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Abstract. In time-division duplex (TDD) distributed large-
scale multiple input multiple output (DM-MIMO) systems,
the traditional downlink channel precoding method is used to
resist inter-user interference (IUI). However, when the Chan-
nel State Information (CSI) is incomplete, the performance
loss is serious, not only the bit error rate is high, but also the
complexity of the traditional precoding algorithm is high. In
order to solve these problems, this paper proposes an adap-
tive precoding framework based on deep learning (DL) for
joint training and split application deployment. First, we
train a channel emulator deep neural network (CE-DNN) to
learn and simulate the transmission process of the wireless
communication channel. Then, we concatenate an untrained
precoding DNN (P-DNN) with a trained CE-DNN and retrain
the cascaded neural network to converge. The last step is to
obtain the P-DNN, namely the adaptive precoding network,
by dismantling the joint trained network. Simulation results
show that, when CSI is imperfect, the proposed method is
compared with Tomlinson-Harashima precoding (THP) and
block diagonalization (BD) precoding. The proposed method
has a lower mean square error (MSE) and higher spectrum
efficiency, as well as a bit error rate (BER) performance close
to the THP. The source codes and the neural network codes
are available on request.
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1. Introduction
Massive multiple-input multiple-output (MIMO) sys-

tems are equipped with a large-scale array antenna at the
base station (BS), which can sufficiently use the space-
dimensional wireless resources and greatly improve the spec-

trum efficiency of mobile communication [1], [2]. Therefore,
massive MIMO has become one of the key enablers for high-
speed data transmission [3].

Massive MIMO systems are categorized into central-
ized massive MIMO (CM-MIMO) systems and distributed
massive MIMO (DM-MIMO) systems. In traditional CM-
MIMO systems, the central BS is equipped with a large num-
ber of antennas [4]. At the cell edge, the signal-to-noise ratio
(SNR) for users is lower than that of users at the cell center
due to the greater distance between the BS antenna array and
the cell-edge users, resulting in reduced signal transmission
quality [5]. Moreover, in scenarios characterized by heavy
traffic and stringent requirements for mobile communication
performance, CM-MIMO systems not only encounter chal-
lenges related to inter-cell interference and cell handover but
also involve high construction costs, as the BS covers a wide
area [6], [7].

In DM-MIMO systems, antennas are distributed across
each access point (AP), and these APs are linked to the cen-
tral unit (CU) through a high-capacity backhaul link, such as
optical fiber. The DM-MIMO system is user-centric, with
small-sized APs that can be randomly deployed in densely
populated areas [8]. As a result, when users are near the
APs, the spatial macro-diversity gain is amplified, leading to
a substantial reduction in path loss.

Full noun Abbreviation
massive multiple-input multiple-output MIMO

time-division duplex TDD
channel emulator deep neural network CE-DNN

precoding deep neural network P-DNN
channel state information CSI

mean square error MSE
Tomlinson-Harashima precoding THP

signal to noise ratio SNR
block diagonalization BD

least square LS
linear minimum mean square error LMMSE

Tab. 1. Abbreviations used in this paper.
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The proliferation of a number of APs leads to reduced
multi-user interference, resulting in uniform coverage across
the entire region and a significantly improved user experi-
ence [9–11]. In comparison to CM-MIMO systems, DM-
MIMO systems offer advantages such as low transmit power,
high multiplexing gain, high spectrum efficiency, extensive
coverage area, and simplified network planning [12]. Conse-
quently, the design of precoding for DM-MIMO has become
exceedingly challenging. The authors of [13] investigated the
radio frequency (RF) mismatch at the user equipment (UE) in
DM-MIMO systems employing block diagonalization (BD)
precoding. Despite partial calibration at the radio access
units (RAUs), the RF mismatch at the UEs still results in
negligible performance loss, and reciprocal calibration was
performed at the RAUs and UEs. To mitigate computational
complexity, the authors of [14] proposed a joint centralized
and distributed precoding method, wherein only a few APs
perform centralized precoding while the rest engage in dis-
tributed precoding. In [15], the authors addressed the channel
estimation and feedback challenge by associating it with dis-
tributed precoding and utilizing a joint pilot and deep neural
network (DNN) design to map the received pilots to the users,
followed by directly mapping all user feedback information
into the precoding matrix.

Multiple publications have been devoted to the topic of
multi-user precoding, which can be categorized into digital
precoding and hybrid precoding techniques. In [16], the au-
thors introduced the BD precoding algorithm, which decom-
poses multi-user MIMO channels into parallel point-to-point
single-user MIMO channels. Non-linear precoding schemes,
such as the dirty paper coding (DPC) algorithm proposed
in [17] and the approximately optimal Tomlinson Harashima
precoding (THP) algorithm proposed in [18], often exhibit
high computational complexity and are commonly used as
theoretical upper bounds for comparative analysis. The un-
derlying principle of these methods is to employ non-linear
processing on the data stream being transmitted to eliminate
interference from preceding data streams. THP achieves per-
formance comparable to DPC while significantly reducing
computational complexity. In addition to the pure digital
precoding methods mentioned earlier, digital-analog hybrid
precoding enables the sharing of RF links among antennas,
leading to considerable reductions in system cost and the
number of RF links. Hybrid precoding strikes a balance
between hardware implementation complexity and system
performance in massive MIMO systems [19]. In [20], the
authors proposed an orthogonal matching pursuit (OMP)
algorithm, which formulates the design problem of hybrid
precoding as the recovery problem of multiple sparse sig-
nals. Furthermore, the authors of [21] presented an algo-
rithm based on iterative minimization of phase extraction.
By incorporating the concept of alternate minimization dur-
ing iterations, this algorithm achieves performance closer to
pure digital precoding. However, it is worth noting that the
algorithm is more complex and challenging to implement.

Recently, deep learning (DL) has attracted much atten-
tion in the field of wireless communication due to its pow-
erful nonlinear mapping ability and has been widely used in
massive MIMO precoding [22–27]. The authors of [22] pro-
posed a DL-based beamforming scheme in MIMO systems.
However, the approach only achieves performance that is
somewhat close to the zero-forcing (ZF) scheme and requires
training multiple learners. To facilitate decentralized beam-
forming and reduce communication costs between the APs
and the network controller (NC) for hybrid precoding, a study
by [23] proposed completely and partially distributed unsu-
pervised DNN architectures. These architectures achieved
near-optimal sum rates. By integrating deep learning with
beamforming technology, the authors developed a Beam-
former Neural Network (BFNN) capable of learning how
to optimize the beamformer for maximizing spectral effi-
ciency while considering hardware limitations and imperfect
channel state information (CSI) [24]. When training with
auxiliary beams, they utilized a multilayer perceptron (MLP)
structure assuming perfect CSI knowledge [25]. In [26],
the authors introduced a deep reinforcement learning-based
hybrid precoding method. However, the DL-based hybrid
precoding method did not consider the output limit require-
ment of the phase shifters. Based on the analyzed relationship
between the input and output of DNN, the authors of [27] pro-
posed a classifier-weighted deep neural network (CW-DNN)
to recover data without CSI. The DNN channel equalizer
proposed in [27] eliminates the need for channel estimation
and directly recovers the transmitted data from the received
signal, thereby minimizing the impact of distortion during
transmission. Inspired by this, we have developed a DNN
precoder and a DNN channel emulator, which are applied to
the signal transmitter and transmission process respectively,
with the aim of further reducing signal distortion. By em-
ploying a more intricate mapping relationship and a unique
cascaded network design, we have enhanced the performance
of the precoding technique and effectively eliminated inter-
user interference.

In this paper, we present an adaptive precoding frame-
work built on DL for DM-MIMO systems that allowed for
split application deployment and joint training. We connect
two neural networks in series, train the cascaded neural net-
work, and finally split the cascaded neural network to get
a precoding DNN (P-DNN). Compared with conventional
counterparts, the proposed method has better mean square
error (MSE) performance and spectrum efficiency, even if
the CSI is not perfect. The following is a summary of the
major contributions.

• We propose a precoding algorithm for Cascaded DNN
to replace traditional precoding algorithms. The pro-
posed DNN-based precoding performs well even
when using low-precision channel estimation methods.
Through offline training, the DNN can acquire a non-
linear mapping from CSI and user data to precoding,
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Symbol Explanation
( ·)T Transpose operator
( ·)H Hermitian operator
( ·)−1 Inverse operator
∥ · ∥ Frobenius norm operator
E[ · ] Expectation operator

Tab. 2. Notation and symbols used in this paper.

which is especially effective in enhancing precoding
performance.

• The channel emulator deep neural network (CE-DNN)
trained in this paper can be used to cancel the errors
of input channel values with different precision so that
it has a certain correction ability. CE-DNN provides
favorable conditions for subsequent cascade training of
P-DNN.

• Specifically, we simulate MSE, bit error rate (BER), and
spectral efficiency (SE) to evaluate the performance of
precoding. The low-precision CSI obtained by channel
estimation is used as the input of P-DNN, and the BER
performance of the proposed method is significantly
better than that of the traditional method. The proposed
method approaches the optimal precoding performance,
and the complexity is significantly lower than that of
other methods.

Notations: Abbreviations used in this paper are in Tab. 1.
Notations and symbols used in this paper are shown in Tab. 2.

In this paper, the content and structure of the arrange-
ment are as follows: DM-MIMO system and conventional
precoding methods are presented in Sec. 2. The innovative
precoding scheme built on DL is described in Sec. 3. Simula-
tion results and the complexity of the algorithm are analyzed
in Sec. 4. Finally, a conclusion is summarized in Sec. 5.

2. System Model
The system model of the downlink single-cell time-

division duplex (TDD) DM-MIMO communication system
is displayed in Fig. 1, which has 𝑁 APs with each having
𝐾 transmitter antennas and 𝑀 UEs with each having single
receiver antennas. A high-capacity backhaul link connects
the APs to the CU. Within the range of the DM-MIMO sys-
tem, each AP and UE are randomly distributed, and they also
need that 𝐾𝑁 ≥ 𝑀 . Furthermore, we assume that all APs
transmit their data streams to the UEs simultaneously, so the
data streams can be written as

S = [𝑠1, 𝑠2, . . . , 𝑠𝑚], 𝑚 = 1, 2, . . . , 𝑀 (1)

where 𝑠𝑚 denotes the data streams to be sent to the UE
and the length of 𝑠𝑚 is 𝑁s, which is normalized so that
E
[
SSH] = 1

𝑁s
I𝑁s . Precoding is used across all data streams

such that the transmitted signal can be represented as

AP1 AP2

AP5

APN
AP4

AP3

UEM

UE4

UE1

UE2

UE3
CU

Fig. 1. Distributed massive MIMO systems.

X = FS (2)

where F = [F1,F2, . . . ,F𝑀 ] ∈ C𝐾𝑁×𝑀denotes the precod-
ing matrix of 𝑀 users, which satisfies the constraints that
∥F∥2 ≤ 𝑁s. System modeling of distributed massive MIMO
systems is referenced in [28]. The channel model is the same
as [26] and fading channels follow a Rayleigh distribution.
The APs and the UE downlink channel gains vector is h𝑚,
h𝑚 ∈ C1×𝐾𝑁 , so the total channel matrix can be expressed as

H = [h1, h2, . . . , h𝑀 ] (3)

where H ∈ C𝑀×𝐾𝑁 . Furthermore, in the data transmission
phase, the received signal at the UE can be expressed as

y𝑚 =
√
𝑃h𝑚F𝑚s𝑚 +

√
𝑃h𝑚

𝑀∑︁
𝑖=1,𝑖≠𝑚

F𝑖s𝑖 + n𝑚 (4)

where n𝑚 ∼ CN
(
0, 𝜎2) is the additive white Gaussian noise.

The average transmit power on APs is denoted by 𝑃. The
second term of (4) denotes the interference of the UE from
other users. After processing by the receiving end, the final
received signal vector can be expressed as

y𝑚 =
√
𝑃WH

𝑚h𝑚F𝑚s𝑚 +
√
𝑃WH

𝑚h𝑚
𝑀∑︁

𝑖=1,𝑖≠𝑚
F𝑖s𝑖 + WH

𝑚n𝑚

(5)

where W𝑚 denotes the merge matrix of the UE and W𝑚 ∈
C1×𝑁s . Therefore, the signal to interference plus noise ratio
(SINR) of the UE can be expressed as

SINR𝑚 =
𝑃


WH

𝑚h𝑚F𝑚


2

𝜎2
𝑛 + 𝑃

∑
𝑖≠𝑚



WH
𝑚h𝑚F𝑖



2 . (6)

Furthermore, if the bandwidth allocated to the UE is
𝐵𝑚, the total system capacity between APs and multiple UEs
can be given as

𝐶 =

𝑀∑︁
𝑚=1

E
[
𝐵𝑚 log2 (1 + SINR𝑚)

]
. (7)
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In a typical multi-user precoding scheme, precoding can
be divided into linear digital precoding, non-linear digital
precoding, and digital-analog hybrid precoding. The perfor-
mance of the precoding method is significantly dependent on
accurate downlink CSI. In a TDD system, the transmitter can
use the channel reciprocity of TDD to quickly obtain down-
link CSI by uplink CSI to calculate the precoding matrix. For
DM-MIMO systems, these multi-user precoding methods are
equally applicable.

The BD precoding algorithm, which is the most widely
used linear-digital precoding technique, uses singular value
decomposition (SVD) to obtain the orthogonal basis of each
user concerning other users so that the multi-user MIMO
channel can be divided into parallel point-to-point single-
user MIMO channels that do not interfere with one another
[16]. For 𝑚-th UE, the SVD of h𝑚 can be expressed as

h𝑚 = U𝑚𝚺𝑚VH
𝑚 = U𝑚𝚺𝑚

[
V(1)
𝑚 V(0)

𝑚

]H
(8)

where U𝑚 and V𝑚 are unitary matrices, and 𝚺𝑚 is a diag-
onal matrix containing the singular values of h𝑚. V(1)

𝑚 and
V(0)
𝑚 are the right singular matrices corresponding to the non-

zero and zero singular values of h𝑚, respectively. Therefore,
the precoding matrix F𝑚 of the 𝑚-th single-antenna UE can
be designed as the first column of the V(0)

𝑚 , which can be
expressed as

FBD = V(0)
𝑚 (:, 1) . (9)

There is some performance loss because BD precoding
only suppresses interference between multiple users without
considering the effect of noise, so the number of UEs it can
support is constrained by the number of transmitting antennas
of the APs and the number of receiving antennas used by each
user. In addition to linear digital precoding schemes, there
are some nonlinear digital precoding schemes with better per-
formance, for example, the best DPC algorithm and the ap-
proximate optimal THP algorithm. However, these schemes
usually have high computational complexity, so they are often
used as performance reference algorithms for precoding.

The above precoding design is carried out in the digi-
tal domain. As the number of antennas increases, achieving
pure digital precoding becomes difficult, necessitating the
use of a digital-analog hybrid precoding scheme. In the case
of hybrid precoding, the precoding matrix and merge matrix
can be expressed as

FHY = FD · FA, (10)
WHY = WA · WD, (11)

where FD and FA denote the digital precoding matrix and
analog precoding matrix, respectively. WA and WD denote
the analog merge matrix and digital merge matrix, respec-
tively. It is assumed that the RF link at the transmitting end
is 𝑁RF, then FD ∈ C𝐾𝑁×𝑁RF , FA ∈ C𝑁RF×𝑀 , WA ∈ C𝑀×𝑁RF

and WD ∈ C𝑁RF×𝑀 .

The performance of the pure digital precoding algo-
rithm is the best, but it also brings high costs and high power
consumption, so its implementation is difficult. The analog
precoding algorithm is relatively easy to implement, but the
performance is not ideal, and it does not support the simul-
taneous transmission of multiple data streams. The hybrid
precoding algorithm achieves a balance between performance
and power consumption.

3. Proposed Precoding Based on Deep
Learning
DL is a typical learning framework that relies on mas-

sive data. It automatically adjusts the model structure through
end-to-end optimization and flexible adjustment of parame-
ters. It can replace manual methods to extract features from
the original data. In DM-MIMO systems, due to the dis-
tributed antenna structure at the transmitting end, the data
transmission process becomes more variable, and the pre-
processing of transmitted data becomes more challenging.
Therefore, the DL-based precoding method has great poten-
tial to achieve better performance.

3.1 Proposed Deep Learning Architecture
The most common DL framework, DNN, can be con-

ceptualized as an MLP. DNN is comprised of multiple fully
connected (FC) layers or partially connected layers, which
provide powerful learning and nonlinear mapping capabili-
ties. Dropout is a method used to optimize training in deep
learning. It achieves this by deactivating some neurons’ acti-
vation values within a hidden layer with a certain probability,
effectively generating a subset of the connection layer. This
process makes the model more generalized and helps prevent
overfitting by reducing reliance on specific local features.
Each hidden layer in a DNN contains a number of units, and
activation functions enable the production of output in re-
sponse to the inputs of these units. The rectified linear unit
(ReLU) function and the sigmoid function are the two most
commonly used nonlinear activation functions for DNN, each
specified as

ReLU (𝑎) = max(0, 𝑎), (12)

Sigmoid (𝑎) = 1
1 + e−𝑎

(13)

where 𝑎 denotes the input data of the activation function,
which is composed of the weights and biases of the same
hidden layer in a DNN. Therefore, it can be further repre-
sented as

𝑎 = 𝑤 (𝑙)T
𝐼 (𝑙) + 𝑏 (𝑙) (14)

where 𝑤 (𝑙)T
, 𝐼 (𝑙) , and 𝑏 (𝑙) represent the connection weight

matrix, input value, and bias matrix of the 𝑙-th layer of the
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Fig. 2. DNN architecture in the proposed scheme.

network, respectively. 𝐼 and 𝑂 represent the input data and
output data of the network respectively, and the mapping
operation can be expressed as

𝑂 = 𝑓 (𝐼, 𝑤, 𝑏) = 𝑓 (𝑙−1)
(
𝑓 (𝑙−2)

(
· · · 𝑓 (1) (𝐼)

))
(15)

where 𝑓 (·) denotes the activation function. We establish
a DNN framework, illustrated in Fig. 2, to accomplish adap-
tive precoding. The whole network is composed of two
DNN modules, consisting of a DNN-based channel emulator
named CE-DNN and a DNN-based precoder named P-DNN.

The CE-DNN network comprises six layers, with the
input layer being an FC layer consisting of 128 neurons. The
length of each training sequence depends on the network’s
dimension. The subsequent three hidden layers, each con-
taining 500 neurons, are also FC layers designed to capture
channel characteristics. A dropout layer with 256 neurons
randomly deactivates some neurons to enhance data depth
and prevent overfitting during training. Additionally, the
output layer consists of 128 neurons, configured to produce
the expected output signals.

In the P-DNN, the network structure is similar to that of
the DL-based channel emulator, except for the noise layer and
the dropout layer. The input layer consists of 256 neurons,
and the output layer consists of 128 neurons. The hidden
layers consist of 4 FC layers, each with 500 neurons. Addi-
tionally, the ReLU function is used as the activation function
for both the input layer and the hidden layers. However,
assuming that the data stream of each UE is a single data,
to enforce the power constraint in the output layer of the
DL-based precoder, an exclusive activation is intended as

𝑓 (𝐼) = min (max(𝐼, 0), 𝑁s) . (16)

3.2 Learning Policy
There are training sets and testing sets for the experi-

mental sample sets. MATLAB R2021B is used to generate

the channel matrix H and the user data stream S, and then the
received signal Y of the UEs is obtained through the chan-
nel emulator. Therefore, the sample set can be expressed as
(S,H,Y).

The network training process is divided into two stages,
as demonstrated in Fig. 2.

Stage 1: CE-DNN is trained as an independent net-
work, with S and Ĥ as inputs, and Y as outputs. The stochas-
tic gradient descent (SGD) algorithm is used to reduce the
value of the loss function during training, which is expressed
as

lossce =
1
2

𝑁b∑︁
𝑖=1

(
Ŷ𝑖 − Y𝑖

)2
(17)

where Ŷ𝑖 denotes the output of the CE-DNN, and 𝑁b denotes
the number of samples used in one training. When the train-
ing phase is completed, assuming that the channel matrix
is obtained through uplink channel estimation by utilizing
the inherent channel reciprocity of TDD, such as the (LS)
algorithm, linear minimum mean square error (LMMSE) al-
gorithm, and OMP algorithm, so the network can get the
mapping function of the CE-DNN as 𝑔ce (.), which can be
defined as

Ŷ = 𝑔ce

(
S, Ĥ

)
(18)

where Ŷ and Ĥ denote the estimated value of the received
signal generated by the CE-DNN based channel emulator
and the channel matrix obtained by channel estimation algo-
rithms, respectively.

MSE is used to measure the performance of the CE-
DNN. The MSE of the estimated amount of each SNR value
under various channel estimation algorithms can be approx-
imated as

MSECE =
1

𝑀𝑁p

𝑁p∑︁
𝑖=1

(
Ŷ𝑖 − Y𝑖

)2
(19)

where 𝑁p denotes the total number of samples.
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Stage 2: Two DNNs are linked together to create a cas-
caded network for joint training. The output of the P-DNN
serves as the input for the CE-DNN, and the parameters of
the CE-DNN remain fixed. The parameters of the P-DNN
in the cascaded network are adjusted through training. The
input and output data of the cascaded network are denoted
as (S,H) and Ŝ, respectively. Therefore, the mapping func-
tion of the cascaded network, denoted as 𝑔ca (.), includes the
mapping of the P-DNN, denoted as 𝑔p (.), and the mapping
function of the CE-DNN, denoted as 𝑔ce (.). So it can be
written as

Ŝ = 𝑔ca

(
S, Ĥ

)
= 𝑔ce

(
𝑔p

(
S, Ĥ

)
, Ĥ

)
. (20)

In Stage 2, the cascaded network undergoes training
using the same process as Stage 1. Once the training of
the cascaded network is completed, it is disassembled, and
the P-DNN becomes an independent network. The output
of P-DNN is precoded data, and the mapping function of
P-DNN can be expressed as

X = 𝑔p

(
S, Ĥ

)
. (21)

When utilizing the test set to gauge how well the sug-
gested precoding framework performs, we expect that after
the precoded data X through the actual channel, the received
data Ŝ obtained in the UEs can be as close as possible to the
transmitted user data S in the APs. The process can be shown
as

Ŝ = HX + N = H𝑔p

(
S, Ĥ

)
+ N. (22)

S and H are used as the input of P-DNN. After the input
signal goes through the P-DNN forward propagation, the out-
put of P-DNN, which is the precoded signal, can be obtained.
The received data obtained by each UE only contains its own
data stream and does not include other UEs’ data streams,
thus eliminating IUI. The entire procedure for training the
precoding algorithm is displayed in Algorithm 1.

Additionally, we introduce the MSE and the BER to ex-
amine the precoding performance of the DL-based precoding
approach, which can be provided as

MSEP =
1

𝑀𝑁p

𝑁p∑︁
𝑖=1

(
𝑆𝑖 − 𝑆𝑖

)2
, (23)

BER =
1
𝐵

𝐵∑︁
𝑘=1

��𝑏̂𝑘 − 𝑏𝑘 �� (24)

where 𝑆𝑖 and 𝑆𝑖 represent the received data of the UEs and
the original user data of the UEs, respectively. The total
amount of bits transmitted across the channel is indicated by
the value 𝐵, 𝑏𝑘 , and 𝑏̂𝑘 are the transmitted bit streams of APs
and the received bit streams from the UEs, respectively.

4. Simulation Results and Complexity
Analysis

4.1 Simulation Results
The performance analysis of CE-DNN is presented un-

der various channel estimation algorithms, encompassing the
LS algorithm, LMMSE algorithm, and true channel value.
The established distributed massive MIMO system has 16
APs with 4 transmitting antennas and 64 UEs with a single
receiving antenna. The number of transmitting antennas and
receiving antennas is both 64. Rayleigh fading channel is
used as the channel. The transmitted signal is multiplied
by the Rayleigh channel coefficient [29], and then a white
Gaussian noise signal with different SNR powers is added
to the signal. The simulation data is generated in MATLAB
R2021B. Neural network training is performed using Tensor-
Flow, Pycharm, and Python. The experiments are conducted
on a computer with an Intel Core i7 CPU (1.5 GHz). The
digital modulation method is 64 QAM or 32 QAM. We set
each AP to transmit only one symbol per antenna during the
coherence time. System parameters are listed in Tab. 3.

We developed our DL-based solution using Python lan-
guage in the Pycharm environment. We used a well-known
DL-based network using the basic DNN network structure,
which is the most general structure in the deep learning frame-
work and can be thought of as the MLP. Through linear accu-
mulation and nonlinear activation of multiple hidden layers,
the prediction result is obtained from the output layer. In this
paper, both CE-DNN and P-DNN are represented by six-layer
DNN models, each consisting of an input layer, four hidden
layers, and an output layer. The dropout layer in CE-DNN has
a neuron rejection rate of 0.1. Furthermore, the output layer
of the DNN model uses the linear function, while the acti-
vation function for the hidden layers is ReLU. We generated
200,000 sample sets using MATLAB, with 80% allocated
for training and 20% for testing. The batch size for neural
network training is 100. The optimization algorithm of the
neural network uses SGD. For the neural network to achieve
convergence the learning rate is set to 0.001. Multiple itera-
tions were necessary to obtain all simulation results.

Parameters Values
Channel type AWGN, Rayleigh fading

The number of AP 16
The number of UE 64

The number of antennas per AP 4
The number of antennas per UE 1

Modulation 32, 64 QAM
Batch size 100

Neuron rejection rate 0.1
Learning rate 0.001

Tab. 3. Simulation parameters of the distributed massive MIMO
system.
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In Fig. 3, the two-channel estimation methods, LS and
LMMSE, are compared with the true channel value under
various SNR conditions. The results demonstrate that at low
SNRs, the MSE performance of the LS algorithm is signif-
icantly lower than that of the LMMSE algorithm. It is due
to the performance loss caused by ignoring the influence of
noise. However, when the SNR is 30 dB, the NMSE perfor-
mance of the LS method is superior to that of the LMMSE
method because the LMMSE uses statistics instead of specific
parameters, resulting in errors. Figure 4 provides an MSE
comparison of the proposed CE-DNN using three different
accuracies of the channel value in Fig. 3. With an increase
in SNR, the MSE value of the channel emulator decreases,
as shown in Fig. 4. When CE-DNN inputs channel values
of different accuracy, the MSE performance will also change
with the accuracy of the channel value. However, CE-DNN
has similar MSE performance in Fig. 4, despite the differ-
ence in MSE performance of the channel value in Fig. 3. We
can conclude that CE-DNN, as a channel emulator, does not
heavily depend on the accuracy of the input channel values.
It exhibits strong generalization and correction capabilities.
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Fig. 3. NMSE performance for varying channel estimation algo-
rithms.
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Fig. 4. MSE performance of the proposed CE-DNN for varying
channel estimation algorithms at 64 QAM.

In Fig. 5, the convergence effectiveness of the CE-DNN
algorithm is evaluated with a learning rate of 0.001 and
64 QAM modulation. The MSE demonstrates how well the
proposed channel emulator converges as CE-DNN is trained
for various durations. It is illustrated in Fig. 5 that adding
training epochs improves the convergence of MSE, stabiliz-
ing after approximately 180 iterations in CE-DNN training.
This figure depicts the convergence behavior of the proposed
CE-DNN.

Figure 6 shows the performance of P-DNN as a pre-
coder after being jointly trained with CE-DNN. The MSE
is used to reflect the similarity between the original user
data signal and the signal received by the user after the pre-
coded signal generated by the P-DNN passes through the
actual channel. The outcome of Fig. 6 demonstrates that as
the SNR increases, the received signal generated by the pre-
coding signal through the actual channel gets closer to the
original user data signal. Even though the inputs of P-DNN
are channel values with different precisions, P-DNN exhibits
similar MSE performance. When the inputs of P-DNN are
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Fig. 5. Convergence performance of the proposed CE-DNN for
varying channel estimation in the case of "64 QAM,
learning rate = 0.001".
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Fig. 6. MSE performance of the proposed P-DNN for varying
channel estimation algorithms at 64 QAM.
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channel values based on the LS channel estimation algorithm,
LMMSE channel estimation algorithm, and real channel, un-
der SNR is 25 dB, the MSE performance of P-DNN can
achieve 1.97 × 10−5, 1.08 × 10−5, and 8.01 × 10−6, respec-
tively. Compared with 32 QAM, 64 QAM is a high-order
modulation mode, which transmits more bits, and it also re-
quires higher channel conditions. Therefore, Figure 7 shows
that the MSE of the proposed P-DNN is smaller for different
channel estimation algorithms at 32 QAM.

Figure 8 shows the MSE performance of P-DNN ob-
tained through multiple rounds of training to demonstrate
its convergence performance. Compared with CE-DNN, P-
DNN requires a deeper exploration of the non-linear mapping
relationship between user data, CSI, and precoded signals,
thus necessitating more extensive training. As depicted in the
figure, the P-DNN begins to stabilize approximately around
the 800th training iteration.

We compared the bit error rate (BER) performance of
the P-DNN-based precoding scheme to that of the linear fully
digital BD-based precoding scheme [16] and the non-linear
fully digital TH-based precoding scheme [18] to assess the
superiority of the proposed approach. When 64 QAM is cho-
sen as the digital modulation mode of the baseband signal, the
BER of the system is larger than that of 32 QAM. This is be-
cause high-order digital modulation has higher requirements
for the accuracy of signal recovery. As shown in Fig. 9 and
Fig. 10, when the channel estimation value is obtained using
the LS channel estimation algorithm, the proposed method
outperforms the conventional linear fully digital precoding
scheme, and its BER performance is comparable to the fully
digital non-linear TH-based precoding scheme. THP adopts
the idea of DPC and has approximately optimal precoding
performance, but THP has high complexity. The simula-
tion results prove that the P-DNN-based precoding has better
performance, which is due to the superior representation ca-
pabilities of DL. This means that the precoding in distributed
massive MIMO can be solved with DL.
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Fig. 7. MSE performance of the proposed P-DNN for varying
channel estimation algorithms at 32 QAM.
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Fig. 8. Convergence performance of the proposed P-DNN for
varying channel estimation in the case of "64 QAM,
learning rate = 0.001".
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Fig. 9. BER performance for varying precoding schemes at
32 QAM.
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Fig. 10. BER performance for varying precoding schemes at
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Fig. 11. Spectrum efficiency of different algorithms at different
SNRs.

As demonstrated in Fig. 11, we display the spectrum
efficiency performance of the P-DNN-based precoding tech-
nique against the SNR, the linear fully digital BD-based pre-
coding scheme, and the non-linear fully digital TH-based
precoding scheme. In all the schemes, it is evident from
Fig. 11 that the spectrum efficiency increases as the SNR
rises. Furthermore, it is clear from Fig. 11 that the proposed
P-DNN-based precoding scheme outperforms other methods
by a wide margin and exhibits a spectrum efficiency com-
parable to the TH-based precoding scheme, thanks to the
outstanding mapping and learning capabilities of DL. Ad-
ditionally, the performance disparity between the DL-based
system and other approaches widens as the SNR increases.
This improved performance highlights the value of the sug-
gested precoding technique.

4.2 Complexity Analysis
For a more quantitative analysis, let us consider the

number of multiply-accumulate operations of the DNN. This
can be easily observed to be proportional to the number of
channels. In the offline training phase, the computational
complexity was not significant since the required time was
usually not strictly bounded. Therefore, the computational
complexity of the proposed Cascaded DNN does not need
to consider the complexity of CE-DNN and cascaded DNN.
The computational complexity of the proposed method was
the complexity of P-DNN. The number of multiplications
and additions of complex numbers was used to define the
computing complexity in terms of the necessary floating-
point operations (FLOPs). The complexity of P-DNN is
O (𝐾𝑁 (𝐾𝑁 + 𝑀)). It was compared with the computational
complexity of the traditional nonlinear precoding algorithm
THP algorithm and BD algorithm [30], as shown in Tab. 4.
In a multiuser configuration, the amount of transmit antennas
is represented by 𝐾𝑁 , and the amount of receive antennas is
represented by 𝑀 .

Precoding method Complexity
BD 4

3𝑀
3 +∑𝑛

𝑘=1 O
(
𝑁6

)
THP O

(
𝑁4

)
P-DNN O (𝐾𝑁 (𝐾𝑁 +𝑀 ) )

Tab. 4. Computational complexity of methods.

5. Conclusions
In this paper, we propose an adaptive precoding frame-

work based on DL for distributed massive MIMO systems.
Firstly, the CE-DNN is trained to learn and simulate the
transmission process of the wireless communication chan-
nel, enabling it to effectively correct the input channel values.
Secondly, the untrained P-DNN and CE-DNN are cascaded
and then trained, resulting in the P-DNN with precoding abil-
ity obtained through splitting. Simulation results show that
P-DNN can achieve adaptive precoding even when the CSI
obtained by channel estimation is poor. Compared with tra-
ditional precoding technology, P-DNN not only reduces the
BER and achieves nearly optimal precoding performance,
but also reduces algorithm complexity. The DNN network
used in this paper is a more general and basic neural net-
work. More complex neural networks can be employed to
enhance the performance of digital precoding in the future.
Another promising direction is to implement hybrid precod-
ing based on the neural network architecture presented in this
paper, aiming to reduce RF links overhead in massive MIMO
systems.
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Appendix A: Algorithm 1
Algorithm 1: Precoding Algorithm.
Input: The data streams and channel estimation values for CE-DNN in
Stage 1 and P-DNN in Stage 2.
Output: The received data of UEs for CE-DNN in Stage 1. The data
streams for CE-DNN in Stage 2. The precoding data for P-DNN in
Stage 2.
Initialization: Initialize the weight 𝑤 and the bias 𝑏 of the hidden and
output layers randomly.

Training:

Stage 1

1: Input the training set into the CE-DNN.

2: Determine the outputs of the CE-DNN in accordance with (15) and
(18).

3: Calculate and update the weights and biases according to the SGD
algorithm.

4: Repeat steps 1–3, until the stopping standard is met (the number of
iterations is directly limited or the error difference between adjacent
two times is very minimal).

Stage 2

5: Input the training set into the cascaded DNN include CE-DNN and
P-DNN.

6: Calculate the outputs of the P-DNN according to (15) and (20). The
outputs of P-DNN and channel estimation values are used as the input
of the CE-DNN.

7: Keep the weight and bias of the CE-DNN unchanged. Calculate and
update the weights and biases of the cascaded DNN according to the
SGD algorithm.

8: Separate the cascaded DNN and make P-DNN an independent net-
work.

Testing:

Stage 1

9: Enter the testing set into the CE-DNN, then compute the outputs of the
CE-DNN and evalute the performance of DL based channel emulator
according to (19).

Stage 2

10: Input the testing set into the P-DNN, calculate the outputs of the P-
DNN and evaluate the performance of DL-based precoder according
to (23) and (24).


