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Abstract. When mainlobe interference exists in space, the
traditional anti-interference methods have problems such as
peak offset and the performance of sidelobe interference sup-
pression reduction. To solve the above problems, this paper
proposes a mainlobe interference suppression method based
on compressive sensing and covariance matrix reconstruc-
tion. Firstly, an improved compressive sensing algorithm
is proposed to accurately estimate the Direction Of Arrival
of sources, and then the signal steering vectors and signal
subspaces can be established. The mainlobe interference
can be suppressed by establishing an oblique projection op-
erator through signal subspaces. Meanwhile, the sidelobe-
interference-noise covariance matrix can be reconstructed
by the steering vectors, and then the adaptive weight vector is
obtained. Simulation results show that the proposed method
can form a more robust beam pattern and has better output
performance. The proposed method is still effective when the
desired signal exists in the received signal.
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1. Introduction
With the rapid development of jamming technology,

the electromagnetic environment faced by the radar in the
field of electronic countermeasures (ECM) is increasingly
complex [1], [2]. Typical adaptive beamforming (ADBF)
methods such as adaptive sidelobe cancellation (ASLC) can
effectively suppress sidelobe interference. But if the interfer-
ence falls into the mainlobe range, the conventional adaptive
beamforming methods will form a zero notch in the mainlobe
of the array pattern, resulting in the deviation and deforma-
tion of the main beam, and will raise the sidelobe level of
the beam. In addition, the suppression of mainlobe interfer-
ence by conventional methods will also affect the subsequent
signal processing processes, such as increasing false alarm

probability and decreasing angle measurement accuracy in
radar detection [3].

How to effectively suppress the mainlobe interference
has become a research hotspot in radar countermeasures.
In [4], [5], the polarization-sensitive array is used to ef-
fectively improve the anti-mainlobe interference ability of
the radar, but the methods require radar to have the capa-
bility of measuring polarization information. In [6], [7],
blind source separation (BSS) is adopted to separate the
target signal and filter out the mainlobe interference, but
the accurate directions of signals could not be obtained, so
the methods have a certain amount of errors. The method
based on eigen-projection preprocessing (EMP) [8] can ob-
tain a distortion-free directional pattern, but there is still
the problem of peak offset. Based on the EMP method,
the eigen-projection and covariance matrix reconstruction
(EMP-CMR) method is proposed in [9], which can eliminate
the influence of mainlobe interference on the adaptive weight
vector by reconstructing the covariance matrix and effectively
reduce the peak offset. Reference [10] is also based on the
EMP method, eigen-projection algorithm and similarity con-
straints are used to successfully suppress the multi-mainlobe
interferences. However, the methods proposed in [8–10] all
suppose that there is no desired signal in the received training
data, and only exist interferences, which have limitations in
practical engineering applications.

In order to reconstruct the interference-noise covari-
ance matrix (INCM) when there exists the desired signal in
the received training data, some robust adaptive beamform-
ing methods [11], [12] are proposed. Reference [13], [14]
suppress the mainlobe interference by eigen-oblique projec-
tion, and achieve outstanding output performance. But the
methods of reference [13], [14] assumes that the direction of
the desired signal is known, and this information cannot be
obtained in advance. Reference [15] distributed received sig-
nals into different angular sectors, by using the Capon power
spectrum to make integration operation in the correspond-
ing sector, the sidelobe-interference-noise covariance matrix
(SINCM) can be reconstructed finally. In [16], the DOAs of
signals are obtained by the IAA spectrum estimation method,
and then the SINCM is obtained by the combination and ac-
cumulation of interference power and interference steering
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vectors (SV). However, the integration operation requires
a significant amount of computational complexity, and the
spectrum estimation method suffers from energy leakage.
In [17], [18], SINCM is reconstructed by compressive sens-
ing, which takes advantage of the sparse characteristics of
spatial signals, effectively reducing the computational com-
plexity compared with the integration operation. However,
the DOA estimation methods in [17] and [18] are the Capon
space spectrum and MUSIC algorithm respectively. When
the power of mainlobe interference is much larger than the
power of the desired signal and the number of snapshots is
not large enough, the direction of the desired signal is dif-
ficult to be obtained from the power spectrum, which will
affect subsequent operations.

In recent years, the compressive sensing theory has been
increasingly applied in signal processing [19], [20]. Numer-
ous researchers have incorporated the concept of sparsity into
the DOA estimation of signals [21], [22], which has shown
superior performance than conventional methods. This pa-
per proposes an anti-mainlobe interference method based on
compressive sensing and covariance matrix reconstruction.
The purpose is to effectively suppress the interferences when
the mainlobe interference and the desired signal both exist in
the training data. By the compressive sensing algorithm, the
DOAs of signals can be accurately estimated, and the SINCM
can be further reconstructed. Finally, the oblique projection
operator and the adaptive weight vector are used to suppress
the mainlobe interference and sidelobe interference respec-
tively. Theoretical analysis and simulation results verify the
effectiveness of the proposed method.

The rest of this paper is structured as follows: In Sec. 2
the adaptive array signal model is introduced. In Sec. 3,
an improved algorithm based on the orthogonal matching
pursuit algorithm is proposed, and the processions of calcu-
lating the oblique projection operator and reconstructing the
covariance matrix are introduced. Some simulation results
are provided in Sec. 4 and conclusions are given in Sec. 5.

2. Signal Model
Consider a uniform linear array (ULA) consisting of 𝑀

omnidirectional antenna elements which receive 𝑝 + 1 un-
correlated far-field narrowband signals in the space, includ-
ing one expected signal and 𝑝 interference signals, where
𝑝 + 1 < 𝑀 . The received signal by the array antenna at the
k-th snapshot can be expressed as:

x(𝑘) = xs (𝑘) + xi (𝑘) + n(𝑘) =
𝑝∑︁
𝑖=0

a(𝜃𝑖)𝑠𝑖 (𝑘) + n(𝑘) (1)

where xs (𝑘) and xi (𝑘) are independent components of the de-
sired signal and interferences, respectively. n(𝑘) is the 𝑀 ×1
dimension Gaussian white noise vector with zero means.
𝜃𝑖 , 𝑖 = 0, 1, . . . , 𝑝 stands for the DOA of the i-th signal, in
which 𝜃0 and 𝜃1 denote the directions of the desired signal

and mainlobe interference, respectively. a(𝜃𝑖) and 𝑠𝑖 (𝑘) de-
note the steering vector and the complex envelope of the i-th
signal, respectively. The theoretical covariance matrix of the
received signal is expressed as:

R = E{XXH} = ARsAH + 𝜎2
𝑛I (2)

where X is the sample matrix of the received signal, E{·} de-
notes the statistical expectation and (·)H denotes the Hermi-
tian transpose. A = [a(𝜃0), a(𝜃1), . . . , a(𝜃𝑝)] ∈ 𝐶𝑀×(𝑝+1)

is the array manifold matrix, Rs denotes the covariance ma-
trix of the desired signal and interferences. 𝜎2

𝑛 is the noise
power. The output of array at the k-th snapshot can be calcu-
lated as:

𝑦(𝑘) = 𝝎Hx(𝑘). (3)

Here, 𝝎 = [𝝎1, . . . ,𝝎𝑀 ]T is the adaptive beamformer
weight vector, (·)T denote the transpose. The optimal weight
vector is the solution of the minimum variance distortion-less
response (MVDR) beamformer problem, which is given by:

𝝎opt =
R−1
𝑖+𝑛a(𝜃0)

a(𝜃0)HR−1
𝑖+𝑛a(𝜃0)

(4)

where R𝑖+𝑛 = E{(xi (𝑘) + n(𝑘)) (xi (𝑘) + n(𝑘))H} ∈ 𝐶𝑀×𝑀

is the INCM of the received signal. Since R𝑖+𝑛 is unavailable
in general, it’s usually replaced by the sample covariance ma-
trix R̂ = 1/𝐾 ∑𝐾

𝑘=1 x(𝑘)xH (𝑘) with 𝐾 training snapshots, R̂
is also the estimate of R. R̂ can be eigen-decomposed as:

R̂ =

𝑀∑︁
𝑖=1

𝜆𝑖u𝑖uH
𝑖 (5)

where 𝜆1 ≥ · · · ≥ 𝜆𝑝+1 ≥ · · · ≥ 𝜆𝑀 are the eigenvalues
of R̂ in the descending order, and u𝑖 is the corresponding
eigenvector. Since the signal power is obviously greater
than the noise power, and there are 𝑝 + 1 sources in the
space, hence there are 𝑝 + 1 large eigenvalues among the
𝑀 eigenvalues. u1, u2, . . . , u𝑝+1 form the joint subspace of
desired signal and interferences, which is the same as that
formed by a(𝜃0), a(𝜃1), . . . , a(𝜃𝑝), and u𝑝+2, u𝑝+3, . . . , u𝑀
form the noise subspace. The obtained adaptive beamformer
𝝎SMI = R̂−1a(𝜃0)/a(𝜃0)HR̂−1a(𝜃0) is called the sample
matrix inversion (SMI) adaptive beamformer.

The corresponding Capon spatial spectrum distribution
can be calculated as:

𝑃̂Capon (𝜃) =
1

dH (𝜃)R̂−1d(𝜃)
(6)

where d(𝜃) is the steering vector associated with the array
structure and the direction is 𝜃. However, when the training
data contains the desired signal, the SMI beamformer is ac-
tually the minimum power distortionless response (MPDR)
beamformer instead of the MVDR beamformer. MPDR
beamformer is more sensitive to the error of the steering
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vector than MVDR beamformer and will affect the perfor-
mance of beamforming. Additionally, when there is a main-
lobe interference in training data, nulls will be formed in the
direction of mainlobe interference, which leads to the reduc-
tion of the desired signal power and more degradation of the
performance of beamforming.

3. Proposed Method

3.1 Compressive Sensing
Suppose that there exists a complex signal x =

[𝑥1, . . . , 𝑥𝑛]T that can be represented by a linear combination
of a sparse basis matrix 𝚿 ∈ 𝐶𝑛×𝑛, that is x = 𝚿s, where s is
an n-dimensional signal with k-sparse(𝑘 ≪ 𝑛). At this point,
x is measured by a matrix 𝚽 ∈ 𝐶𝑚×𝑛 (𝑚 ≪ 𝑛) that is un-
correlated with 𝚿, as shown in Fig. 1. The linear projection
measurement of the signal x under 𝚽 can be obtained as:

y = 𝚽x = 𝚽𝚿s = 𝚯s (7)

where 𝚽 is the measurement matrix, 𝚯 = 𝚽𝚿 is the 𝑚 × 𝑛
dimension matrix, which represents the generalized measure-
ment matrix and is called the perception matrix. Therefore,
y can be regarded as the linear measurement of sparse signal
s under the perception matrix 𝚯. If the perception matrix 𝚯
meets the sparse reconstruction conditions such as RIP [23],
then the sparse signal s can be reconstructed with a very high
probability by solving the following 0-norm problem:{

ŝ = arg min ∥s∥0,

s.t. 𝚯s = y.
(8)

The initial signal x can be recovered by inverse sparse
basis matrix transformation.

In the array model, the space from −90◦ to 90◦ is
uniformly divided into 𝑁 angles {𝜃1, 𝜃2, . . . , 𝜃𝑁 }, and as-
suming that each element has a potential signal source,
then the spatial source signal vector can be represented as
S = [𝑠1, 𝑠2, . . . , 𝑠𝑁 ]T, and the angle gridΔ = 180◦/(𝑁 − 1) .
In fact, there are only 𝑃 (𝑃 ≪ 𝑁) signal sources in 𝑁 direc-
tions, so only 𝑃 signals corresponding to directions in S have
non-zero elements and there are all zero in other 𝑁 − 𝑃 po-
sitions. That is, S is 𝑃-sparse. The array DOA estimation
model represented by the sparse signal is:

Y = ÃS + n (9)

where Y = [𝑌1, 𝑌2, . . . , 𝑌𝑁 ]T indicates the received signal
at a certain time. Ã is the extended array manifold matrix,
which can be expressed as Ã = [a1, a2, . . . , a𝑁 ] ∈ 𝐶𝑀×𝑁 ,
where a𝑖 (𝑖 = 1, 2, . . . , 𝑁) is the steering vector of signal
with the direction 𝜃𝑖 . Since S is a sparse signal, thus Ã is
both a measurement matrix and a perception matrix. In the
sparse reconstruction model, Ã is also called the overcom-
plete dictionary, a𝑖 is called the atom of Ã. n is the noise of
the array.

Fig. 1. The compressed sampling process of sparse signal.

The DOA estimation in the compressive sensing frame-
work is to reconstruct the signal vector S under the condition
of considering noise by the known array received signal Y
and measurement matrix Ã, then the DOA of the signal can be
determined according to the correspondence between the 𝑁
units divided in space and the nonzero position of the sparse
signal S. Greedy algorithms have low computational com-
plexity and fast running speed, so they are widely used in the
field of compressive sensing, one of the most representative
is the Orthogonal Matching Pursuit (OMP) algorithm [24].
Other classical greedy algorithms have improvement on the
method of atomic selection, such as ROMP, CoSaMP and
SP. But there exists some correlation between the columns of
Ã, which lead to other algorithms are not as steady as OMP
in the domain of DOA estimation [25]. The steps of OMP
Algorithm are shown in Algorithm 1.

Algorithm 1 OMP Algorithm.

Input: measurement matrix Ã, data vector Y, sparsity 𝑃
Output: 𝑃-sparse signal Ŝ
1: Initialize the residual r0 = Y, index set 𝚲0 = ∅, atoms set A0 = ∅,

iteration counter 𝑡 = 1
2: 𝜆𝑡 = arg max𝑖=1,...,𝑁 | ⟨r𝑡−1, a(𝜃𝑖 ) ⟩ |, a𝜆𝑡 is the 𝜆𝑡 -th atom of Ã
3: 𝚲𝑡=𝚲𝑡−1

⋃ {𝜆𝑡 }, A𝑡=A𝑡−1
⋃ {

a𝜆𝑡
}

4: Find the least squares solution of Y=A𝑡 · S, obtain S𝑡 = (AT
𝑡 A𝑡 )

−1AT
𝑡 Y

5: Update residual r𝑡 = Y − A𝑡 · S𝑡 , 𝑡 = 𝑡 + 1
6: If 𝑡 ≤ 𝑃, return to Step 2.
7: 𝑺̂ has nonzero indices at the components listed in 𝚲𝑃 , the t-th nonzero

value of Ŝ is the t-th component of S𝑃

Here the sparsity 𝑃 is the number of sources, which
can be obtained from the number of large eigenvalues of the
sampling covariance matrix R̂. The linear combination of the
𝑃-dimensional vector S𝑃 and atoms set A𝑃 can approximate
Y in consideration of noise, where A𝑃 = [a𝜆1 , a𝜆2 , . . . , a𝜆𝑃 ]
and S𝑃 = [𝑠𝜆1 , 𝑠𝜆2 , . . . , 𝑠𝜆𝑃 ]T. Then we have:

Y ≈ A𝑃S𝑃 = 𝑠𝜆1a𝜆1 + 𝑠𝜆2a𝜆2 + · · · + 𝑠𝜆𝑃a𝜆𝑃 . (10)

If the reconstruction is successful, that is, the correct
atoms are selected during each iteration. Due to the noise
power is far less than the signal power, the power of the final
residual | |r𝑃 | |2 = | |Y − A𝑃S𝑃 | |2 should be a small value,
where | | · | |2 refers to the Euclidean norm of a vector. If
the wrong atom a𝜆𝑖 is chosen at the i-th iteration, which will
make the recovered sparse signal far from the original signal,
leading to the failure of reconstruction. In this case, Y cannot
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be approximated by the wrong A𝑃 and S𝑃 , so the residual
energy | |𝑟𝑃 | |2 will be a relatively large value. When there
are two or more signals in the training data with close direc-
tion, such as mainlobe interference and the desired signal,
the correlation between their corresponding steering vectors
is strong, and the OMP algorithm may select the wrong atoms
in the iteration process, resulting in reconstruction failure.

Suppose that the serial number chosen in the i-th it-
eration is 𝜆𝑖 , and the corresponding atoms and signal com-
ponents are a𝜆𝑖 and 𝑠𝜆𝑖 , respectively. And the real serial
numbers, atoms and signal components are 𝜆̃𝑖 , a𝜆̃𝑖 and 𝑠𝜆̃𝑖 ,
respectively. Consider the deviation caused by the current
component:



r𝜆𝑖

2 =


𝑠𝜆̃𝑖a𝜆̃𝑖 − 𝑠𝜆𝑖a𝜆𝑖

2. (11)

Search around 𝜆𝑖 , and assume that the calculated signal
component is 𝑠𝑖 when 𝜆̃𝑖 is searched. In general, 𝑠𝑖 ≈ 𝑠𝜆̃𝑖 ,
so the deviation



r𝜆𝑖

2 = (𝑠𝜆̃𝑖 − 𝑠𝑖)


a𝜆̃𝑖

2 ≈ 0. Thus, the se-

lected atoms can be modified by minimizing the final residual,
so that the correct atoms can be searched, and the probability
of DOA success estimation can be significantly improved.

Given this, we propose an improved Orthogonal Match-
ing Pursuit algorithm based on Testing Residuals (TROMP),
which checks the element (atomic serial-number) of 𝚲𝑃 , the
selected atomic serial numbers which satisfy the conditions
are replaced with the atomic serial number near to them re-
spectively that can minimize the residual, the replacements
are executed one by one according to the order of atom se-
lection. The main steps of the TROMP algorithm have been
summarized in Algorithm 2 and Fig. 2 shows the modified
process of serial numbers.

In the TROMP algorithm, the threshold factor 𝑚 is
a small constant (for example, 𝑚 = 3 will be used in our
simulations), which is related to the discriminant condition

Algorithm 2 TROMP Algorithm.

Input: measurement matrix Ã, data vector Y, sparsity 𝑃, threshold factor
𝑚

Output: 𝑃-sparse signal Ŝ
1: Initialize the residual r0 = Y, index set 𝚲0 = ∅, atoms set A0 = ∅,

iteration counter 𝑡 = 1, interval factor 𝑐 = 1/Δ
2: Use OMP catch 𝚲𝑃 and r𝑃
3: Check the element of 𝚲𝑃 . Suppose that for 𝜆𝑖 , there exists 𝜆𝑔 ∈

𝚲𝑃 (𝑔 > 𝑖) which satisfies |𝜆𝑔 − 𝜆𝑖 | ≤ 2𝑚 · 𝑐, then enter Step 4.
4: Take out 2𝑚 serial numbers near𝜆𝑖 by interval±𝑘 ·𝑐 (𝑘 = 1, 2, . . . , 𝑚) ,

mark them as 𝛿 𝑗 ( 𝑗 = 1, 2, . . . , 2𝑚) , initialize 𝑗 = 1
5: Replace 𝜆𝑖 with 𝛿 𝑗 , 𝚲 = {𝜆1, 𝜆2, . . . , 𝜆𝑖−1, 𝛿 𝑗 , . . . , 𝜆𝑃 }, A𝑖 =

{a𝚲}, S𝑖 = (AT
𝑖
A𝑖 )

−1AT
𝑖
Y, residual R𝑖 = Y − A𝑖 · S𝑖 , update r𝑃

to R𝑖 and record 𝛿 𝑗 if | |R𝑖 | |2 < | |r𝑃 | |2. 𝑗 = 𝑗 + 1, repeat Step 5 if
𝑗 ≤ 2𝑚

6: if 𝛿 𝑗 is recorded, replace 𝜆𝑖 ∈ 𝚲 with 𝛿 𝑗 . 𝑖 = 𝑖 + 1, return step 4 if
𝑖 ≤ 𝑃

7: Obtain the modified index set 𝚲, atoms set A𝑃 = {a𝚲}, S =

(A𝑃
TA𝑃 )−1A𝑃

TY
8: Ŝ has nonzero indices at the components listed in 𝚲, the t-th nonzero

value of Ŝ is the t-th component of S

Fig. 2. The modified process of serial numbers.

of the signals with close direction and the correction range of
the atomic serial number. The idea of testing residuals does
not take the DOA estimated by the OMP algorithm as the
final results, but in the near range of each DOA estimation to
search for the optimal value, so the DOA estimation is more
likely to be correct.

The desired signal is assumed to be located in the known
angular sector where is no interference, the DOA of the de-
sired signal can be determined by looking for the peak of
the spatial spectrum corresponding to Ŝ in the angular sector.
The interference whose direction is close to the desired sig-
nal is the mainlobe interference, and the rest is the sidelobe
interference.

3.2 SINCM Reconstruction
The DOA of each signal has been estimated by TROMP,

then the array manifold matrix can be expressed as Â =

[a(𝜃0), a(𝜃1), . . . , a(𝜃𝑝)], where a(𝜃0) and a(𝜃1) denote the
steering vectors of the desired signal and mainlobe interfer-
ence respectively. Convert (2) into:

R̂ = ÂRsÂH + 𝜎̂2
𝑛I (12)

where 𝜎̂2
𝑛 is the estimated noise power, which can be obtained

by averaging the 𝑀 − 𝑝 − 1 small eigenvalues of R̂:

𝜎̂2
𝑛 =

𝜆𝑝+2 + · · · + 𝜆𝑀
𝑀 − 𝑝 − 1

. (13)

When the signals are uncorrelated, Rs is a diagonal
matrix whose elements on the main diagonal represent the
power of each signal, respectively. The least squares solution
of Rs is:

Rs = Â+ (R̂ − 𝜎̂2
𝑛I) (ÂH)+ (14)

where the pseudo-inverse of Â is defined as Â+ =

(ÂHÂ)−1ÂH. When the number of snapshots is small, there
may be redundant correlation between the signals, which
makes Rs have nonzero values in positions other than the
main diagonal and leads to reduction of the anti-interference
performance. Therefore, the elements outside the main diag-
onal of Rs should be discarded, and the power of each signal
can be obtained from the main diagonal of Rs according to
the construction order of Â. The power set can be expressed
as 𝜎̂2

0 , 𝜎̂
2
1 , . . . , 𝜎̂

2
𝑝 , where 𝜎̂2

0 and 𝜎̂2
1 denote the powers of the
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Fig. 3. The processing block diagram of the proposed method.

desired signal and mainlobe interference respectively. Then
the SINCM can be reconstructed as:

R̂𝑖+𝑛 =
𝑝∑︁
𝑖=2

𝜎̂2
𝑖 a(𝜃𝑖)a(𝜃𝑖)

H + 𝜎̂2
𝑛I. (15)

There are no mainlobe interference and desired signal
components in R̂𝑖+𝑛, so by using R̂𝑖+𝑛 to calculate the adap-
tive weight vector, the sidelobe interference can be effectively
suppressed.

3.3 Oblique Projection Filtering
The oblique projection filter is used to suppress the

mainlobe interference. Considering two full-column-rank
matrices S ∈ 𝐶𝑎×𝑏 and H ∈ 𝐶𝑎×𝑐, if 𝑏 + 𝑐 < 𝑎 and the
column vectors of S and H are linearly independent, the sub-
spaces ⟨S⟩ and ⟨H⟩ formed by S and H have no intersection.
Then the oblique projection operator BSH to the subspace ⟨S⟩
along the direction parallel to the subspace ⟨H⟩ is defined as:

BSH =
[
S H

] [SHS SHH
HHS HHH

]† [SH

HH

]
= S(SHP⊥

HS)−1SHP⊥
H

(16)

where [·]† means to find the generalized inverse of the ma-
trix, P⊥

H = I − H(HHH)−1HH is the orthogonal complement
space of H. BSH has the following properties:

BSHS = S, BSHH = 0. (17)

The mainlobe interference subspace Em = [a(𝜃1)], and
the joint subspace Esp = [a(𝜃0), a(𝜃2), . . . , a(𝜃𝑝)] of the
desired signal and sidelobe interferences are established by
the estimated signal steering vectors respectively. There is
no intersection between the subspaces due to the different
directions of the desired signal and the interferences. The
subspace Em is projected onto the subspace Esp, the oblique
projection operator at this point can be expressed as:

B = Esp (EH
spP⊥

mEsp)
−1EH

spP⊥
m (18)

where P⊥
m = I − Em (EH

mEm)
−1EH

m is the orthogonal comple-
ment space of Em. From (17), we can obtain:

{
B · Esp = Esp

B · Em = 0
→


B · a(𝜃0) = a(𝜃0),
B · a(𝜃1) = 0,
B · a(𝜃𝑖) = a(𝜃𝑖), 𝑖 = 2, . . . , 𝑝.

(19)

Assuming that the DOA estimation of each signal is
accurate, then B can be used to filter out the mainlobe inter-
ference in the training data:

Y = BX. (20)

Based on the reconstructed SINCM and (4), the adap-
tive weight vector can be expressed as:

𝝎re =
R̂−1
𝑖+𝑛a(𝜃0)

a(𝜃0)
HR̂−1

𝑖+𝑛a(𝜃0)
. (21)

Then the output of the adaptive beamformer is calcu-
lated as:

Z = 𝝎H
reY = 𝝎H

reBX. (22)

The processing block diagram of the proposed method
is described in Fig. 3, which can effectively suppress main-
lobe and sidelobe interferences only by knowing the prior in-
formation of the array structure and the angular sector where
the desired signal is located, even if the desired signal exists
in the received signal. This method relies on the accurate esti-
mation of signal DOA, and the TROMP algorithm proposed
in this paper can effectively solve the problem of inaccu-
rate estimation of DOA when both the desired signal and
mainlobe interference exist in the received signal, so that the
adaptive weight vector 𝝎re and oblique projection operator B
can be calculated.

4. Simulations and Verification
Assuming that the uniform linear array is composed

of 16 elements, and the spacing of array elements is a half
wavelength. The direction of the desired signal is 0◦ with
signal-to-noise ratio (SNR) 5 dB. The interferences include
one mainlobe interference and two sidelobe interferences.
The direction of the mainlobe interference is 3◦ and the
interference-to-noise ratio (INR) is 20 dB. The directions of
sidelobe interferences are −20◦ and 30◦ with INR 30 dB and
35 dB, respectively.
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Fig. 4. Comparison of DOA estimation.

4.1 Comparison of DOA Estimation
Performance
The TROMP algorithm is compared to Capon, MUSIC,

OMP, L1-SVD [26] and MMV-OMP [27]. The DOA esti-
mation result is obtained from one Monte Carlo experiment,
and the DOA successful estimation probability is calculated
from an average of 200 independent Monte Carlo experi-
ments. The space is uniformly divided into 181 angles, i.e.,
Δ = 1◦, suppose the desired signal is known to exist in
[−2◦, 2◦]. The snapshot number of MUSIC, Capon and L1-
SVD are 50, both OMP and TROMP are single snapshot, and
the snapshot number of MMV-OMP is 5. The threshold fac-
tor𝑚 of TROMP is 3. Since OMP, TROMP and MMV-OMP
cannot obtain the power estimation of signal, for the conve-
nience of comparison, the signal steering vector calculated
by OMP, TROMP and MMV-OMP is substituted into (6),
then the power of signal in this direction can be obtained,
and the power in other no signal directions is set as the min-
imum power of Capon spectrum. Figure 4 shows the DOA
estimation result of six algorithms.

It can be seen from Fig. 4 that when the snapshot number
is not large enough and the intensity of the mainlobe inter-
ference is obviously greater than the desired signal, the DOA
estimation results of MUSIC, Capon and L1-SVD for the de-
sired signal are not clear. OMP and MMV-OMP can estimate
the DOAs of interferences successfully, but the estimation of
the desired signal is biased. While the TROMP algorithm
accurately estimates the DOAs of four signals. Combined
with the known desired signal angular sector, the desired sig-
nal and interferences can be distinguished from the TROMP
algorithm results.

Figure 5 compares the probabilities of successful DOA
estimation of the above algorithms under different SNR.
The successful estimation means that effective peaks can be
formed in all signal directions, and the sum of DOA estima-
tion deviations of all signals does not exceed 1◦, that is, the
DOA estimation of at most one signal is allowed to deviate
by 1◦. The SNR of the desired signal is set to be 0 ∼ 10 dB.

Fig. 5. The probabilities of successful DOA estimation.

Algorithm Computational cost Time consumption
Capon O( (2𝑁 + 𝐾 )𝑀2 ) 0.0695
MUSIC O( (2𝑁 + 𝐾 )𝑀2 ) 0.0744
L1-SVD O(𝑃𝑁3 ) 0.3315

OMP O(𝑃𝑀𝑁 ) 0.0086
MMV-OMP O(𝑃𝐾𝑀𝑁 ) 0.0245

TROMP O
(
𝑃𝑀

(
𝑁 + 4𝑚𝑃2

))
0.0156

Tab. 1. Comparison of computational complexity and time con-
sumption.

As can be seen from Fig. 5, with the increase of SNR,
DOA successful estimation probabilities of six algorithms
also increase gradually. When the SNR increases to 10 dB,
MUSIC, L1-SVD and TROMP have high probability of
success in estimation. And the estimation performance of
TROMP is always better than MUSIC and L1-SVD, espe-
cially in the case of low SNR. The estimation performance of
MMV-OMP increases rapidly when the SNR is greater than
7 dB. While the estimated success probability of Capon and
OMP is far less than that of the other four algorithms.

For 𝑀 array elements and 𝑃 signal sources, the divided
grids is 𝑁 and the snapshot number of Capon, MUSIC, L1-
SVD and MMV-OMP is 𝐾 . Table 1 lists the simplified com-
putational complexity and time consumption of one DOA
estimation of the above algorithms, where the values of each
parameter in the time consumption are stated in the simu-
lation conditions. The computational cost of TROMP algo-
rithm is between OMP and MMV-OMP, and less than Capon,
MUSIC and L1-SVD. The hardware environment used in this
study includes an Intel i5-8500 CPU operating at 3.0 GHz and
16 GB of RAM.

4.2 Comparison of Interference Suppression
Performance
The proposed method is compared to SMI, EMP, EMP-

CMR [9], EMP-SC [10], and EOMP-CMR [13]. The adap-
tive beam pattern is obtained from one Monte Carlo exper-
iment and the output signal-to-interference-plus-noise ratio
(SINR) is calculated from an average of 200 independent
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Fig. 6. Adaptive beam patterns comparison.

Monte Carlo experiments. In Fig. 6, beam patterns of all
mentioned methods are shown, and compared with the qui-
escent (QUI) beam pattern. The snapshot number is 100.
For better comparison, the desired signal is not present in
the training data when using EMP, EMP-CMR and EMP-SC
methods, and assuming that EOMP-CMR knows the direc-
tion of the desired signal in advance.

As can be seen from Fig. 6, SMI form deep null in the
mainlobe that causes mainlobe distortion. EMP suffers from
the peak offset. When there is no desired signal in the train-
ing data, EMP-CMR and EMP-SC can effectively solve the
problem of beam peak deviation. But the snapshot number
is relatively small leads to the EMP-CMR formed null at 30◦
is not deep enough. The beam pattern of EOMP-CMR and
the proposed method can effectively solve the mainlobe dis-
tortion and offset, and deep nulls are formed in the directions
of sidelobe interferences.

Figure 7 shows the output SINRs of the aforemen-
tioned methods versus the snapshot number which ranges
from 10 ∼ 100. As can be seen from Fig. 7, the proposed
method’s output SINR is similar to EMP-CMR, EMP-SC and
EOMP-CMR. Due to the high accuracy of TROMP in DOA
estimation, the proposed method can also have well perfor-
mance in low snapshot numbers. In addition, compared with
the EMP-CMR, EMP-SC and EOMP-CMR, the output SINR
of the proposed method has a faster convergence rate.

Figure 8 depicts the output SINRs curves of all men-
tioned methods when the mainlobe interference INR varies
from 10 dB to 60 dB, and the number of snapshots is 100. It
can be seen from Fig. 8 that compared with other methods,
the output SINR of the proposed method is higher, and the
curve decreases more slowly with the increase of the main-
lobe interference INR. It shows that the proposed method is
less affected by the mainlobe interference intensity and has
better interference suppression performance.

Fig. 7. Output SINRs versus the number of snapshots.

Fig. 8. Output SINRs versus the INR of mainlobe interference.
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5. Conclusion
In this paper, we propose a novel mainlobe interference

suppression method based on compressive sensing and co-
variance matrix reconstruction. The DOAs of the signals can
be accurately estimated by the proposed TROMP algorithm,
and then the SINCM is reconstructed and the oblique projec-
tion operator is calculated. Finally, the mainlobe interference
and sidelobe interferences are effectively suppressed while
the desired signal exists in the received signal. The simula-
tion demonstrates that the TROMP algorithm has excellent
performance in estimating the signal DOA, which ensures
the effectiveness of the subsequent steps of suppressing the
interferences. In addition, the adaptive beam pattern formed
by the proposed mainlobe interference suppression method
has no distortion or offset, which can obtain better filtering
performance and robustness compared with other methods.

At present, the application of the proposed method in
mitigating multi-mainlobe interferences is still under discus-
sion. In the future research, we will combine the TROMP
algorithm with Multiple Measurement Vectors, and explore
the more effective multi-main lobe interferences suppression
method.
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