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Abstract. In this study, a linear approach, linear sampling
method (LSM) is used to reconstruct the shape of perfectly
electric conductors (PEC) with the help of deep learning as
a post-processing technique. In microwave imaging, the LSM
is a simple and reliable linear inversion technique for deter-
mining the morphological features of unknown objects under
investigation. However, the output of this method depends
on the frequency of operation, the choice of regularization
parameter,and it is unable to produce satisfactory results for
objects with complex shapes. To overcome this drawback,
a deep learning approach is used in this work, which can pro-
duce a better output in terms of accuracy, resolution. Here,
the rough estimate of the PEC scatterer obtained using LSM
is used to train the U-Net based convolutional neural net-
work, which maps this output with the corresponding ground
truth profiles. The proposed hybrid model is validated using
several examples of synthetic and experimental data.
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1. Introduction
Microwave imaging (MI) is a non-contact and non-

invasive methodology to estimate concealed or implanted
objects in a structure using electromagnetic waves in the mi-
crowave range. MI is widely used in medical imaging, non-
destructive testing, geophysical explorations etc. [1], [2]. One
of the challenges in microwave imaging is the reconstruction
of perfectly electric conductors (PEC). The detection of PEC
is essential in various applications, like concealed weapon de-
tection [1–4], localization of metallic contaminants in food
products [5] and landmine detection [6], [7] etc.

PEC reconstruction techniques are broadly classified
as volume based and surface-based methods. A volume-
based method, such as the local shape function, assigns
a Boolean variable to each pixel to indicate whether it is PEC
or not [8–10]. Genetic algorithms (GAs) are used to solve the

PEC inverse scattering problem (ISP) in [11] and [12]. The
main drawback of GA is that the computational cost increases
exponentially with sample size [13]. In [14–16], a different
volume-based approach for mixed targets that uses integral
scattering equations in that each pixel has been given a com-
plex permittivity value, and metallic objects have been mod-
elled as dielectrics with a substantial but finite imaginary part.
PEC scatterers are reconstructed by surface-based methods
using the Newton-Kantorovich method [17], the Differential
Evolution optimizer [18], [19], and the GAs [20–24]. The
Level Set (LS) approach has been utilised successfully in [25]
to produce the PEC contour without any prior knowledge of
the scattering scenario. The subspace optimization method-
based inversion process has been used to categorise each
segment as PEC or non-PEC [26], [27].

LSM is one of the qualitative imaging procedures used
for the shape reconstruction of dielectric as well as metallic
targets. This method is rapid, reliable, and computationally
efficient [28]. It has been applied for various applications
like detection of coated objects, buried objects, objects be-
hind walls, and breast cancer cells etc., [29–34]. LSM able
to estimate applied by considering the targets to be either
dielectric or perfect electric conducting (PEC) objects. The
main drawback of this method is that the quality of output de-
pends on frequency of operation and choice of regularization
parameter [35], [36]. To overcome these limitations, a mod-
ified LSM indicator based on a multi-frequency approach is
introduced. However, the improved results are inadequate.
Hence, in this work, we propose another methodology based
on deep-learning to tackle the above issues.

To the best of author’s knowledge, there are very few
literatures on the applicability of deep learning for the recon-
struction of PEC objects [37]. An effective CNN-DL archi-
tecture is implemented through the modelling of the rough
surface variation in terms of convenient spline type base
functions. In [38], a deep learning-assisted linear sampling
method (DLSM) is proposed for the reconstruction of multi-
layered dielectric objects with cylindrical and rectangular
cross-sections. The relative permittivity is randomly chosen
from the interval [1], [5]. The background of the detection
domain is assumed to be free space. So far, this is the only
work reported on LSM with deep-learning. The novelty of
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the paper lies in the proposed hybrid model, which combines
conventional LSM and deep learning.Furthermore, the limi-
tations of LSM, such as its output depending on the frequency
of operation and the choice of regularization parameter, are
also addressed using deep learning. Various examples of
synthetic and experimental data sets [39] are used to validate
the proposed model’s performance. The results are excellent
in terms of convergence rate and reconstruction quality.

This paper is organized as follows. The problem for-
mulation is covered in Sec. 2, LSM algorithm is briefed in
Sec. 2.1 and deep learning based linear sampling method for
inverse problem of PEC is discussed in Sec. 2.2. Thereafter,
numerical results for various testing examples are reported
in Sec. 3. The effect of regularization parameter and fre-
quency is discussed in Sec. 3.1 and 3.2, respectively. Finally,
Section 4 contains the concluding remarks.

2. Problem Formulation
The paper considers a scenario involving two dimen-

sional transverse magnetic (TM) characteristics and circu-
lar measurement configuration [40] as shown in Fig. 1.The
unknown object is embedded within the investigation do-
main Ω.This object resides within a medium characterized
by a homogeneous background.TM waves created by the 𝑁tx
number of transmitting antennas denoted as 𝑇x, illuminate
the unknown scatterers. The scattered field is measured by
the 𝑁rx number of receiving antennas denoted as 𝑅x.

The integral equations for the relationship between scat-
tered fields and the induced currents are as follows [41], [42]:
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The incident field, the scattered field, and the total field are
denoted by 𝑢inc, 𝑢scat, and 𝑢, respectively. 𝑟, 𝑡

′ ∈ (𝑥, 𝑦) are
spatial variables that indicate the Cartesian coordinates of
the receivers and emitter, respectively. 𝜖b denotes the back-
ground’s permittivity, 𝜇b denotes the magnetic permeability,
and 𝜔 denotes the working frequency. 𝐼c is the impressed
conduction current density. 𝐼c is related to the boundary con-
ditions of PEC. For PEC objects, the scattered fields depend
on the object’s shape and wave’s frequency.

The free space Green’s function is denoted by 𝐺
(
𝑟, 𝑡

′ )
and defined as
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where 𝐻
(2)
0 (.) is the Hankel function of second kind and

zeroth order and 𝑘b is the wave number. In PEC, the induced
currents are present only at the boundary 𝜕𝜋.

The solution to (1) and (2) can be found by applying
the method of moments to transform them into discrete ma-
trix equations by discretizing the integral equations and then
calculating unknown 𝐼c and 𝑢scat. The related mathematical
details can be found in [41], [42].

Fig. 1. Two-dimensional measurement configuration.
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2.1 Linear Sampling Method
The LSM provides an estimate of the targets support by

solving an auxiliary linear inverse problem rather than the
nonlinear one formulated through (1) and (2). With respect
to the scenario described above, the auxiliary problem is cast
as [43]

F [𝜉] =
∫ 2𝜋

0
𝑢scat (𝑟, 𝜃) 𝜉 (𝑟s, 𝜃

)
d𝜃 = 𝐺

(
𝑟, 𝑟s

)
(4)

where 𝐺 is the point source, 𝑟s ∈ Ω denotes a point of an ar-
bitrary grid that samples the region under test Ω , 𝜉 is the
unknown to be determined and F : 𝐿2 (Γ) → 𝐿2 (Γ) is the
far-field operator [8].

Due to compactness of F , equation (4) corresponds
to a linear ill-posed inverse problem [43]. Hence, a stable
solution of (4) in the generic sampling point requires regu-
larization. Usually, this is done by considering the Tikhonov
regularization, and singular value decomposition (SVD), the
final form of solution is
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where {𝜇𝑛, 𝜆𝑛, 𝑣𝑛} denotes SVD of F and 𝛼 is the Tikhonov
parameter / regularization parameter.

The estimated support is achieved by evaluating the en-
ergy (i.e., the 𝐿2 norm) of 𝜉, ∀ 𝑟s ∈ Ω , as this assumes its
lowest values in the points of the investigated region belong-
ing to the target, while it diverges in points external to it [43].
Therefore, the support is simply determined by plotting the
LSM indicator over Ω and associating the sampling points
where the indicator is low to the unknown objects.

From (5), one achieves the explicit expression of the
LSM indicator
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whose evaluation is computationally straightforward as it re-
quires a single evaluation of the SVD of F . Moreover, the
Tikhonov parameter can be determined only once for all sam-
pling points [44–47]. The regularization parameter employed
in this proposed technique is the same for all sampling points
and is set in accordance with the physics-based criteria de-
scribed in [31], which eliminates the need to understand the
level of noise present in the observed data. Regularization
parameter is set as 𝛼 = 0.0001𝜆1, where 𝜆1 is the leading
singular value.

2.2 Deep Learning Assisted Linear Sampling
Method for Inverse Problem of PEC
In recent years, deep learning has become one of the

most powerful methods in the field of regression and classifi-
cation problems. These methods are much faster and produce

better image quality compared to the conventional iterative
methods based on optimization [48]. With a powerful non-
linear matching ability and a one-step testing procedure, deep
learning methods are becoming the most popular to use in
microwave imaging techniques to obtain an inverse solution
in real-time.

U-Net is one of the encoder-decoder CNN architec-
ture used exclusively for image segmentation [49]. U-Net
has proven its effectiveness in biomedical image segmenta-
tion [49], [50] and permittivity estimation [51].The recent
works published in this area [38,51–55] show that the U-Net
is well-suited for solving EISPs along with backpropagation,
contrast source inversion, SVBIM, etc.

In this regard, U-Net architecture having an encoder
depth of 3 is used in the proposed model. The Proposed
scheme for embedding deep learning in LSM is as shown in
Fig. 2. The detail of the U-Net architecture with an encoder
depth of 3 is as shown in Fig. 2(a). Since the U-Net architec-
ture was originally designed for segmentation, it is modified
such that the Softmax layer is removed and the segmentation
layer is replaced with a regression layer. It consists of 3 × 3
convolutional, rectified linear units (ReLU) and 2× 2 a max-
pooling layers (contraction path), followed by successive up
sampling and convolutional layers (expansion path). Addi-
tionally, in the expansive path, there are three concatenations
with the corresponding feature maps from the contracting
path. The purpose of this path is to combine precise localiza-
tion with contextual information from the contracting path.
More details about U-Net can be found in [49].

2.3 Training and Testing of the Network
The schematic for training and testing U-Net architec-

ture is as shown in Fig. 2(b) and Fig. 2(c), respectively. The
initial contrast function derived by solving LSM is used to
train the U-Net with true contrast as the network’s target (la-
bel). The training data contains 11600 reference PEC objects
of various shapes like circular cylinders, rectangle, L shape,
T shape, E shape, F shape, H shape and U shape PEC objects.
The DOI is discretized into 40 × 40 small square cells. The
background of the detection domain is assumed to be free
space (contrast function is set to zero). The learning rate
determines the step size during optimization. If the learning
rate is excessively high, it can cause rapid convergence or
divergence, while a very low learning rate may lead to slow
convergence or getting stuck in local minima [56]. Empiri-
cally, we have set the learning rate at 0.0001.The batch size
determines the number of samples used in each iteration of
training. Larger batch sizes can expedite the training process,
but if they are too large, they may result in out-of-memory
errors. Based on the recommendation in [57] and consider-
ing the dataset size of 11600, we have chosen a batch size
of 40 (batch size × no. of iterations = total no. of training
data). The number of epochs represents how many times
the model goes through the entire training dataset. Too few
epochs may result in underfitting, while too many may lead
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(a)

(b)

(c)

Fig. 2. (a) Architecture details of U-Net for the proposed model. (b) Training the CNN using LSM reconstruction as input. (c) Reconstruction of
PEC objet using LSM and U-Net-CNN.

to overfitting [56]. It has been observed during training that
after the 28th epoch, the loss function saturates; therefore, we
have chosen to set the number of epochs at 30. Elapsed time
for training is 206 minutes 30 seconds in a personal computer
with CPU: 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz
and 16 GB RAM. The U-Net learns the relationship between
input and output by updating network’s weight matrix and
bias. The trained U-Net is tested using the contrast function
obtained by the scattered field of the unknown PEC objects.
Priori information about the PEC scatterer like approximate
position, size etc., is not required for this approach. In the
reconstructed result, negative values are made zero as post
processing (background of DOI is free space). The various
results of testing are discussed in the subsequent section.

3. Results and Discussion
The imaging setup consists of a square investigation do-

main of side 20 cm × 20 cm. PEC objects are reconstructed
using the noisy scattered field. MATLAB’s Deep Learning
toolbox is used to build the U-Net architecture. The pro-
posed scheme is tested for various test images. Here 24

transceivers are used, which are located uniformly on a cir-
cular measurement domain of 0.6 m radius. The operating
frequency is 3 GHz. The scattered field of synthetic data have
been corrupted with additive Gaussian noise at the level of
a signal-to-noise ratio (SNR) of 30 dB.The proposed scheme
is tested for the various letters shaped PEC objects and the
reconstruction results for some representative examples are
shown in Figs. 3–8. The results reveal that the suggested
method outperforms the LSM algorithm in reconstructing
high-quality images.

Example 1: Consists of circular and rectangular cylinders.

Example 2: Consists of L and T shape objects with two arms.

Example 3: Consists of U, H and F shape objects with three
arms.

Example 4: Consists of E-shape objects with four arms.

Example 5: Consists of U and rectangular shape objects of
Fresnel experimental data.
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3.1 Example 1: Consists of Circular and Rect-
angular Cylinders
A PEC circular cylinder of radius 3.5 cm centred at

(3 cm,–2 cm) as shown in Fig. 3(a) is considered. The recon-
struction result of LSM is shown in Fig. 3(b). This is given as
input to the trained CNN and the corresponding output is as
shown in Fig. 3(c). As the object is placed in a free space, the
contrast function for background is zero and cannot be neg-
ative. So, as a post processing, any value less than 0.3 is set
to 0 and the corresponding result is shown in Fig. 3(d). For
rest of the examples, the post processed output is shown as
there is no much difference in the object shape and location.

The rectangular strip of width 7.5 cm and height of
5.0 cm is positioned as shown in Fig. 4(a). The reconstruc-
tion result of LSM and CNN is as shown in Fig. 4(b) and 4(c),
respectively. The LSM reconstruction looks like circular
objects as sharp corners are rounded. Whereas, proposed
method conserves the sharp corners and reconstruct the cor-
rect shape and size.

3.2 Example 2: Consists of L and T Shape Ob-
jects with Two Arms
In this study, a L-shape object is taken having both

arm’s length and breadth of 9.5 cm and 2.5 cm, respectively,
positioned as shown in Fig. 5(a). The reconstruction result
of LSM and CNN is as shown in Fig. 5(b) and 5(c), respec-
tively. A T-shape object having both arm’s length and breadth
of 7.0 cm and 2.0 cm, respectively, positioned as shown in
Fig. 5(d). The reconstruction result of LSM and CNN is as
shown in Fig. 5(e) and 5(f), respectively. In LSM, the inter-
nal sharp corner is severely rounded and cannot reconstruct

the correct shape and size of the object. However, the CNN
result recovers the internal sharp covers and is able to identify
the shape and size more accurately.

3.3 Example 3 : Consists of U, H and F Shape
Objects with Three Arms

A U-shape object having both arm’s length and breadth
of 10.0 cm and 6.0 cm ,respectively, positioned as shown in
Fig. 6(a). The reconstruction result of LSM and CNN is as
shown in Fig. 6(b) and 6(c), respectively. A H-shape object
having both arm’s length and breadth of 8.5 cm and 7.5 cm,
respectively, positioned as shown in Fig. 6(d). The recon-
struction result of LSM and CNN is as shown in Fig. 6(e)
and 6(f), respectively. A F-shape object having both arm’s
length and breadth of 10.0 cm and 5.0 cm, respectively, po-
sitioned as shown in Fig. 6(g). The reconstruction result of
LSM and CNN is as shown in Fig. 6(h) and 6(i), respectively.
In letter U, F and H, the reconstruction of internal edges is
relatively thin due to multiple scattering effects. However,
the shape can be approximated.

3.4 Example 4 : Consists of E Shape Objects
with Four Arms
A E-shape object having both arm’s length and breadth

of 8.0 cm and 14.0 cm, respectively, positioned as shown in
Fig. 7(a). The reconstruction result of LSM and CNN is as
shown in Fig. 7(b) and 7(c), respectively.The reconstruction
of internal edges in an E-shaped object is comparatively thin
due to multiple scattering effects since its size and arms are
larger than in Example 3. However, it’s possible to fairly
estimate the shape.

(a) Reference profile (b) LSM (c) Output of CNN (d) Post processed result of CNN

Fig. 3. Reconstruction results for circular cylinder PEC object.

(a) Reference profile (b) LSM reconstruction (c) Post processed result of CNN

Fig. 4. Reconstruction results for rectangular shape PEC object.
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(a) Reference profile (b) LSM reconstruction (c) Post processed result of CNN

(d) Reference profile (e) LSM reconstruction (f) Post processed result of CNN

Fig. 5. Reconstruction results for example 2 PEC object. L shape object in (a)–(c) and T shape object in (d)–(f).

(a) Reference profile (b) LSM reconstruction (c) Post processed result of CNN

(d) Reference profile (e) LSM reconstruction (f) Post processed result of CNN

(g) Reference profile (h) LSM reconstruction (i) Post processed result of CNN

Fig. 6. Reconstruction results for example 3 PEC objects.
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(a) Reference profile (b) LSM reconstruction (c) Post processed result of CNN

Fig. 7. Reconstruction results for example 4 PEC object.

Ground Truths LSM DL Assisted LSM

(a) Reference profile (b) LSM reconstruction (c) Post processed result of CNN

(d) Reference profile (e) LSM reconstruction (f) Post processed result of CNN

Fig. 8. Reconstruction results for example 5 PEC object.

3.5 Example 5 : Consists of U Shape and Rect-
angular Objects of Fresnel Experimental
Data
The objects were sequentially illuminated at

0◦, 10◦, 20◦, . . . , 350◦ in steps of 10◦, and the scattered fields
were measured from 60◦, 65◦, 70◦, . . . , 300◦ in steps of 5◦.
Operating frequency considered here is 4 GHz [41].

A U-shape object having both arm’s length and breadth
of 5.0 cm and 8.0 cm, respectively, positioned as shown in
Fig. 8(a). The reconstruction result of LSM and CNN is
as shown in Fig. 8(b) and 8(a), respectively. A rectangu-
lar object having both arm’s length and breadth of 2.45 cm
and 1.27 cm, respectively, positioned as shown in Fig. 8(d).
The reconstruction result of LSM and CNN is as shown in
Fig. 8(e) and 8(f), respectively.

In summary, it has been shown that the proposed method
can successfully reconstruct the shape of the more complex
PEC objects. The proposed method can be more effectively
recover some geometrical aspects that can’t be faithfully re-
stored using the traditional LSM method.

3.6 Effect of Regularization Parameter
The main drawback of the LSM is that the quality

of output depends on the choice of regularization parame-
ter [35], [36]. To overcome this limitation, a multiple reg-
ularization parameter approach is used, where the CNN is
trained using LSM reconstructed results obtained at various
regularization parameters like 𝛼 = 0.1𝜆1, 0.01𝜆1, 0.001𝜆1
and 0.0001𝜆1, where 𝜆1 is the leading singular value. The
trained CNN is tested for various PEC profiles like L-shape,
T-shape and U-shape. The reconstruction result by LSM
and CNN at various regularization parameters is as shown in
Figs. 9–11. From the result, it can be concluded that, firstly,
although the training is done at regularization parameters
𝛼 = 0.1𝜆1, 0.01𝜆1, 0.001𝜆1 and 0.0001𝜆1, the reconstruc-
tion results at 𝛼 = 0.1547𝜆1, 0.0786𝜆1 and 0.0561𝜆1 are also
satisfactory, indicating the robustness and generalization of
the proposed method. Secondly, the LSM fails to reconstruct
at certain regularization parameters, but the deep learning-
assisted LSM can recover satisfactorily at various untrained
regularization parameters.
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(a) (b)

(c) (d)

Fig. 9. Reconstruction of L-shape PEC object as shown in Ex-
ample 2, Fig. 5(a), by LSM and CNN at regularization
parameter 𝛼 = 0.1𝜆1 and 𝛼 = 0.1547𝜆1.

(a) (b)

(c) (d)

Fig. 10. Reconstruction of U-shape PEC object as shown in Ex-
ample 3, Fig. 6(a), by LSM and CNN at regularization
parameter 𝛼 = 0.001𝜆1 and 𝛼 = 0.7867𝜆1.

(a) (b)

(c) (d)

Fig. 11. Reconstruction of T-shape PEC object as shown in Example 2, Fig. 5(d), by LSM and CNN at regularization parameter 𝛼 = 0.01𝜆1 and
𝛼 = 0.0567𝜆1.
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(a) (b)

(c) (d)

Fig. 12. Reconstruction of L-shape PEC object as shown in Ex-
ample 2, Fig. 5(a), by LSM and CNN at 8 GHz and
4 GHz.

(a) (b)

(c) (d)

Fig. 13. Reconstruction of U-shape PEC object as shown in Ex-
ample 3, Fig. 6(a), by LSM and CNN at 8 GHz and
6 GHz.

3.7 Effect of Frequency
The reconstruction quality of the LSM deteriorates at

higher frequencies. To overcome this limitation, a multi-
ple frequency approach is used, where the CNN is trained
with LSM reconstructions obtained at multiple frequencies
like 1 GHz, 3 GHz, 5 GHz and 7 GHz. The trained CNN is
tested for PEC profiles like L-shape and U-shape. The re-
construction result by LSM and CNN at various frequencies
is as shown in Figs. 12 and 13. The two observations can
be made from the result. Firstly, although the training is
done 1 GHz, 3 GHz, 5 GHz and 7 GHz, the reconstruction
results at 4 GHz and 8 GHz is also satisfactory indicating the
robustness and generalization of the proposed method. Sec-
ondly, the LSM fails to reconstruct at higher frequencies but
deep learning assisted LSM can recover satisfactorily also at
higher frequencies.

4. Conclusion
In this paper, a deep learning based LSM approach is

introduced to reconstruct perfectly electric conductors. In
this work, U-Net CNN architecture is used where an initial
guess by the LSM is fed to CNN. The network is trained by
generating the reference profiles of circular cylinders, rect-
angle, L shape, T shape, E shape; F shape, H shape and U
shape PEC objects. Thereafter, this trained model is tested on
various examples including synthetic and experimental data
sets. It is also found that the proposed scheme outperforms
conventional LSM in terms of frequency of operation and
choice of regularization parameter. A more advanced archi-
tecture can yield even better results, which will be explored
in our subsequent studies.
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