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Abstract. We propose a robust super-resolution algorithm 
for vital sign radar in a low signal-to-noise ratio (SNR) en-
vironment. Conventional approaches, such as fast Fourier 
transform and super-resolution based algorithms, suffered 
to provide reliable results due to the limited data length and 
high noise level. To overcome these limitations, our pro-
posed algorithm utilizes a low-complexity least mean square 
(LMS) filter and relaxation (RELAX) techniques to achieve 
robust performance in low SNR environments. To evaluate 
the effectiveness of our algorithm, we conducted both simu-
lation and experimental studies. Our results show that the 
proposed method significantly outperforms conventional 
methods, with Monte-Carlo simulations of respiration and 
heartbeat achieving an RMSE approximately 7 and 120 
times lower than that of the conventional method, respec-
tively. Overall, our algorithm provides a promising solution 
for robust vital sign detection in challenging low SNR envi-
ronments. 

Keywords 
Vital sign radar, LMS filter, RELAX, low SNR, low 
complexity 

1. Introduction 
Doppler radar has emerged as an all-round tool for 

a wide range of applications, including medical monitoring 
[1–3], vehicular sensing [4], and rescue operations. In med-
ical settings, microwave continuous-wave (CW) Doppler ra-
dar has gained particular interest for diagnosing respiratory 
disorders. Several studies have focused on monitoring respi-
ration and heartbeat during sleep to achieve high accuracy 
[5], with potential for sleep apnea monitoring [6]. In clinical 
settings, this technique has also been used as a heartbeat 
monitor for humans [7–9], and has recently been explored 
for use in radiation therapy [7]. Additionally, radar systems 
have been employed to monitor vital signs of animals [8], 
[9]. Overall, Doppler radar holds great promise as a versatile 
and effective tool for a range of monitoring and diagnostic 
applications. 

Military and rescue operations require the ability to de-
tect hidden enemies or locate victims quickly, often in chal-
lenging environments [10], [11]. In such scenarios, vital 
continuous-wave (CW) radar can be used to identify the lo-
cation of survivors, even in disaster situations like earth-
quakes [12]. Additionally, due to its ability to obtain heart 
and respiration rates, vital signal radar has many potential 
applications. 

However, conventional fast Fourier transform (FFT) 
methods for analyzing Doppler radar signals can suffer from 
degraded performance in low signal-to-noise ratio (SNR) 
environments, particularly when dealing with limited data 
lengths [13]. In non-contact vital radar systems, this can re-
sult in smearing and decreased accuracy and resolution. The 
harmonic components of respiration signals can also inter-
fere with heartbeat signals in the Doppler spectrum environ-
ment of the FFT. Moreover, FFT analysis requires long-pe-
riod windows, which may not be feasible in urgent situa-
tions, such as intensive care units, postoperative recovery, or 
severe trauma. 

In order to address these challenges and obtain accurate 
frequency results, various super-resolution methods have 
been developed, including relaxation (RELAX), multiple 
signal classification (MUSIC), and estimation of signal pa-
rameters via rotational invariance techniques (ESPRIT) 
[14], [15]. These super-resolution algorithms represent high 
performance accuracy but require significant computational 
resources compared to the FFT-based method. However, for 
vital sign radar applications, a low-complexity super-resolu-
tion algorithm is needed. Considering the lower complexity 
of the RELAX algorithm among these methods, we choose 
this RELAX algorithm in this paper. Nevertheless, super-
resolution algorithms that incorporate RELAX suffer from 
a drawback of underperforming in low SNR environments 
[16]. To overcome this limitation, we propose a novel 
approach that combines the RELAX-based super-resolution 
algorithm with a least mean square (LMS) filter to reduce 
noise power and enhance performance. 

By employing our proposed algorithm, we can achieve 
accurate frequency results in challenging environments, in-
cluding those with limited data lengths and low SNR. This 
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approach has the potential to enhance the reliability and 
effectiveness of vital radar systems for military and rescue 
operations, as well as medical applications. 

The structure of this paper is consisted as follows. For 
the robust super-resolution algorithm in a low SNR environ-
ment for vital sign radar, Section 2 presents a basic principle 
of the system model. Section 3 provides the conventional 
ESPRIT algorithm. Section 4 shows robust super-resolution 
algorithm in a low SNR environment for vital sign radar. 
Section 5 presents the simulation and experimental results 
for various parameters. Section 6 represents computational 
complexity comparison. Finally, conclusions are shown in 
Sec. 7.  

2. Signal Model 
The transmitted signal form for the vital CW radar [17] 

is defined as follows:  

 [ ]( ) cos 2 ( )s t ft tπ σ= +  (1) 

where t defines time series, f is the carrier frequency, and 
σ(t) is the time-varying phase noise of the transmitted signal 
for CW radar. We set target’s fixed distance d0 with the time-
varying displacement x(t). The total distance by the body 
movement d(t)= d0 + x(t) and x(t) can be represented by 

 h r h h r r( ) ( ) ( ) sin( ) sin( )x t x t x t a t a tω ω= + ≈ +   (2) 

where xh(t) and xr(t) denote the body movements of the 
heartbeat and the respiration signal, respectively. The move-
ment signal can be represented with amplitude ah and ar and 
angular frequency ωh and ωr, respectively.  

The received signal y(t), which is reflected from the 
human body, can be represented as   

( ) 0
0

24( ) cos 2 ( ) ( )
d

y t ft d x t t t
C

ππ σ ψ
λ

  ≈ − − + − +  
  

 (3) 

where C denotes the propagation speed, λ = C/f is the wave-
length, and ψ(t) is the additive white Gaussian noise 
(AWGN) signal. After y(t) is converting into the baseband 
signal [16], the down-sampling signals p(t) consists of the 
respiration harmonics due to the nonlinear phase modulation 
and heartbeat movement as 

 h r,
1

j4( ) exp ( ) ( ) ( )m

M

m

p t x t x t tπ θ ψ
λ =

  
 = + + +     

∑   (4) 

where xr,m(t) means the m-th harmonic component of respi-
ration with amplitude ar,m and angular frequency ωr,m for 
m = 1, 2,…, M. For example, the original respiration com-
ponent is defined as m = 1 and θ represents the total accu-
mulated phase residual. After sampling with a sampling fre-
quency of fs = 1/Ts, the phase value q[n] of the discrete time 
model p[n] for n = 0, 1, …, N–1 can be expressed such as 
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where Re(∙) and Im(∙) are the real value and imagery value, 
respectively and ζ[n] is the arctangent result of the AWGN 
noise. 

3. Conventional ESPRIT Algorithm  
The existing ESPRIT algorithm is widely used to ob-

tain the super-resolution results. Through the received signal 
d[k], the autocorrelation matrix Rdd is expressed such as 

  H

0

N L

dd
m

−

=

= ∑R dd     (6) 

where the received sequence defines d = 
[d[m], …, d[m + L −1]]T, L means the parameter of 
selection for 2 ≤ L < N, and (·)H is the Hermitian transpose. 
The forward-backward autocorrelation Rfb is calculated as: 

 *
fb

1 ( )
2 dd dd= +R R JR J    (7) 

where J is the exchange matrix of L by L.  

The forward-backward autocorrelation Rfb can be 
resolved through the eigenvalue decomposition (EVD) by 
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where the signal eigenvector matrix S = [s0, …, sM] consists 
of M + 1 eigenvectors which span the signal subspace of the 
correlation matrix, the noise eigenvector matrix N = [n0, …, 
nL − M − 2] means L − M − 1 eigenvectors which span the 
noise subspace of the correlation matrix, and λn denotes the 
n-th eigenvalues of Rfb. And, M + 1 means the total number 
of the respiration and heart frequency. The largest M + 1 ei-
genvalues of λ0, …, λM correspond to the M + 1 eigenvectors 
of S. The other eigenvalues λM + 1, …, λL − 1 correspond to the 
eigenvectors of N such that λM + 1 = …= λL − 1 = σ2. We can 
present the S1 and S2 matrices, getting rid of the last row 
vector and the first row vector, respectively, such that 
S1 = [IL − 1 01×(L − 1)]S, S2=[01×(L − 1) IL − 1]S, IM denotes 
an identity matrix of M by M, and 0M × N is a zero matrix of 
M by N. Sub-matrices S1, S2 are resolved by  

 ( ) ( )1 1 2 11 1 1 1[ ] ,  [ ]L LL L− −× − × −= =S I 0 AT S I 0 AΦT    (9) 

where A = [a(ωr,0) a(ωr,1) … a(ωr,M−1) a(ωh)], a(ωr,m) = [1, 
exp(−jωr,m),…, exp(−j(L − 1)ωr,m)]T, a(ωh) = [1 exp(−jωh),   
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…, exp(−j(L − 1)ωh)]T, Φ = diag[exp(−jωr,0), exp(−jωr,1),…, 
exp(−jωr,M − 1), exp(−jωh)] and T denotes the non-singular 
transformation matrix of M + 1 by M + 1. The sub-matrices 
are performed by a pseudo inverse such as 

 †
1 2=C S S    (10) 

where C = T−1ΦT and †  denotes the Moore-Penrose pseudo 
inverse. We can then acquire the heartbeat frequency fh with 
the last element of Φ and the eigenvalues of C such as  

 h h
1ˆ  (exp( j ))

2
f ω

π
= ∠    (11) 

where ( )∠ ⋅  means the phase angles for a complex signal. 
However, this conventional ESPRIT algorithm costs high 
computational load, so that we propose a super-resolution 
algorithm of the low complexity.  

4. Robust Super-Resolution Algorithm 
in a Low SNR Environment for 
Vital Sign Radar 
The proposed algorithm consists of three stages: clas-

sification of respiration and heartbeat signals, SNR improve-
ment, and Doppler estimation by RELAX.  

In the classification stage, the received signal is differ-
entiated into a respiration signal and a heartbeat signal by 
respiration low-pass filtering (LPF) and heartbeat high-pass 
filtering (HPF), respectively. And then the LMS filter is ap-
plied to each signal as shown in Fig. 1. The respiration signal 
power is so prominent that the heartbeat signal is buried 
under it. Accordingly, to acquire the heartbeat signal, sharp 
fixed respiration LPF and heartbeat HPF are applied to the 
received signal. The cut-off parameters of a sharp respiration 
LPF and the heartbeat HPF are based on the statistics of the 
heartbeat in [20]. With the received signal vector d = [d[0], 
d[1],…, d[N − 1]], the respiration low-pass filtered output 
dL[n] can be accomplished using the parameters of the pass-
band frequency at 0.4 Hz (24 beats/min) and the stopband 
frequency at 0.6 Hz (36 beats/min), and the heartbeat high-
pass filtered output dH[n] with a stopband frequency of 
0.7 Hz (42 beats/min) and a passband frequency of 0.8 Hz 
(48 beats/min) can be achieved, respectively.  

The proposed pre-processing method for the SNR im-
provement is shown. From (5), to clarify the received signal 
model, the following explanation removes the noise term, 
ζ[n], for simplicity. In the SNR improvement stage, noise 
cancellation using the LMS algorithm [18] assumes a respi-
ration FIR filter with adjustable coefficients, hr[k], 
k = 0,1,…,K − 1, such as 

 
1

r r L
0

[ ] [ ] [ ],   0,..., 1
K

k

s n h k d n D k n N
−

=

= ⋅ − − = −∑   (12) 

where sr[n] is the result of the adaptive respiration filter, and 
D is the decorrelation parameter (D ≥ 1). The error signal, 

which optimizes the respiration FIR filter, is given by 
er[n] = dL[n] − ŝr[n], where ŝr[n] is used to estimate dL[n]. 
Equation (13) is obtained by the LMS algorithm, which pro-
vides an alternative computational method for determining 
the optimum filter coefficients hr[k]. The LMS algorithm is 
basically a recursive gradient (steepest-descent) method that 
finds the minimum error and thus achieves the set of opti-
mum filter coefficients. The minimization of the squared 
error yields the optimum coefficient hr[k], which is used by 
the characteristic function such as 

 r, r, 1 r r L[ ] [ ] [ ] [ ]n nh k h k e n d n D kβ−= + − −    (13) 

where hr,n[k] denotes the n-th filter coefficients, and βr is the 
step size, which controls convergence of the adaptation pro-
cess for the respiration signal. The LMS filter of the heart-
beat signal is the same as that of the respiration signal with 
the results of the adaptive heartbeat filter sh[n]. 

The vital Doppler spectrum as the RELAX results need 
to determine the order of the process p which is equal to the 
number of targets M. In case of the order p > M, the results 
of the vital Doppler spectrum will be smoothed and will have 
low resolution. When the order p is larger than M, the results 
of the spectrum will have spurious peaks. The method of de-
termining the model order p is consisted of the Akaike infor-
mation criterion (AIC) and minimum description length 
(MDL) [22], [22]. The optimal modeling order can be se-
lected by changing the model order until the values of the 
MDL or the AIC are minimized.  

After the number of order p, we can achieve the 
RELAX algorithm to enhance the vital Doppler resolution. 
The filtered respiration signal Sr = [sr[0], sr[1],…, sr[N − 1]] 
is fed into the input of the RELAX algorithm in order to 
estimate the respiration frequency accurately. The heartbeat 
signal is also obtained through the RELAX. After this 
process, we repeat first step for m = 1, 2,…, M in order to 
obtain the estimated respiration frequency and amplitude of 
the m-th harmonic. The m-th estimated respiration frequency 

r,
ˆ

mf  is calculated as follows: 

 
r
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r r
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m
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f
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where α(fr) = [1, exp(ωr),…, exp(ωr(N – 1))]T and the m-th 
estimated amplitude âm is as obtained as follows: 
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The respiration RELAX algorithm finishes when the 
maximum value of αH(fr)Sr

2  results is less than a pre-de-
termined threshold. The heartbeat RELAX is achieved as the 
respiration RELAX procedure. 

The proposed structure can be summarized according 
to the flowchart depicted in Fig. 2. Initially, the algorithm 
receives the input signal. Following that, it employs low-pass 
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Fig. 1. Block diagram of the Doppler spectrum estimator using 

the proposed algorithm. 

Start

Low frequency
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Respiration LMS filter Heartbeat LMS filter
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frequency
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End
 

Fig. 2. Flowchart of the proposed structure. 

filtering (LPF) and high-pass filtering (HPF) to determine 
whether the received signal corresponds to a low-frequency 
signal, effectively distinguishing between the respiration 
and heartbeat signals. Subsequently, separate LMS filters 
are applied to the extracted respiration and heartbeat signals. 
Finally, the signals that have passed through their respective 
LMS filters perform accurate frequency estimation of the 
respiration and heartbeat signals using the RELAX algo-
rithm. These steps contain the entire process. 

5. Simulation and Experimental 
Results 
To evaluate the effectiveness of our proposed algo-

rithm, we conducted a Monte-Carlo simulation and obtained 
results for the Doppler spectrum. We performed 10,000 
estimates to ensure statistical significance. In the simulation, 
we used a harmonic model of vital signs to generate signals 
for respiration and heartbeat, with frequencies of 0.3 Hz 
(18 beats/min) and 1.05 Hz (63 beats/min), respectively. 
The respiration signal was modeled using 5 harmonics, with 
amplitudes satisfying the following: ar1 : ar2 : ar3 : ar4 : ar5 : ah 
= 10 : 4 : 0.1 : 0.02 : 0.05 : 2. We compared the results of 
the FFT, the conventional ESPRIT, the conventional 

MUSIC, and the proposed algorithm to detect the vital signs. 
The reflected signal was sampled at 20 Hz. To clarify the 
performance differences due to SNR, the SNR values of 
simulation were set to 3 dB and 50 dB, respectively. 

Figure 3 illustrates the Doppler spectrum results ob-
tained from the FFT, ESPRIT, MUSIC, and the proposed 
method. In Fig. 3(a), which represents a challenging SNR 
environment of 3 dB, the heartbeat signal estimation by 
conventional ESPRIT, MUSIC, and FFT algorithms was not  
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(d) 

Fig. 3. Doppler spectrum of various algorithms at SNR: 
(a) 3 dB, (b) 10 dB, (c) 20 dB, and (d) 50 dB. 

accurate. In contrast, the results of the proposed algorithm 
demonstrated similar to the beats per minute of reference for 
heartbeat. As depicted in Fig. 3(b) with an SNR of 10 dB, 
the accuracy of conventional algorithms improved as the 
noise decreased, but only the proposed method maintained 
good performance. Similarly, in Fig. 3(c), where the noise 
was further reduced compared to Fig. 3(b), conventional al-
gorithms represent improved accuracy. Figure 3(d) shows 
the scenario with an SNR of 50 dB, showing that all algo-
rithms yielded results similar to the reference. The results 
from Fig. 3 indicate that when the SNR is high, all algo-
rithms perform well, but in low SNR conditions, only the 
proposed method enhances performance. 

These results demonstrate that while all algorithms op-
erate effectively in high SNR environments, only the pro-
posed algorithm maintains its efficacy in low SNR condi-
tions. This implies that even in real radar applications with 
low SNR environments, the proposed algorithm remains 
functional. Notably, for heartbeat signals, where the SNR is 
low due to signal propagation through the chest, the pro-
posed algorithm demonstrates superior performance despite 
the challenging conditions. 

In Fig. 4, the root mean square error (RMSE) according 
to the SNR of each algorithm was calculated with C times 
for heartbeat Doppler signals with a short duration. The 

RMSE is defined by 21
1

ˆ( )
C

mC m
f f

=
−∑  , where C is set to 

10,000 and f̂m  is the estimated frequency of the respiration 
or heartbeat in the m-th Monte-Carlo trial, respectively.  

By analyzing the data presented in Fig. 4, we simulated 
the root mean square error (RMSE) for each algorithm based 
on the parameter differences in the estimation of respiration 
and heartbeat signals, which are vital Doppler signals. Fig-
ure 4(a) displays the results for the respiration estimation of 
the detected target when varying the SNR from –10 to 
20 dB. The reference frequency for comparison is set at 
0.3 Hz (18 beats per minute) for respiration. In terms of 
SNR, the proposed algorithm outperforms other methods 
such as MUSIC, with the ESPRIT algorithm representing 
the poorest performance for respiration signal estimation.  

 
(a) 

 
(b) 

Fig. 4. RMSEs of (a) the respiration and (b) the heartbeat 
signals. 

Notably, for an SNR of 10 dB, the RMSE of the proposed 
algorithm is approximately 7 times lower than that of the 
conventional ESPRIT algorithm in Fig. 4(a). 

Moreover, in Fig. 4(b), which focuses on heartbeat pa-
rameters, the proposed algorithm demonstrates superior per-
formance compared to conventional FFT, ESPRIT, and 
MUSIC algorithms. The RMSE of the proposed algorithm is 
approximately 120 times lower than that of the conventional 
ESPRIT algorithm for heartbeat signal estimation. 

Overall, the results indicate that the proposed algo-
rithm exhibits significantly improved accuracy compared to 
conventional methods for both respiration and heartbeat sig-
nal estimation, showing its superior performance in terms of 
RMSE. 

To validate the efficacy of the proposed method in 
a real environment, we conducted experiments using the 
iMotion radar [17], [19] at Texas Tech University. For these 
experiments, we employed a 2.4 GHz continuous wave 
(CW) RF module consisting of one transmitted channel and 
one received channel. The transmitted output power was set 
to –3 dBm. The receiver component comprised several ele-
ments, including a low noise amplifier (LNA), a bandpass 
filter (BPF), a gain block, a mixer, and a baseband opera-
tional amplifier (OP). The LNA amplified the 2.4 GHz sig-
nal with a gain of 19 dB. The signal, after being filtered by 
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the BPF, was then amplified by a gain block with a gain of 
12.3 dB and an input-referred P1dB of 1 dBm. The mixer 
down-converted the signal directly to baseband. The result-
ing signals from the mixer were further amplified by the 
baseband OP with a voltage gain of 40 dB. 

From the human body, a CW radar signal s(t) is re-
turned back. After this reflected signal was down-converted, 
the zero-IF signals p(t) can be used for the analysis of the 
vital sign data. In an indoor room, we made experiments to 
verify the proposed method for a vital sign. The parameter 
of experiment followed the parameters of the simulation. 
When the target was located at R = 0.2 m, the Doppler spec-
trum of the heartbeat rate was obtained, as shown in Fig. 5 
and Fig. 6. We focused on the heartbeat signal in experi-
ments because the heartbeat is sensitive with a low SNR. As 
seen in Fig. 5 and Fig. 6, the proposed method estimated the 
peak of the heartbeat frequency well compared with the ref-
erence [20] while the conventional ESPRIT, MUSIC, and 
FFT methods could not estimate it accurately relative to the 
exact heartbeat frequency at one randomly chosen frame. 

 
Fig. 5. One randomly chosen frame: the experimental results 

from iMotion radar in the case of the heartbeat signal. 

 
Fig. 6. Second randomly chosen frame: the experimental re-

sults from iMotion radar in the case of the heartbeat signal. 

6. Computational Complexity 
Comparison 
To evaluate the efficiency of our proposed algorithm in 

terms of processing time, we implemented and compared 
various methods using MATLAB. We used the CPUTIME 
function in MATLAB to measure the computational burden 
of the algorithms. The conventional ESPRIT algorithm in-
volves matrix computations, which require eigenvalue de-
composition and matrix inversions in MATLAB. In contrast, 
our proposed RELAX algorithm has less complexity be-
cause it consists of a combination of FFT algorithms. We 
applied the FMCW chirp parameters used in the previous 
Monte-Carlo simulations to assess the computational com-
plexity of the algorithms. Figure 7 shows a comparison of 
the total processing time required for the conventional 
ESPRIT algorithm and our proposed algorithm. As shown in 
Fig. 7(a) and (b) for respiration and heartbeat respectively, 
the proposed algorithm has much lower complexity due to 
the use of low complexity FFT algorithms. 

 
(a) 

 
(b) 

Fig. 7.  MATLAB CPU execution time of algorithms for:  
(a) respiration and (b) heartbeat.  
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7. Conclusions 
We proposed a robust super-resolution algorithm for 

vital sign radar to accurately estimate the heart and respira-
tion rates of the human body in a low SNR environment. Su-
per-resolution algorithms are essential in vital sign radar, but 
they often suffer from poor performance in low SNR envi-
ronments and high computational complexity. To address 
these problems, our proposed algorithm combines a LMS 
filter and RELAX algorithm, which cancels interference sig-
nals successively to achieve high resolution. The algorithm 
uses the EVD operation to distinguish signal and noise com-
ponents, but in a low SNR environment, it is difficult to suc-
cessfully distinguish between them due to high noise levels. 
Monte-Carlo simulation results show that our proposed 
method outperforms conventional ESPRIT and MUSIC 
methods in terms of root mean square error (RMSE). Spe-
cifically, for respiration signals with a SNR of 10 dB, the 
RMSE of our proposed method is about 7 times lower than 
that of the conventional ESPRIT method. For heartbeat sig-
nals, the RMSE of our proposed algorithm is about 120 
times lower than that of the conventional algorithm. To com-
pare the processing time of our proposed algorithm with 
conventional ESPRIT and MUSIC, we designed and imple-
mented various methods using MATLAB. The results show 
that our proposed algorithm has much less complexity than 
conventional ESPRIT and MUSIC because it is composed 
of low complexity FFT algorithms. By combining the LMS 
filter and RELAX algorithm, our proposed algorithm pro-
vides a robust and efficient solution for vital sign radar ap-
plications in low SNR environments. Our future research 
aims to focus on advancing the field of vital sign radar by 
developing imaging capabilities that can simultaneously ex-
tract distance and angle information. This will be accom-
plished through the utilization of super-resolution tech-
niques. By incorporating these techniques into vital sign ra-
dar, we intend to enhance the accuracy and precision of vital 
sign measurements, thereby enabling more comprehensive 
and detailed radar imaging. 
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