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Abstract. Compressed Sensing (CS) has been shown to
be an effective technique for improving the resolution of in-
verse synthetic aperture radar (ISAR) imaging and reducing
the hardware requirements of radar systems. In this pa-
per, our focus is on the ℓ𝑝 (0 < 𝑝 < 1) model, which is
a well-known non-convex and non-Lipschitz regularization
model in the field of compressed sensing. In this study, we
propose a novel algorithm, namely the Accelerated Iterative
Support Shrinking with Full Linearization (AISSFL) algo-
rithm, which aims to solve the ℓ𝑝 regularization model for
ISAR imaging. The AISSFL algorithm draws inspiration
from the Majorization-Minimization (MM) iteration algo-
rithm and integrates the principles of support shrinkage and
Nestrove’s acceleration technique. The algorithm employed
in this study demonstrates simplicity and efficiency. Numer-
ical experiments demonstrate that AISSFL performs well in
the field of ISAR imaging.
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1. Introduction
Inverse Synthetic Aperture Radar (ISAR) has gained

significant popularity in both military and civilian domains
owing to its capability to generate images of non-cooperative
maneuvering targets [1–4]. In order to acquire a high-
resolution image, it is imperative to transmit signals with
a wide bandwidth and extend the duration of coherent accu-
mulation. However, this will result in an escalation in the
complexity associated with the collection, transmission, and
storage of data. Consequently, this will impose a signifi-
cant strain on the radar hardware. Compressed sensing has
shown that when a signal is sparse, it can be reconstructed
using a sampling rate significantly lower than what is re-
quired by Shannon’s sampling theorem [5–7]. Fortunately,
the ISAR image exhibits sparsity in the Doppler domain,

thereby enabling the utilization of compressed sensing tech-
niques to improve resolution and minimize the data demands
for ISAR imaging [8–10].

Radar image reconstruction based on compressed sens-
ing theory is a classic inverse problem, which is to reconstruct
the original radar signal on the basis of the known observed
signal and the known observation matrix. Assumed that
the translational motion of the target has been fully compen-
sated using conventional methods. Considering the impact of
noise, the observation process can be formulated as [11], [12]

y = 𝚽x + b (1)

where y ∈ C𝑚 is the observed signal, b ∈ C𝑛 is the noise in
the observation, 𝚽 ∈ C𝑚×𝑛 (𝑚 < 𝑛) is the observation ma-
trix which is used to observe the high-dimensional original
signal x and obtain the low-dimensional observed value y,
and x ∈ C𝑛 is the radar signal to be reconstructed. Since the
equation presented in (1) is an underdetermined system, it
possesses an infinite number of solutions. Consequently, it
is not possible to reconstruct the original signal solely based
on this system.

Compressed sensing asserts that if the radar signal x
exhibits sparsity under an orthogonal basis or tight frame 𝚿,
i.e., x = 𝚿𝛂, and the given equation (1) can be expressed as

y = 𝚽𝚿𝛂 + b (2)

where 𝛂 ∈ C𝑛 is the sparse representation of x under 𝚿, and
𝚿 is irrelevant to 𝚽. Then, the approximate value 𝛂̄ of 𝛂
can be obtained by solving a nonlinear optimization problem
based on the known observed signal y and observation matrix
𝚽 and noise type. Moreover, the original signal x is restored
by x = 𝚿𝛂̄. Let 𝚽𝚿 = 𝚯, where 𝚯 ∈ C𝑚×𝑛 (𝑚 < 𝑛) is
referred to as the sensing matrix. The product of the obser-
vation matrix 𝚽 and the sparse basis matrix 𝚿 must satisfy
the Restricted Isometry Property (RIP) condition [6], [7] to
ensure accurate reconstruction of the signal.

When designing a measurement matrix 𝚽, the key fac-
tors are the measurement waveform and sampling method.
Commonly used observation matrices can be mainly divided
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into three categories. The first category consists of com-
pletely random observation matrices, such as Gaussian ran-
dom observation matrices and Bernoulli random observation
matrices. The elements of this type of matrix follow in-
dependent distributions and remain incoherent with general
orthogonal bases. The reconstructed signal has high accu-
racy and is the most common and applicable measurement
matrix. However, it is difficult to implement in hardware;
The second type is structural random observation matrices,
such as partial Fourier matrices, partial Hadamard matrices
and non-correlated measurement matrices, etc., which are
obtained by randomly extracting some rows from an orthog-
onal matrix and then normalizing them. This type of matrix
is easy to implement and store, and has high reconstruction
accuracy; The third category is deterministic observation
matrices, such as Toplitz matrices, circulant matrices, etc.
These matrices are proposed for specific signals. This type
of matrix is easy to implement in hardware and design fast
algorithms, but the reconstruction accuracy is low.

The compressed sensing model presented in (2) is still
an underdetermined system. However, by incorporating the
sparse prior information of 𝛂 to constrain the solution space,
it becomes feasible to reconstruct the original radar signal.
This is due to the fact that the most sparse solution has the
potential to be the accurate solution. For this model , there
exist some solution methods. Two commonly employed so-
lution methods are greedy methods and regularization meth-
ods. The Orthogonal Matching Pursuit (OMP) algorithm,
as described in reference [13], is a well-known greedy al-
gorithm commonly used in ISAR imaging. The algorithm
exhibits several advantages, including simplicity, efficiency,
and ease of comprehension. However, it is important to note
that a notable disadvantage of this algorithm is its suscepti-
bility to noise interference. Regularization algorithms can be
broadly categorized into two types: convex regularization al-
gorithms and non-convex regularization algorithms. Based
on the sparsity of signals, the ℓ0 "norm" is utilized as the
regularization term. The ℓ0 regularization model is

min
𝛂∈C𝑛

𝜆∥𝛂∥0 +
1
2
∥𝚯𝛂 − y∥2

2 (3)

where 𝜆 > 0 serves as the regularization parameter, and the
notation ∥𝛂∥0 denotes the cardinality of the set {𝑖 : 𝛼𝑖 ≠ 0},
which counts the number of non-zero elements in the vector
𝛂. In this context, the ∥𝛂∥0 "norm" represents the regular-
ized term, and the term 1

2 ∥𝚯𝛂 − y∥2
2 corresponds to the data

fitting term. Theoretically, it is possible to obtain the optimal
solution of the ℓ0 regularization. However, it should be noted
that this problem is classified as NP-hard [14]. As a result,
solving it directly in large-scale problems is not considered
practical.

One approach to address the ℓ0 regularization problem
is through the use of convex relaxation, wherein the ℓ1 norm
is employed as a substitute for the ℓ0 "norm". The ℓ1 regular-
ization model [15] is

min
𝛂∈C𝑛

𝜆∥𝛂∥1 +
1
2
∥𝚯𝛂 − y∥2

2 (4)

where ∥𝛂∥1 =
∑𝑛

𝑖=1 |𝛼𝑖 |. The problem in equation (4) per-
tains to the classical Basis Pursuit (BP) problem, as dis-
cussed in reference [16]. The ℓ1 regularization is a convex
optimization problem that has the ability to produce sparse
solutions [17]. E. Candès and Tao has proved that under
the Restricted Isometry Property (RIP) condition, the ℓ1 reg-
ularization model and the ℓ0 regularization model have the
same solution [18]. There are some simple and efficient al-
gorithms that have been developed for the ℓ1 regularization
model in the ISAR imaging problem. For instance, in refer-
ences [19], [20], a smooth function is formulated as a substi-
tute for the ℓ1 term, and the solution is obtained through the
application of the derivative operation. Additionally, in an-
other studies [21], [22], the Alternating Direction Method of
Multipliers (ADMM) algorithm is employed to solve the ℓ1
regularization model for ISAR imaging. In [23], the Iterative
Soft Thresholding (IST) algorithm is utilized to solve the ℓ1
regularization model, among other methods.

In recent years, there has been an increasing body of
research indicating that the accuracy of the solution to the
ℓ1 regularization model is not satisfactory and the sparsity
of the reconstructed signal often deviates from the expected
level. Conversely, it has been observed that the non-convex
regularization model outperforms the convex regularization
model, as supported by several studies [24–27]. For instance,
in the study conducted by the authors [24], it was noted that
the non-convex regularization model has the ability to uti-
lize a smaller amount of measurement data compared to the
convex regularization model for signal reconstruction. Addi-
tionally, the non-convex regularization model demonstrates
higher accuracy in the reconstruction process. In this pa-
per, we consider the classical non-convex ℓ𝑝 (0 < 𝑝 < 1)
regularization model:

min
𝛂∈C𝑛

𝜆∥𝛂∥ 𝑝 + 1
2
∥𝚯𝛂 − y∥2

2 (5)

where ∥𝛂∥ 𝑝 =
∑𝑛

𝑖=1 |𝛼𝑖 |𝑝 . The optimization problem stated
in (5) is characterized as non-convex and non-Lipschitz,
thereby posing a significant challenge in devising an algo-
rithm for this particular model. There are already many al-
gorithms for solving the ℓ𝑝 (0 < 𝑝 < 1) regularization model
in ISAR imaging, such as researchers specifically focused on
the ℓ1/2 regularization model and designed an algorithm for
this model [28], [29]. In the study referenced as [30], the
iterative weighted ℓ1 method (IRL1) was utilized to solve the
ℓ𝑝 model. Additionally, in another study referenced as [11],
the block iterative reweighted ℓ2/ℓ𝑝 minimization algorithm
(BIRL2-ℓ𝑝) was proposed for ISAR imaging, among others.

In this paper, we present a novel algorithm called the
AISSFL algorithm, which aims to address the ℓ𝑝 regular-
ization problem in ISAR imaging. The AISSFL algorithm
draws inspiration from the Majorization-Minimization (MM)
iteration algorithm and incorporates the concepts of support
shrinkage and Nestrove’s acceleration technique. The MM
iterative algorithm [31] is not only a specific algorithm, but
also a framework for algorithms. The MM algorithm solves
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optimization problems iteratively by minimizing a surrogate
majorizing function of the objective function at each itera-
tion. For the ℓ𝑝 regularization model, the surrogate function
is constructed by utilizing the first-order Taylor expansion
of the regularization term and the second-order Taylor ex-
pansion of the data fitting term. The surrogate function that
we construct is a strongly convex function, thereby ensuring
the existence of a unique analytical solution at each iteration.
The strategy of support set shrinkage [32], could overcome
the non-Lipschitz of the objective function at the zero, and
avoid the weight value in the surrogate function becoming
infinite. The algorithm we have developed falls under the
category of gradient methods, thus making it suitable for
the application of Nestrove’s acceleration technique [33] to
enhance its performance. The AISSFL algorithm possesses
an analytical solution at each iteration, thereby making it
a single-loop algorithm characterized by high efficiency. In
Sec. 2, a comprehensive explanation of this algorithm is pro-
vided. In Sec. 3, the numerical experiments demonstrate
that the AISSFL algorithm exhibits excellent performance in
ISAR imaging, surpassing several renowned algorithms.

2. Algorithm
In this section, we give the design process of the

AISSFL algorithm. AISSFL is a process of reconstruct-
ing the radar signal x based on the existing observation y and
known the sensing matrix 𝚯.

Firstly, it should be noted that the function ℎ(𝑥) =

𝑥𝑝 (0 < 𝑝 < 1) is non-Lipschitz at zero. Consequently, the
objective function in (4) is a non-convex and non-Lipschitz
function. Non-Lipschitz properties will result in the weight
value, as described later, becoming infinite. Therefore, in the
algorithm, if certain optimization variables are determined to
be zero in the 𝑘-th step, we consistently assign these variables
a value of zero and exclude them from further calculations in
subsequent iterations. In general, the support set of a vector
𝛂 ∈ C𝑛 is defined as Ω(𝛂) := {𝑖 ∈ [𝑛] : |𝛼𝑖 | ≠ 0}, where
[𝑛] = {1, 2, . . . , 𝑛}. Considering the limited word length of
actual computers and in order to prevent excessively large
linearization weights as described subsequently, the support
set of a vector 𝛂 ∈ C𝑛, we define its support set as

Ω(𝛂) := {𝑖 ∈ [𝑛] : |𝛼𝑖 | ≥ 𝜀} (6)

where 𝜀 represents a small positive number, and we use the
notation Ω(𝛼𝑘) as an abbreviation for Ω𝑘 . That is to say, in
the algorithm, if a variable is smaller than a specified pre-
cision, it is also considered as zero. Based on the support
set shrinkage strategy, the unconstrained ℓ𝑝 regularization
problem stated in (5) can reformulated as into a constrained
optimization problem. The value of 𝛼𝑘+1 is determined by
solving the following constrained optimization problem

𝛼𝑘+1 = arg min
𝛂∈C𝑛

{
𝜆∥𝛂∥ 𝑝 + 1

2
∥𝚯𝛂 − y∥2

2

}
s.t. 𝛼𝑘+1

𝑖 = 0,∀𝑖 ∈ [𝑛] \Ω𝑘 .

(7)

The support shrinkage strategy can not only overcome the
non-Lipschitz property of the objective function but also re-
duce the scale of the problem to be solved in each iteration.

Next, the problem stated in (7) remains a non-convex
optimization problem. Inspired by the MM algorithm, we
employ the Taylor expansion technique to approximate the
objective function as a surrogate function at each iteration.
In this approach, the regularization term is approximated us-
ing a first-order Taylor expansion, while the data fitting term
is approximated using a second-order Taylor expansion. In
every iteration, the surrogate function is minimized. The
value of 𝛼𝑘+1 is determined by solving the following prob-
lem:

min
𝛂∈C𝑛


𝜆

∑︁
𝑖∈Ω𝑘

[
|𝛼𝑘

𝑖 |
𝑝 + 𝑝 |𝛼𝑘

𝑖 |
𝑝−1 ( |𝛼𝑖 | − |𝛼𝑘

𝑖 |)
]
+ 1

2
∥𝚯𝛼𝑘 − y∥2

2

+ (𝛂 − 𝛼𝑘)T𝚯T (𝚯𝛼𝑘 − y) + 𝛾

2
∥𝛂 − 𝛼𝑘 ∥2

2


s.t. 𝛼𝑘+1

𝑖 = 0,∀𝑖 ∈ [𝑛] \Ω𝑘

(8)

where 𝛾 ≥ ∥𝚯T𝚯∥2. The problem in (8) is a strongly convex
optimization problem, thus it is easy to solve.

Nesterov’s acceleration method [33] is a highly efficient
technique for acceleration. We have observed that the utiliza-
tion of Nesterov’s acceleration technique yields a significant
acceleration effect for gradient algorithms. The algorithm
described in (8) is classified as a gradient algorithm. To
enhance its performance, we employ Nesterov’s acceleration
technique. Herein, we introduce a new variable 𝛽𝑘 defined
as

𝛽𝑘 = 𝛼𝑘 + 𝑡𝑘 (𝛼𝑘 − 𝛼𝑘−1) (9)

where

𝑡𝑘 =
𝑐𝑘−1 − 1

𝑐𝑘
, 𝑐𝑘+1 =

1 +
√︃

1 + 4𝑐2
𝑘

2
, 𝑐−1 = 𝑐0 = 1,

(10)
is the parameter of extrapolation. After acceleration, the𝛼𝑘+1

is obtained by solving the following problem:

min
𝛂∈C𝑛


𝜆

∑︁
𝑖∈Ω𝑘

[
|𝛼𝑘

𝑖 |
𝑝 + 𝑝 |𝛼𝑘

𝑖 |
𝑝−1 ( |𝛼𝑖 | − |𝛼𝑘

𝑖 |)
]
+ 1

2
∥𝚯𝛽𝑘 − y∥2

2

+ (𝛂 − 𝛽𝑘)T𝚯T (𝚯𝛽𝑘 − y) + 𝛾

2
∥𝛂 − 𝛽𝑘 ∥2

2


s.t. 𝛼𝑘+1

𝑖 = 0,∀𝑖 ∈ [𝑛] \Ω𝑘 .

(11)

Now, we solve the problem in (11). By combining
similar terms, we get

1
2
∥𝚯𝛽𝑘 − y∥2

2 + (𝛂 − 𝛽𝑘)T𝚯T (𝚯𝛽𝑘 − y)

+ 𝛾

2
∥𝛂 − 𝛽𝑘 ∥2

2 =
𝛾

2
∥𝛂 − 𝜂𝑘 ∥2

2 + 𝐶 (12)

where 𝜂𝑘 = 𝛽𝑘 − 1
𝛾
𝚯T (𝚯𝛽𝑘 − y) and 𝐶 is a constant. There-

fore, the objective function in (11) is separable for each indi-
cator 𝑖. Then, the problem stated in (11) can be equivalently
expressed as
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{
𝛼𝑘+1
𝑖

= arg min𝛼

∑
𝑖∈Ω𝑘 [𝑤𝑘

𝑖
|𝛼𝑖 | + 𝛾

2 (𝛼𝑖 − 𝜂𝑘
𝑖
)2], ∀𝑖 ∈ Ω𝑘 ;

𝛼𝑘+1
𝑖

= 0, ∀𝑖 ∈ [𝑛] \Ω𝑘

(13)

where 𝑤𝑘
𝑖
= 𝜆𝑝 |𝛼𝑘

𝑖
|𝑝−1. The problem in (13) has the follow-

ing analytic solution [34]:

𝛼𝑘+1
𝑖 = max

{
0, 1 −

𝑤𝑘
𝑖

𝛾 |𝜂𝑘
𝑖
|

}
𝜂𝑘𝑖 , ∀𝑖 ∈ Ω𝑘 . (14)

In summary, we give the AISSFL algorithm in Algo-
rithm 1.

Algorithm 1. The Accelerated Iterative Support Shrinking with Full Lin-
earization algorithm (AISSFL).

Inpute: The observation y and the sensing matrix 𝚯.
Set parameter: 𝜆, 𝛾, 𝜀, 𝛼0, 𝑘 := 1, 𝜖 , Maxit.
1. Find support set: Ω𝑘 =

{
𝑖 ∈ [𝑛] : |𝛼𝑘

𝑖
| ≥ 𝜀

}
.

2. Update weight: 𝑤𝑘
𝑖
= 𝜆𝑝 |𝛼𝑘

𝑖
|𝑝−1.

3. Compute 𝛼𝑘+1:
𝛼𝑘+1
𝑖

= max
{
0, 1 − 𝑤𝑘

𝑖

𝛾 |𝜂𝑘
𝑖
|

}
𝜂𝑘
𝑖
, ∀𝑖 ∈ Ω𝑘 ;

𝛼𝑘+1
𝑖

= 0, ∀𝑖 ∈ [𝑛] \Ω𝑘 .

(15)

4. If the relative error ∥𝛼𝑘+1−𝛼𝑘 ∥2
∥𝛼𝑘 ∥2

> 𝜖 or 𝑘 < Maxit, let 𝑘 = 𝑘 + 1 and
return to step 1, step 2, step 3.
Output 𝛼𝑘+1.

The reconstructed radar signal x = 𝚿𝛂, and the ISAR
image can be obtained by applying the Fast Fourier Trans-
form (FFT) to x. The AISSFL algorithm is a single-loop
algorithm, which is easy to implement and efficient. The
numerical experiments in Sec. 3 show that the AISSFL algo-
rithm performs well.

3. Numerical Experiments
In this section, the AISSFL algorithm is employed for

the purpose of 2D inverse synthetic aperture radar imaging.
Subsequently, a comparison is made between the AISSFL
algorithm, the OMP algorithm, the IST algorithm and ℓ 1

2
algorithm. All experiments were completed on a desktop
computer with Windows 7, 64bit, 8 GB memory, Intel Core™

i7-7700 CPU (3.60 GHz). MATLAB R2016a is mathemati-
cal software. The simulation data is the 64×512 dimensional
MIG-25 fighter echo data provided by V.C.CHEN of the US
Air Force Laboratory. The radar carrier frequency is 9 GHz,
the bandwidth is 512 MHz, and the pulse repetition frequency
is 15 kHz. The echo data has completed motion compensa-
tion and can be directly imaged.

3.1 Experimental Setup
In the experiment, a 64 × 128 data segment is chosen

from the MIG-25 fighter echo data as the simulation signal,
denoted as x = (𝑥1, . . . , 𝑥64), where 𝑥𝑖 ∈ C128. This data seg-
ment is transformed using the Fast Fourier Transform (FFT)
and is depicted in Fig. 1(a).

(a)

(b)

Fig. 1. The simulation signal and the observation signal.

The simulation data does not contain noise. To assess
the performance of the AISSFL algorithm in the presence
of noise, we introduce white Gaussian noise to the simula-
tion data, so that the signal-to-noise ratio of the superim-
posed signal is 10 dB. The observation signal, denoted as
y = (𝑦1, . . . , 𝑦64) where 𝑦𝑖 ∈ C64, is simulated according to
the following procedure:

𝑦𝑖 = 𝚽𝑥𝑖 + 𝑏 ∀𝑖 ∈ {1, . . . , 64} (16)

where 𝚽 ∈ C64×128 is the sensing matrix, 𝑏 is the white
Gaussian noise. The variable y is depicted in Fig. 1(b). It is
evident that the number of columns in matrix y is half that
of matrix x. Collecting the compressed observation signal
and subsequently reconstructing the original signal from the
observation signal, rather than directly collecting the origi-
nal signal, can significantly alleviate the hardware demands
of radar systems, which is the significance of compressed
sensing technology.

It is well-established that the radar echo signal exhibits
sparsity in the Doppler domain. Therefore, we opt to utilize
the orthogonal Fourier basis, denoted as 𝚿 ∈ C128×128, as
the sparse basis. Additionally, we select the observation ma-
trix 𝚽 to be a random Gaussian matrix. The sensing matrix
𝚯 = 𝚽𝚿 constructed in this manner satisfies the Restricted
Isometry Property (RIP) condition. In the proposed AISSFL,
the parameter values are selected as follows: 𝜆 = 2 × 105,
𝛾 = ∥𝚯T𝚯∥2

2, 𝜀 = 10−6, 𝜖 = 10−5, Maxit = 100, 𝑝 = 0.5.
The entropy value is utilized to assess the fidelity of the re-
constructed image. The relationship between entropy and
image aggregation is such that as entropy decreases, the de-
gree of image aggregation increases, resulting in a higher
quality of the reconstructed image. Conversely, as the en-
tropy increases, the image becomes more chaotic, resulting
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in a decrease in the quality of the reconstructed image. In ex-
perimental settings, the MATLAB software’s "entropy" func-
tion is employed to compute the entropy of two-dimensional
reconstructed images.

3.2 ISAR Imaging
The AISSFL algorithm is employed to address the ℓ𝑝

regularization problem (5), resulting in an optimal solution
denoted as 𝛂̄. Subsequently, the reconstructed radar signal is
obtained as x̄ = 𝚿𝛂̄. The ISAR image is reconstructed using
the Fast Fourier Transform for x̄.

The ISAR image is depicted in Fig. 2(a). It is evident
from Fig. 2(a) that the ISAR image reconstructed by AISSFL
is of high quality, without the influence of side lobes and bad
points. We chose a different data segment and applied the
identical algorithm parameters to reconstruct it. The outcome

is depicted in Fig. 2(b). It is evident from Fig. 2(b) that the
AISSFL algorithm is capable of reconstructing high-quality
ISAR images from various perspectives in these parameters.

3.3 Adaptability to Different Type of 𝚽
In this subsection, we have chosen four other observa-

tion matrices that are frequently utilized to evaluate the effec-
tiveness of the AISSFL algorithm. These matrices include
the random Bernoulli matrix, the random PartHadamard ma-
trix, the random PartFourier matrix, and the random Cir-
culant matrix. The ISAR imaging results obtained using
various observation matrices are depicted in Fig. 3. It is ev-
ident from Fig. 3 that the AISSFL algorithm demonstrates
strong performance, with the exception of a few outliers in
the reconstructed image when using the random cyclic ma-
trix. This observation highlights the broad applicability of
the AISSFL algorithm.

(a) (b)

Fig. 2. The ISAR image reconstructed by the AISSFL algorithm.

(a) Random Bernoulli matrix (b) Random PartHadamard matrix

(c) Random PartFourier matrix (d) Random Circulant matrix

Fig. 3. The ISAR image is reconstructed using the AISSFL algorithm with various types of observation matrices.
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(a) AISSFL (Gaussian) (b) AISSFL (Bernoulli)

(c) ℓ 1
2
algorithm (Gaussian) (d) ℓ 1

2
algorithm (Bernoulli)

(e) IST (Gaussian) (f) IST (Bernoulli)

(g) OMP (Gaussian) (h) OMP (Bernoulli)

Fig. 4. The reconstructed images using the AISSFL algorithm, the ℓ 1
2
algorithm, the IST algorithm, and the OMP algorithm in ISAR imaging.

The matrices shown in (a), (c), (e), (g) represent random Gaussian matrices, while the matrices in (b), (d), (f), (h) represent random
Bernoulli matrices.



60 Y. ZHAO, F. YANG, C. WANG, ET AL., INVERSE SYNTHETIC APERTURE RADAR IMAGING BASED ON . . .

3.4 Adaptability to Different 𝒑

In this subsection, we examine the impact of the param-
eter 𝑝 on the AISSFL algorithm. We consider the values of 𝑝
to be 0.1, 0.3, 0.5, 0.7, and 0.9. The results of the entropy
analysis are presented in Tab. 1. It is evident from the data
presented in Tab. 1 that the entropies of the reconstructed im-
ages exhibit minimal variation across different values of 𝑝.
This observation suggests that the AISSFL algorithm demon-
strates robustness with respect to the parameter 𝑝.

3.5 Comparisons to Some Well-Known
Algorithms
In this section, a comparison is made between the

AISSFL algorithm and some well-known compressed sens-
ing algorithms, namely the OMP algorithm [12], the IST
algorithm [23] and ℓ 1

2
algorithm [28]. We conducted experi-

ments using two different types of observation matrices: the
random Gaussian matrix and the random Bernoulli matrix.
The reconstructed images obtained from Inverse Synthetic
Aperture Radar (ISAR) are depicted in Fig. 4. The entropy
of the reconstructed ISAR image and the CPU time (in sec-
onds) are presented in Tab. 2.

It is evident from the comparison shown in Fig. 4 and
the entropy value presented in the Tab. 2 demonstrate that
the ISAR image reconstructed using the AISSFL algorithm
exhibits superior clarity, with minimal artifacts. Addition-
ally, the entropy value associated with the AISSFL algorithm
is similar to the ℓ 1

2
algorithm, and lower than the IST al-

gorithm and the OMP algorithm.In relation to CPU time,
the AISSFL algorithm demonstrates a similar performance
to the IST algorithm. In addition, the ℓ 1

2
algorithm takes

the most time and the OMP algorithm takes the least time.
Experiments have demonstrated that the AISSFL algorithm
is a simple and effective method, exhibiting excellent perfor-
mance in addressing the ISAR imaging problem. Previous
studies frequently employ the terms "complex" and "sensi-
tive to parameters" to characterize non-convex algorithms.
However, the AISSFL algorithm is a simple and efficient
algorithm, and it has only one regularization parameter 𝜆

to debug, the algorithm performs well when the parameter
𝜆 is between 60000 and 200000, which breaks the previ-
ous impression that non-convex algorithms are complex and
sensitive to parameters.

𝒑 0.1 0.3 0.5 0.7 0.9
Entropy 0.16 0.17 0.17 0.18 0.2

Tab. 1. The value of entropy of ISAR images reconstructed by
AISSFL with different values of 𝑝.

AISSFL ℓ 1
2

algorithm IST OMP

Gauss 0.17, 0.51 s 0.17, 1.04 s 0.28, 0.39 s 0.47, 0.25 s
Bernoulli 0.19, 0.50 s 0.20, 1.10 s 0.29, 0.44 s 0.47, 0.12 s

Tab. 2. The value of entropy and CPU time (s) of the AISSFL al-
gorithm, ℓ 1

2
algorithm, the IST algorithm, and the OMP

algorithm.

4. Conclusion
In this paper, we present a novel algorithm called

AISSFL, which aims to solve the non-convex ℓ𝑝 regular-
ization model. AISSFL is a simple and efficient algorithm,
breaking the conventional belief that non-convex algorithms
are inherently complex and highly sensitive to parameter set-
tings. We employ the AISSFL algorithm for the purpose of
inverse synthetic aperture radar (ISAR) imaging. Numerical
experiments demonstrate that the AISSFL algorithm exhibits
strong performance across various values of 𝑝 ∈ (0, 1) and
different observation matrices. Comparative experiments
demonstrate that the ISAR image reconstructed using the
AISSFL algorithm exhibits superior clarity compared to the
ℓ 1

2
algorithm, the IST algorithm and the OMP algorithm.
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