportion of 
small targets in the images is usually limited, resulting in 
scarce information available for small target detection and 
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thus exacerbating the detection difficulty. Presently, deep 
learning algorithms have yet to deliver a satisfactory solu-
tion to these challenges, underscoring the significance of 
theoretical research on the automatic detection of small-
sized and densely-distributed objects in aerial images. 

YOLOv5, a widely adopted model in the You Only 
Look Once (YOLO) series, offers a lightweight design 
suitable for efficient deployment in various environments. 
In this study, a detection-based multi-object detection algo-
rithm built upon YOLOv5 is proposed. Our approach lev-
erages the traditional YOLOv5 multi-object detection algo-
rithm with the proposed DIOU-NMS, and extensive exper-
iments are conducted on the VisDrone2019 dataset to 
demonstrate the effectiveness and feasibility of the pro-
posed algorithm. The main contributions of this research 
are as follows. 

(1) For addressing the issue of missing small-scale 
targets, an additional upsampling operation after the two 
existing upsampling operations in the YOLOv5s model 
structure is introduced, which results in a 160 × 160 feature 
map, then fusing with the second-layer feature map of the 
backbone network to obtain a larger feature map specifical-
ly suited for detecting small objects. This modification 
significantly enhances the detection accuracy compared to 
the original classic model. 

(2) Furthermore, the Distance Intersection Over 
Union loss Non-Maximum Suppression (DIOU-NMS) 
method is proposed as a replacement for the conventional 
Non-Maximum Suppression (NMS) for candidate box 
filtering. DIOU-NMS effectively enhances the ability to 
capture small targets, leading to further improvements on 
detection accuracy. 

The remainder of this paper is organized as follows. 
In Sec. 2 an overview of recent research on target detection 
algorithm is presented. In Sec. 3, detailed explanations of 
the specific implementation process of our proposed multi-
object detection method are provided. Section 4 covers the 
dataset, evaluation metrics, and experimental setup details. 
The experimental results and comparative analysis are 
given in Sec. 5. Finally, in Sec. 6, our research findings and 
outline future directions for potential studies are concluded. 

2. Related Research 
Object detection aims to locate the positions of targets, 

obtain bounding boxes around them, and then extract 
appearance features to recognize their categories, thereby 
determining the identity of the targets. In simple terms, it 
involves accurately locating objects in a video frame, iden-
tifying their categories, and obtaining their position coordi-
nates and size. 

2.1 Research Status of Object Detection 
The field of object detection has a history of several 

decades and can be roughly divided into two stages. The 

first stage consists of traditional object detection algo-
rithms, which primarily relied on manually designed object 
features. These methods involved selecting potential re-
gions of interest containing the objects, extracting features 
from these regions, and performing feature classification to 
achieve object detection. For example, Viola and Jones 
proposed the Viola-Jones detection algorithm [1], [17], 
which utilized Haar-like wavelet features and integral 
image techniques with AdaBoost for object detection using 
sliding windows. Another significant contribution was the 
histogram of oriented gradients (HOG) feature detection 
algorithm introduced by Dalal and others [18]. It repre-
sented the local appearance and shape of objects using the 
density distribution of gradients or edges, providing stabil-
ity against geometric deformations and lighting variations, 
and laying an important foundation for subsequent detec-
tion methods. In 2008, Felzenszwalb et al. [19] proposed 
the deformable parts model (DPM), which improved upon 
the HOG features. DPM enhanced detection accuracy by 
hard negative mining, bounding box regression, and con-
text modeling. However, it exhibited limited stability when 
dealing with significant object rotations. 

As computer hardware capabilities continued to im-
prove, the demand for both accuracy and real-time perfor-
mance in object detection increased. Traditional object 
detection algorithms could not cope with the vast amounts 
of data present in images and videos. The advent of deep 
learning brought about a new opportunity for enhancing the 
performance of object detection algorithms, ushering in the 
second stage of development-research based on deep 
learning. Deep learning is a class of multi-layer neural 
network algorithms that automatically learn hidden infor-
mation from training data, transforming pixel data from 
images or videos into higher-order, more abstract features. 
Compared to traditional object detection methods, deep 
learning-based algorithms exhibit remarkable speed, high 
accuracy, and strong robustness. Deep learning-based ob-
ject detection algorithms can be categorized into two 
branches including two-stage object detection algorithms 
and one-stage object detection algorithms.  

The two-stage object detection algorithm initially 
generates candidate regions from the input image, followed 
by the generation of target bounding boxes within these 
identified candidate regions. An exemplar of the two-stage 
approach is the region convolutional neural networks (R-
CNN) introduced by Girshick et al. [20]. This methodology 
employs the selective search (SS) technique to delineate 
potential candidate boxes within the image, hypothesizing 
the presence of objects. Subsequently, these candidate 
boxes are uniformly resized to a predetermined dimension 
and input into a convolutional neural network (CNN) archi-
tecture to facilitate the extraction of discriminative features. 
The extracted feature representations are then supplied as 
input to a support vector machine (SVM) for the purpose of 
classifying and predicting the presence of target objects 
within the candidate boxes. Furthermore, the SVM aids in 
predicting the specific category to which the detected ob-
jects belong. Building upon R-CNN, He et al. [21] pro-
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posed the spatial pyramid pooling net (SPPNet) algorithm, 
which incorporated the spatial pyramid pooling (SPP) 
layer. This innovation allowed the computation of fixed-
size feature maps for the entire image, eliminating the net-
work's dependence on input image size and avoiding re-
dundant computation of convolutional feature maps. 
Girshick et al. [22] further advanced the field with the fast 
R-CNN algorithm, amalgamating the strengths of R-CNN 
and SPPNet, enabling end-to-end training and achieving 
improved detection performance. In addition, Zhang et al. 
[23] introduced the faster R-CNN algorithm, which ad-
dressed the time-consuming nature of the SS method by 
employing clustering and constructing a region proposal 
network (RPN) for region extraction, classification, and 
regression. This advancement paved the way for real-time 
object detection. 

In contrast, one-stage object detection algorithms by-
pass the candidate region generation phase, and directly 
predict object class probabilities and bounding box coordi-
nates in a single step, resulting in faster detection speed. 
YOLOv1 [24] emerged as a pioneering one-stage object 
detection algorithm, which partitioned the image into mul-
tiple grids, and simultaneously predicted class probabilities 
and bounding boxes for each grid, achieving higher detec-
tion speed while maintaining better accuracy compared to 
the two-stage R-CNN algorithm. Subsequently, Redmon et 
al. [25] introduced YOLOv3, which further enhanced the 
detection capability for small objects by incorporating 
multi-scale predictions and redesigning the loss function. 
Bochkovskiy et al. [26] proposed the YOLOv4 algorithm, 
optimizing the YOLOv3 structure and achieving remarka-
ble levels of accuracy and speed. In 2020, Ultralytics [27] 
further advanced the YOLO series with the YOLOv5 
algorithm, which introduced the focus operation and 
integrated the CSP2 structure from the lightweight network 
Cross Stage Partial Network (CSPNet) [28] into the 
bottleneck network, enhancing feature fusion and further 
improving detection performance. The YOLO series of 
algorithms has undergone continuous development and 
refinement, solidifying its status as one of the most widely 
used object detection methods. Consequently, in this paper 
an in-depth investigation of the YOLOv5 object detection 
algorithm is undertaken. 

2.2 Small Object Detection Algorithm 
In the field of object detection with deep learning, the 

detection of small objects has become a hot research topic 
due to their small proportion in images and lack of distinc-
tive features. This challenge is particularly prominent in 
aerial image detection, where complex backgrounds, rela-
tively low resolutions, a high prevalence of small objects, 
overlapping and occlusion, and a top-down perspective 
further complicate detection. As a result, research in this 
area has emerged as a crucial subfield on small object de-
tection. 

Early on, researchers like Lin et al. proposed the use 
of feature pyramids [29] to address scale variations in 
images by fusing features from different hierarchical levels 

and constructing feature pyramids. However, this approach 
had limitations in preserving feature information for small 
objects. In response, Deng et al. [30] introduced an 
extended feature pyramid network (EFPN) designed specif-
ically for small object detection. Yang et al. [31] intro-
duced QueryDet, a novel query mechanism, to accelerate 
the inference speed of feature pyramid-based object detec-
tors. 

In recent years, the YOLO series of detection methods 
have gained wide adoption in unmanned aerial vehicle 
(UAV) image-based object detection due to their speed and 
accuracy. Liu et al. [11] introduced MTI-YOLO for tasks 
like inspecting insulators on power lines using drones. 
Zhou et al. [32] presented YOLOv3 with squeeze excita-
tion for small object detection in remote sensing images, 
reducing computational costs. Recognizing the limited 
representation of small objects after multiple down-
sampling steps and their potential submergence in the 
background, Min et al. [33] proposed the FE-YOLOv5 
model with a feature enhancement module (FEM) and 
spatially aware module (SAM) to capture detailed semantic 
and foreground information. 

Kim and fellow researchers [34] introduced ECAP-
YOLO, an efficient channel attention pyramid YOLO 
model, for small object detection in aerial images, leverag-
ing efficient pyramid channel attention to enhance the 
YOLO backbone. Luo et al. [35] improved YOLOv5 by 
incorporating a feature extraction module with three 
asymmetric convolutions to strengthen the extraction of 
less prominent features. Pei et al. [36] developed the LCB-
YOLOv5 model, which consists of a new module com-
posed of lightweight stable modules (LSM) and a cross-
stage partial network with three convolution (C3) structure 
modules to extract multiple features of small objects. 

The YOLO series of algorithms, continually evolving 
and improving, have now become one of the most widely 
applied methods for small object detection. 

2.3 YOLOv5 Object Detection Algorithm 
The most significant difference between the YOLO 

series object detection algorithms and previous object de-
tection methods at the time lies in the elimination of the 
two-stage process, comprising region proposals and classi-
fication. YOLO focuses on a one-stage object detection 
approach. The original YOLOv1 was an adaptation of the 
GoogLeNet structure [36], composed of 24 convolutional 
layers and two fully connected layers. To address the prob-
lems of YOLOv1's lower detection rates and larger detec-
tion errors, YOLOv2 was introduced. In YOLOv2 anchor 
boxes were incorporated, and the training was adjusted by 
predicting target object types as many classes as possible. It 
employed DarkNet-19 as the backbone, featured a deeper 
network structure with 3 × 3 convolutional kernels, re-
moved dropout from convolutional layers [37], used batch 
normalization [38], and transformed the final layer into 
a convolutional layer. Additional techniques such as skip 
connections and multi-scale predictions were implemented, 
resulting in improved accuracy and robustness. 
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Fig. 1. The framework of YOLOv5 algorithm. 

In YOLOv3, the network architecture was further re-
fined with DarkNet-53 as the backbone, and it introduced 
pyramid-like feature extraction layers and integrated resid-
ual network structures, leading to substantial accuracy 
improvements. It adopted a multi-label classification and 
binary cross-entropy loss [39] for bounding boxes. To 
obtain semantic information from preceding layers and 
fine-grained details from the initial layers, the network 
concatenated feature maps extracted at the beginning with 
upsampled feature maps three times before making predic-
tions at the final scale. Bounding box clustering techniques 
were employed to effectively address the problem of im-
balanced object class numbers. 

YOLOv4 utilized CSPDarknet-53 [28] as the main 
network, featuring the cross stage partial (CSP) structure, 
which sped up training and enhanced detection accuracy. It 
introduced the path aggregation network (PANet) [40] 
module for combining features from different levels, effec-
tively improving small object detection capability and 
enhancing object localization accuracy. The inclusion of 
the spatial attention module (SAM) [41] enabled adaptive 
feature map importance adjustments. 

YOLOv5, building upon the previous versions, incor-
porated the DropBlock regularization technique [42] to 
reduce redundant information in feature maps, improving 
the model's generalization. Model simplification enhanced 
detection speed. It also supported exporting pre-trained 
models in open neural network exchange (ONNX) format, 
enabling model deployment in various deep learning 
frameworks, making it more adaptable for aerial and UAV-
based object detection tasks. 

This research is based on the one-stage YOLOv5 
object detection algorithm, which is designed to identify 
object locations and sizes in a given video frame, excluding 
background information. The overall architecture of the 
YOLOv5 algorithm is depicted in Fig. 1. 

The YOLOv5 architecture is comprised of four key 
components including the input module, backbone net-
work, neck network, and output module. In the input mod-
ule, the original image is subjected to preprocessing, and 
data augmentation is performed using the mosaic method, 
which enables adaptive image scaling and anchor box cal-
culation. The backbone network encompasses modules 
such as focus, convolutional block lightweight (CBL), and 
cross-stage partial (CSP) structures, which are convolu-
tional neural networks designed to extract features of vary-
ing granularity from the image. The neck network com-
bines the feature pyramid networks (FPN) and path aggre-
gation networks (PAN) to enhance feature fusion. FPN 
facilitates the propagation of semantic information from 
top to bottom, while PAN facilitates the propagation of 
positional information from bottom to top, thus bolstering 
the network's capacity for effective feature fusion. In the 
output module, the processed image features are subject to 
predictions at three different scales to generate bounding 
boxes and predict the class of the target object. Subsequent-
ly, the non-maximum suppression (NMS) method is 
applied to filter and retain the most pertinent bounding 
boxes. 

3. Research Methods 
The YOLOv5 object detection algorithm is divided 

into four models, namely YOLOv5s, YOLOv5m, 
YOLOv5l, and YOLOv5x, based on variations in convolu-
tional depth and the number of convolutional kernels. 
These models offer increasing detection accuracy as their 
size grows. However, their real-time performance declines 
due to increased complexity. To strike a balance between 
accuracy and real-time requirements, in the study the 
YOLOv5s model is adopted as the foundation for further 
improvements, and an enhanced multi-object detection 
algorithm based on DIOU-NMS is proposed. 
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Fig. 2. Improved structure of YOLOv5. 

In the proposed algorithm two key enhancements are 
introduced. Firstly, it incorporates a small object detection 
layer, which involves an additional upsampling operation 
to improve the detection capability for small objects. Sec-
ondly, the traditional non-maximum suppression (NMS) 
method used in YOLOv5 is replaced with DIOU-based 
NMS, i.e., DIOU-NMS. This modification addresses the 
issue of missed detections that may arise in dense object 
scenarios. The improved network structure is shown in 
Fig. 2. 

3.1 Small Target Detection Layer 
The original YOLOv5 algorithm takes input images 

with a size of 640 × 640 pixels, and employs three detec-
tion layers at 8, 16, and 32 times downsampling locations 
to predict features at three scales. Consequently, the feature 
map sizes after the three downsampling stages are 80 × 80, 
40 × 40, and 20 × 20 pixels, respectively, corresponding to 
the detection of objects in 8 × 8, 16 × 16, and 32 × 32 re-
gions. However, it exhibits limitations for effectively de-
tecting small, densely packed objects. In aerial image ob-
ject detection tasks, numerous distant objects exist, occupy-
ing only a few pixels in the entire video frame and contain-
ing minimal information, thereby making it challenging to 
extract meaningful features for accurate detection. 

To address this limitation, an additional detection lay-
er is incorporated into the YOLOv5 architecture to enhance 
its tolerance for small-scale objects. Specifically, after two 
rounds of upsampling in the original network structure, 
an extra upsampling operation is performed, resulting in 
a feature map size of 160 × 160 pixels which is then fused 
with the second layer feature map to obtain a larger recep-
tive field, thus enabling improved detection of small ob-

jects. In the end, the network utilizes four detection layers 
to achieve multi-scale object detection. 

3.2 DIOU-NMS 
In conventional NMS algorithms, the detection box 

with the highest confidence score is compared with other 
detected boxes individually to compute their intersection 
over union (IOU). The IOU is obtained by dividing the area 
of intersection between the predicted box and the ground 
truth box by the area of their union. If the IOU value ex-
ceeds a predefined threshold, the corresponding detection 
box is deemed redundant, and filtered out. It is apparent 
that, in traditional NMS, IOU is the sole consideration and 
serves as the exclusive criterion for evaluating detection 
success. 

However, IOU alone has its limitations, as it solely 
examines the relationship between the intersecting and 
union areas of two detection boxes. This may result in 
cases where it fails to serve as an effective filtering criteri-
on. For instance, as illustrated in Fig. 3, with red represent-
ing the ground truth box, and blue and green denoting de-
tection boxes, Figure 3(a) shows that when both detection 
boxes are spatially distant from the ground truth box, the 
IOU value is 0, rendering them unfiltered.  

Figure 3(b) means that two detection boxes have iden-
tical sizes and intersect the ground truth box by the same 
area, the IOU values are equal, and they evade filtering. 
Figure 3(c) denotes that similarly, when two detection 
boxes share the same size, and are entirely encompassed 
within the ground truth box, the IOU values are identical, 
precluding effective filtering. 

In response to the aforementioned limitations of 
NMS, a novel DIOU-NMS is proposed, which introduces 
the distance intersection over union (DIOU) calculation 
method. DIOU-NMS replaces the conventional IOU com-
putation in the traditional NMS with DIOU. As depicted in 
Fig. 4, DIOU takes into account both the overlapping area 
and the distance between the centers of two detection box-
es, enabling more accurate selection of detection boxes and 
facilitating faster convergence. The expression for DIOU is 
given by (1). 

 
                  (a)                                      (b)                                     (c) 

Fig. 3. Cases that cannot be recognized by NMS. Red repre-
sents the ground truth bounding box, while blue and 
green represent the detected bounding boxes. (a) The 
detection frame is separated from the real frame; 
(b) the size of the detection frame is the same and the 
area that intersects the real target frame is also the 
same; (c) the detection frame is the same size and both 
are located inside the real target frame. 
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Fig. 4.  DIOU schematic where red represents the ground truth 

bounding box, while blue represents the detection box. 
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where d represents the distance between the ground truth 
box A and the detection box B. L denotes the diagonal 
length of the minimum enclosing box that encompasses 
both the detection box and the ground truth box. The term 
"IOU" refers to the intersection over union, which is com-
puted by dividing the area of intersection between the pre-
dicted box and the ground truth box by the area of their 
union. 

4. Experiment Setup 

4.1 Experiment Configuration 
The hardware configuration for the experiments in 

this paper includes an Intel Core i7-10875H 2.30 GHz 
CPU, an NVIDIA GeForce RTX2060 GPU, and 16GB 
RAM. The environment setup comprises python 3.8, 
CUDA 11.3, and Pytorch 1.11.0. 

4.2 Measure Datasets 
The experiments in this study were conducted using 

the VisDrone2019 [43] small object dataset, collected by 
the AISKYEYE team in the Machine Learning and Data 
Mining Laboratory of Tianjin University. The dataset com-
prises 288 video clips captured by unmanned aerial vehi-
cles (UAVs) under various scenes such as weather condi-
tions, and lighting conditions, consisting of over 260,000 
video frames and 10,000 static images. The dataset is char-
acterized by an abundance of small and occluded objects, 
posing significant challenges to object detection algo-
rithms, leading to potential issues of false positives and 
missed detections. Some examples of the VisDrone2019 
dataset are given in Fig. 5. 

Given the dataset's high image resolution, with image 
sizes of 6000 × 4000 pixels, image resizing becomes 
a necessary preprocessing step. However, resizing may 
further diminish already small objects to almost negligible 
sizes, making it challenging for the algorithm to learn 
meaningful features, significantly impacting the training 
effectiveness. To address this problem, a segmentation 
approach is employed, dividing each dataset image into six 
smaller blocks using a 2 × 3 grid pattern. Nonetheless, during 
the segmentation process, some objects may precisely lie on 

 
Fig. 5.  Some examples of the VisDrone2019 dataset. 

the edges between two sub-images, potentially causing 
object truncation and introducing artificial interference in 
the detection results. To mitigate such issues, a 20% over-
lapping area is introduced between the segmented sub-
images, and the bounding box coordinates are adjusted 
accordingly, thus alleviating the impact on detection per-
formance during the dataset image segmentation process. 

5. Experimental Results and Analysis 

5.1 Evaluation Indicators 
The effectiveness and feasibility of the algorithm im-

provements are validated using four evaluation metrics 
including Precision, Recall, Mean Average Precision 
(mAP) at IOU confidence threshold of 0.5 (mAP@0.5), 
and mAP at IOU confidence threshold ranging from 0.5 to 
0.95 (mAP@0.5:0.95). 

Precision, also known as positive predictive value, 
represents the ratio of correctly detected samples to the 
total number of samples detected. It is computed as shown 
in (2): 

 
.TPPrecision

TP FP
=

+
  (2) 

Recall, also known as sensitivity or true positive rate, 
represents the ratio of correctly detected samples to the 
total number of samples that should have been detected. It 
is computed as shown in (3): 

 
.TPRecall

TP FN
=

+
 (3) 

In this context, true positive (TP) represents the po-
sitive samples that the model correctly predicts as positive,  
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The real situations 
The predicted situations 

Positive sample Negative sample 

Positive sample TP FN 

Negative sample FP TN 

Tab. 1. Detailed description of the parameters of evaluation 
indicators. 

while true negative (TN) represents the negative samples 
that the model correctly predicts as negative. On the other 
hand, false positive (FP) denotes the negative samples that 
the model incorrectly predicts as positive, and false nega-
tive (FN) represents the positive samples that the model 
incorrectly predicts as negative. The details are illustrated 
in Tab. 1. 

Average precision (AP) is the area under the Preci-
sion-Recall (P-R) curve, which is obtained by plotting 
Precision against Recall. It quantifies the overall perfor-
mance of an object detection model. The mean average 
precision (mAP) is the average value of AP across all object 
detection categories. 

5.2 Ablation Experiments 
For verifying the effectiveness of the proposed ideas 

on small target detection layer and DIOU-NMS, the results 
of the ablation experiments are presented in Tab. 2. 

From the results of the conducted ablative experi-
ments, as presented in Tab. 2, it becomes apparent that the 
incorporation of a small object detection layer yields note-
worthy enhancements in the network model's performance. 
The model achieves this by adeptly fusing deep-level fea-
tures with shallow-level features via an upsampling mech-
anism. This strategic integration empowers the network to 
discern minute object features within images with height-
ened precision. Consequently, an elevation of 6 percentage 
points in accuracy, 5.2 percentage points in recall, 9.4 per-
centage points in mAP@0.5, and 7.3 percentage points in 
mAP@0.5:0.95 is observed. This collective improvement 
underscores the substantial mitigation of false positives and 
false negatives for diminutive objects following the inte-
gration of the small object detection layer. 

Subsequently, an insightful juxtaposition is drawn 
with the incorporation of the DIOU-NMS algorithm. The 
conventional Non-Maximum Suppression (NMS) tech-
nique predominantly relies on the Intersection over Union 

(IOU) paradigm to adjudicate detection boxes. This process 
entails determining the most prominent detection box pred-
icated upon the relative magnitude between the intersected 
area and the union area of two detection boxes. However, 
this approach often demonstrates inadequacy in effectively 
winnowing out undesired outcomes under diverse circum-
stances. Thus, the introduction of DIOU-NMS emerges as 
a salient remedy. By encapsulating both the overlap area 
and the center point distance between two detection boxes, 
this innovative method optimizes box selection, culminat-
ing in outcomes of higher precision and expedited conver-
gence. In tandem with the outcomes presented in Tab. 2, 
an incremental augmentation of 0.2 percentage points in 
accuracy, 1.5 percentage points in recall, 1.7 percentage 
points in mAP@0.5, and 3.2 percentage points in 
mAP@0.5:0.95 is manifest. Although these enhancements 
may not be deemed monumental in isolation, their culmina-
tion with the small object detection layer precipitates 
a cumulative escalation of 7.8 percentage points in accura-
cy, 9.8 percentage points in recall, 10.9 percentage points 
in mAP@0.5, and 10.1 percentage points in 
mAP@0.5:0.95. This palpably underscores the symbiotic 
harmony between DIOU-NMS and the small object detec-
tion layer. The concerted interplay of these improvements 
exhibits an emergent synergy, whereby the composite ef-
fect exceeds the mere summation of individual parts, there-
by rendering a constructive contribution to the efficacy of 
object detection. 

Finally, a comprehensive comparative assessment is 
conducted, juxtaposing the proposed algorithm with the 
antecedent enhancements of the YOLO algorithm. Table 2 
efficaciously portrays a discernible amelioration in accura-
cy. Relatively, when contrasted with the incremental im-
pact of integrating the small object detection layer, an ame-
lioration of 1.8 percentage points is observed. However, 
when juxtaposed with the assimilation of DIOU-NMS, 
an appreciable enhancement of 7.6 percentage points is 
substantiated. Notably, an appreciable elevation in mAP is 
also evident. Cross-referencing Figure 6 underscores the 
demonstrably better detection acumen of the algorithm 
posited within this exposition, as compared to the exclusive 
integration of DIOU-NMS. This superiority particularly 
resonates with the identification of diminutive objects such 
as pedestrians and bicycles within images. Likewise, 
a comparative analysis vis-à-vis the exclusive integration 
of the small object detection layer reveals the algorithm's 
heightened efficacy in detecting objects situated at a con-
siderable distance or partially obscured by intervening 
obstacles. 

 

Models Precision Recall mAP@0.5 mAP@0.5: 0.95 

YOLOv5 0.817 0.717 0.801 0.452 

YOLOv5+ Small target detection layer 0.877 0.769 0.895 0.535 

YOLOv5+DIOU-NMS 0.819 0.732 0.818 0.484 

The proposed algorithm 0.895 0.815 0.910 0.553 

Tab. 2. Ablation experimental results of VisDrone2019 dataset. 
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Fig. 6. Comparison of ablation experimental results. 
 

Algorithm Precision Recall mAP@0.5 mAP@0.5: 0.95 

YOLOv5 0.817 0.717 0.801 0.452 
Fast R-CNN 0.874 0.796 0.886 0.539 

Faster R-CNN 0.863 0.813 0.893 0.555 

Proposed in this paper 0.895 0.815 0.910 0.553 

Tab. 3. Comparison results of tracking performance on VOT2018 dataset. 

5.3 Comparative Experiments 
The comparative experiments were conducted by se-

lecting the fundamental algorithm YOLOv5 and two-stage 
object detection algorithms renowned including fast R-
CNN and faster R-CNN. The results are presented in Tab. 3.  

From the quantitative comparative results presented in 
Tab. 3, it is evident that the enhanced YOLOv5 algorithm 
falls slightly short of the two-stage object detection algo-
rithm, Faster R-CNN, only in the mAP@0.5:0.95 metric by 
a marginal margin of 0.2 percentage points. However, in all 
other metrics, it demonstrates superiority, underscoring the 
more advanced detection performance of the algorithm 
introduced in this study. Faster R-CNN is a region-based 
convolutional neural network (CNN) object detection 
methodology, employing a two-stage detection strategy. In 
its initial phase, it leverages a Region Proposal Network 
(RPN) to generate prospective object boxes, followed by 
object classification and precise localization within these 

candidates. This bifurcated approach excels in accuracy 
due to its improved object localization precision. Corre-
spondingly, as discerned from Tab. 3, Faster R-CNN close-
ly approximates the proposed algorithm across metrics 
such as Recall and mAP. 

However, it is pertinent to note that this approach's 
computational efficiency is relatively compromised, partic-
ularly when applied to extensive datasets. By contrast, the 
approach posited in this research embodies a singular-stage 
object detection algorithm, inspired by the "You Only Look 
Once" (YOLO) principle. Herein, object detection is con-
ceived as a regression conundrum, whereby predictions 
pertaining to object bounding boxes and class attributions 
are concurrently computed to achieve detection. Signifi-
cantly, the incorporation of DIOU-NMS introduces consid-
erations of distance and overlapping area amongst object 
boxes during the Non-Maximum Suppression (NMS) phase. 
This evolved NMS mechanism facilitates the culling of 
meaningful detection boxes, thereby concretizing ad-
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vancements in both precision and recall. The algorithm, 
attuned to the characteristics of diminutive entities, further 
integrates a small object detection stratum. This augmenta-
tion holds pivotal import for the precision of small object 
detection within aerial imagery, wherein objects often tend 
to be in close proximity, subject to deformation, or even 
overlapping. The confluence of the small object detection 
stratum with DIOU-NMS is instrumental in augmenting the 
model's prowess in such scenarios. This effect is reinforced 
through the assimilation of an additional upsampling mod-
ule during the feature map integration process, thereby 
ameliorating the model's capacity to encapsulate shallow-
level features. Consequently, a remarkable prowess in 
small object detection is witnessed, culminating in note-
worthy enhancements across metrics, most notably 
mAP@0.5. Visual corroboration in Fig. 7 substantiates this 
contention, unmasking more advanced detection of petite 
objects, such as bicycles and pedestrians, when juxtaposed 
with Faster R-CNN. 

The ascendancy of YOLO emanates from its singular-
stage detection strategy, which simplifies object detection 
into a regression problem. Through a solitary pass, both 
object bounding box predictions and class ascriptions are 
simultaneously surmised, thereby conferring a pivotal 
computational speed edge. This vantage point is particular-
ly pronounced when the algorithm is deployed in datasets 
featuring dense object distributions, exemplified by 
Visdrone. 

The preeminence of the proposed algorithm vis-à-vis 
the Visdrone aerial dataset harboring compact small objects 
is underpinned by a trifecta of factors: its frugal singular-
stage design, assimilation of DIOU-NMS, and optimization 
catering to the exigencies of small object detection. Aug-
menting these attributes is the algorithm's end-to-end train-
ing approach, synergistically amalgamating to yield com-
mendable performance across critical metrics such as Pre-
cision, Recall, and mAP@0.5. While Faster R-CNN 
preserves fidelity across select metrics, its overarching 
performance is somewhat curtailed by the constraints in-
herent to its two-stage design. A visual juxtaposition in 
Fig. 7 furnishes a tangible insight into the comparative 

performance of the proposed algorithm vis-à-vis Faster R-
CNN on the VisDrone2019 dataset, vividly elucidating the 
algorithm's propensity for more effective detection of di-
minutive and densely distributed objects. 

6. Conclusion and Future Work 
In this paper an introduction to the YOLOv5 object 

detection algorithm is presented, and an enhanced version, 
termed the YOLOv5 multi-object detection approach, using 
DIOU-NMS is proposed. The motivation behind this im-
provement is to effectively address scenarios involving 
small-scale and densely packed targets, thereby better serv-
ing subsequent multi-object tracking tasks. The primary 
enhancements involve extending the YOLOv5s model with 
an additional detection layer specifically designed for small 
objects for achieving an excellent performance by the in-
troduction of an upsampling operation. This modification 
empowers the algorithm to perform exceptionally well in 
small object detection tasks. Furthermore, the traditional 
NMS method is replaced by the proposed DIOU-NMS, 
which significantly enhances the selection of detection 
boxes, resulting in more precise outcomes, and mitigating 
issues related to target omission caused by excessively 
dense target regions. 

Experimental results on the VisDrone2019 dataset 
demonstrate that the proposed YOLOv5 multi-object detec-
tion algorithm using DIOU-NMS effectively handles sce-
narios with small-scale and densely packed targets, yield-
ing better detection performance and providing highly 
accurate detection outcomes. In the future, building upon 
the advancements made in multi-object detection using this 
study, we aim to concentrate on dynamic multi-object 
tracking research, seeking to further enhance the accuracy, 
robustness, and real-time capabilities of motion object 
detection and tracking algorithms, especially in complex 
backgrounds. Our objective is to continually optimize and 
refine the algorithm model, improve region discrimination 
performance, and foster the development of state-of-the-art 
multi-object tracking algorithms. 

 
Fig. 7. Comparison between the algorithm proposed in this paper and the detection results of Faster R-CNN on moving small targets. 
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