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Abstract. To satisfy the high-resolution requirements
of direction-of-arrival (DOA) estimation, conventional deep
neural network (DNN)-based methods using grid idea need
to significantly increase the number of output classifications
and also produce a huge high model complexity. To address
this problem, a multi-level tree-based DNN model (TDNN)
is proposed as an alternative , where each level takes small-
scale multi-layer neural networks (MLNNs) as nodes to divide
the target angular interval into multiple sub-intervals, and
each output class is associated to a MLNN at the next level.
Then the number of MLNNs is gradually increasing from
the first level to the last level, and so increasing the depth
of tree will dramatically raise the number of output classes
to improve the estimation accuracy. More importantly, this
network is extended to make a multi-emitter DOA estimation.
Simulation results show that the proposed TDNN performs
much better than conventional DNN and root multiple sig-
nal classification algorithm (root-MUSIC) at extremely low
signal-to-noise ratio (SNR) with massive multiple input mul-
tiple output (MIMO) receive array, and can achieve Cramer-
Rao lower bound (CRLB). Additionally, in the multi-emitter
scenario, the proposed𝑄-TDNN has also made a substantial
performance enhancement over DNN and Root-MUSIC, and
this gain grows as the number of emitters increases.
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learning

1. Introduction
Direction-of-arrival (DOA) estimation has been

a widely studied topic in wireless communications, array
signal processing, radar and sonar for few decades [1–4].
One of the most important directions is how to improve

the estimation precision, especially in poor signal conditions
such as low signal to noise ratio (SNR) and low number of
snapshots. In recent years, with the development of massive
multiple input multiple output (MIMO) technology, some
works considered massive receive arrays for improving the
spatial resolution and DOA estimation precision [5–7]. How-
ever, the massive MIMO arrays with fully-digital structures
can result in the significantly increasing of hardware costs, so
the hybrid analog and digital (HAD) structures are preferred
in recent years [8], [9].

Nowadays, deep learning (DL) techniques have been
introduced into DOA estimation, by matching the principles
of DOA estimation with the frameworks of supervised learn-
ing. Many high-precision methods can be trained via prior
DOA data for various scenarios. Work [10] proposed a deep
neural network (DNN) structure for super-resolution chan-
nel estimation and DOA estimation based on massive MIMO
system. A DNN-based method was also proposed for hybrid
massive MIMO systems with uniform circular arrays (UCA)
in [11]. Convolution neural network (CNN) is another tech-
nique widely considered in DOA estimation, like [12] de-
signed a CNN-based method for improving precision in low
SNR, and [13] introduced CNN for DOA estimation with
sparse prior. Overall, traditional DL-based DOA estimation
methods usually employ a flat single-level network struc-
ture [14], [15], each output class corresponding to a specific
direction and the estimation results can only be generated
from these fixed directions. So they have high-resolution
for on-grid DOAs and have accuracy lower bounds much
higher than Cramer-Rao lower bound (CRLB) for off-grid
DOAs [16]. Then conventional single-network models have
to increase the number of output classes to improve spa-
tial resolution and also cause the serious increase of model
complexity. so they can’t achieve the best accuracy when
estimating off-grid angles for the grid mismatch effect. The
easiest way for overcoming this effect is increasing the output
classes of networks to improve the angular resolution, while
this operation can cause the decrease of model accuracy.
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Therefore, a tree-model based DNN (TDNN) scheme is pro-
posed in this work for solving this problem and improving
DOA estimation accuracy.

In addition, how to apply the multi-label learning al-
gorithms for the multi-emitter cases is also a key problem
in DOA estimation with DL techniques. Traditional multi-
label learning algorithms like binary relevance, label rank-
ing, multi-class classification can transform complex multi-
labeling problems into more accessible single-labeling prob-
lems, and methods with another idea are working to apply
existing machine learning algorithms to multi-label learning,
such as multi-label K-nearest neighbor (ML-KNN), multi-
label decision tree (ML-DT), rank support vector machine
(Rank-SVM), etc. [17]. Then based on the ideas of multi-
labeling learning, reference [18] applied the DNN model
for DOA estimation of multi targets, but the DOA estima-
tion accuracy will significantly decrease with the growth of
source number and method to improve the resolution of multi-
emitter DOA estimation will be studied in this work.

In order to address the problems of DL-based DOA esti-
mation, a novel DNN architecture called TDNN is studied in
this work and a high-resolution TDNN-based multi-emitter
estimator is also proposed. Paper [19] considered a sce-
nario that the passive receive array with hybrid structure and
worked on solving the phase ambiguity problem in DOA es-
timation caused by this structure, which is totally different
from the problem of DOA estimation via fully-digital receive
array discussed in this paper. Then the main contributions of
this work are summarized as follows:

1. To improve the DOA estimation accuracy and decrease
the model complexity of single network, a multi-level
tree-based DNN model is proposed, where each level
uses small-scale MLNNs as nodes to divide the angular
interval into sub-intervals, and each output class is as-
sociated to a MLNN at the next level. Then the number
of output classes is gradually increasing from the first
level to the last level, so TDNN can significantly im-
prove the estimation accuracy by augmenting the depth
of the tree instead of enlarging the scale of single net-
work. Simulation results show the proposed TDNN
has much better performance than conventional DNN
and root-MUSIC at low SNR, and can achieve CRLB
as well.

2. To address the mulit-emitter DOA measurement, TDNN
is also extended to multi-emitter scenarios. Combining
𝑄 parallel TDNNs forms the 𝑄-TDNN method, which
can estimate 𝑄 different DOAs with same input. The
simulation results show that the proposed𝑄-TDNN has
made a substantial performance enhancement over con-
ventional methods with much lower computation com-
plexity, and this gain grows as the number of emitters
increases.

The remainder of this paper is organized as follows.
Section 2 introduces the system model. Section 3 proposes
the tree-based DNN model for DOA estimation, and the

proposed model is extended to multi-emitter scenarios in
Sec. 4. Finally, simulation results and conclusions are given
in Secs. 5 and 6 respectively.

Notations: Matrices, vectors and scalars are represented
by letters of bold upper case, bold lower case, and lower case,
respectively. Signs (·)T, (·)∗ and (·)H denote transpose, con-
jugate and conjugate transpose. ∥·∥ is the Euclidean norm.
Re(·) and Im(·) stand for the real part and imaginary part of
a complex number.

2. System Model
As shown in Fig. 1, we consider 𝑄 far-field narrow-

band signals impinge onto an𝑀-element uniform linear array
(ULA). The 𝑞-th signal is expressed as 𝑠𝑞 (𝑡)ej2𝜋 𝑓c𝑡 , where
𝑠𝑞 (𝑡) is the baseband signal and 𝑓c is the carrier frequency.
The received signal at the 𝑚-th antenna is expressed as [8]

𝑦𝑚 (𝑡) =
𝑄∑︁
𝑞=1

𝑠𝑞 (𝑡)ej2𝜋 𝑓c (𝑡−𝜏𝑞,𝑚 ) + 𝑣𝑚 (𝑡) (1)

where the narrowband assumption 𝑠(𝑡) = 𝑠(𝑡 − 𝜏𝑞,𝑚) is ex-
ploited, and 𝜏𝑞,𝑚 denotes the propagation delay of the 𝑞-th
signal to the 𝑚-th antenna, which is defined as

𝜏𝑞,𝑚 = 𝜏0 −
(𝑚 − 1)𝑑 sin 𝜃𝑞

𝑐
(2)

where 𝜏0 is the propagation delay from the signal to a refer-
ence point of the array, 𝑑 and 𝑐 represent the antenna spacing
and light speed respectively. Then by combining the received
signals of all the antennas we can get

y(𝑡) = ej2𝜋 𝑓c𝑡
𝑄∑︁
𝑞=1

a(𝜃𝑞)𝑠𝑞 (𝑡) + v(𝑡)

= ej2𝜋 𝑓c𝑡A(𝛉)s(𝑡) + v(𝑡).

(3)
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Fig. 1. System model.
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After the down conversion and ADC operation, the re-
ceived baseband signal is given as

y(𝑡) =
𝑄∑︁
𝑞=1

a(𝜃𝑞)𝑠𝑞 (𝑡) + v(𝑡) = A(𝛉)s(𝑡) + v(𝑡) (4)

where a(𝜃𝑞) = [1, ej 2𝜋
𝜆
𝑑 sin 𝜃𝑞 , · · · , ej 2𝜋

𝜆
(𝑀−1)𝑑 sin 𝜃𝑞 ]T is the

array manifold vector, A(𝛉) = [a(𝜃1), a(𝜃2), · · · , a(𝜃𝑄)]T,
𝛉 = [𝜃1, 𝜃2, · · · , 𝜃𝑄]T denotes the DOAs to be estimated and
𝜃1 < 𝜃2 < · · · < 𝜃𝑄. v(𝑡) ∼ CN(0, 𝜎2

𝑣 I𝑀 ) represents the
additive white Gaussian noise (AWGN) vector.

Following the signal model (4), the received signal’s
covariance matrix can be expressed as

R = AR𝑠AH + 𝜎2
𝑣 I𝑀 =

𝑄∑︁
𝑞=1

𝜎2
𝑠𝑞

a(𝜃𝑞)aH (𝜃𝑞) + 𝜎2
𝑣 I𝑀 (5)

where A = A(𝛉) and R𝑠 = diag{𝜎2
𝑠1 , · · · , 𝜎

2
𝑠𝑄
} denotes the

signal power. However, since a(𝜃) is unknown, the signal
covariance matrix cannot be obtained directly, the sample
covariance matrix R̃ = 1

𝑇

∑T
𝑡=1 y(𝑡)yH (𝑡) is considered as

a substitution and if 𝑇 → ∞, we have the sample covariance
R̃ is equal to the statistical one R in terms of the weak law of
large number.

3. Tree-based DNN Model for High-
Resolution DOA Estimation
In this section, a novel tree model-based DNN (TDNN)

model is proposed for high-resolution DOA estimation and
its detailed training procedure is described as well.

3.1 Proposed Method
The proposed TDNN classifier is composed of𝐻 levels,

and each level contains 𝐺ℎ fully-connected MLNNs, where
1 ≤ ℎ ≤ 𝐻. We let all the 𝐺ℎ networks in the same level
of TDNN have identical structures, and their output layers
all have 𝐿ℎ neurons. Then the sum output size of level ℎ is
𝐺ℎ𝐿ℎ, which is equal to the number of networks contained
in level (ℎ + 1), so 𝐺ℎ+1 can be given by

𝐺ℎ+1 = 𝐺ℎ𝐿ℎ = 𝐿1𝐿2 · · · 𝐿ℎ−1𝐿ℎ (6)

for 1 ≤ ℎ ≤ 𝐻 − 1 and 𝐺1 = 1. As shown in Fig. 2,
the feature vector r is firstly input to D1, and the output
layer of D1 has 𝐿1 neurons. Then in order to join with
the output size of level 1, level 2 contains 𝐿1 networks, i.e.,
𝐺2 = 𝐿1. So if a signal is divided into the class 𝑙1 by D1,
where 1 ≤ 𝑙1 ≤ 𝐿1, its corresponding feature vector r will
be then input to the 𝑙1-th network of level 2 (D𝑙1

2 ). After that,
D𝑙1

2 has 𝐿2 neurons in its output layer, and there are also 𝐿2
networks in level 3 connecting to it. Similarly, if the signal
is labelled as class 𝑙2 by D𝑙1

2 , 1 ≤ 𝑙2 ≤ 𝐿2, r will be input
to D𝑙1 ,𝑙2

3 . Therefore, when TDNN is used to perform DOA

estimation, only one network in each level will be activated.
Thus the input feature vector is sequentially input to 𝐻 net-
works, and by combining the classification results of these
networks, we can obtain a 𝐻-dimensional numerical label
vector ℓ = [𝑙1, 𝑙2, · · · , 𝑙𝐻 ]T, for 1 ≤ 𝑙ℎ ≤ 𝐿ℎ and 1 ≤ ℎ ≤ 𝐻.
According to ℓ, the decision procedure that r experienced in
TDNN can be summarized as

r −→ D1
𝑙1−→ D𝑙1

2
𝑙2−→ · · · 𝑙𝐻−1−→ D𝑙1 ,𝑙2 , · · · ,𝑙𝐻−1

𝐻

𝑙𝐻−→ ℓ (7)

where the lower right symbol of D denotes the level num-
ber, and the upper right symbols represent the accumulative
labels of the previous levels.

Since TDNN is designed for solving DOA estimation
problems, we firstly consider the single emitter case, i.e.,
𝑄 = 1, and assume the DOA 𝜃 must fall in an angular
interval Θ = [𝜃min, 𝜃max), i.e. 𝜃 ∈ Θ, and it is divided
into 𝐿1 uniform sub-intervals by D1 like Θ =

⋃𝐿1
𝑙1=1 Θ

𝑙1
1 ,

where Θ
𝑙1
1 =

[
𝜃
𝑙1
1,min, 𝜃

𝑙1
1,max

)
. Then Θ

𝑙1
1 can be further

divided into smaller sub-intervals as Θ
𝑙1
1 =

⋃𝐿2
𝑙2=1 Θ

𝑙1 ,𝑙2
2 ,

and Θ =
⋃𝐿1
𝑙1=1

⋃𝐿2
𝑙2=1 Θ

𝑙1 ,𝑙2
2 , where Θ

𝑙1 ,𝑙2
2 =

[
𝜃
𝑙1 ,𝑙2
2,min, 𝜃

𝑙1 ,𝑙2
2,max

)
.

Therefore, level ℎ of TDNN can divide Θ into 𝐿1𝐿2 · · · 𝐿ℎ
uniform spatial subintervals, which is denoted by

Θ =

𝐿1⋃
𝑙1=1

𝐿2⋃
𝑙2=1

· · ·
𝐿ℎ⋃
𝑙ℎ=1

Θ
𝑙1 ,𝑙2 , · · · ,𝑙ℎ
ℎ

(8)

where Θ
𝑙1 ,𝑙2 , · · · ,𝑙ℎ
ℎ

=

[
𝜃
𝑙1 ,𝑙2 , · · · ,𝑙ℎ
ℎ,min , 𝜃

𝑙1 ,𝑙2 , · · · ,𝑙ℎ
ℎ,max

)
. And we define

the spatial resolution of level ℎ as

Δ𝜃ℎ = 𝜃
𝑙1 ,𝑙2 , · · · ,𝑙ℎ
ℎ,max − 𝜃𝑙1 ,𝑙2 , · · · ,𝑙ℎ

ℎ,min =
𝜃max − 𝜃min
𝐺ℎ𝐿ℎ

(9)

where Δ𝜃1 > Δ𝜃2 > · · · > Δ𝜃𝐻 . Therefore, the size of
subintervals divided by the last level, i.e., Δ𝜃𝐻 = 𝜃

𝑙1 ,𝑙2 , · · · ,𝑙𝐻
𝐻,max −

𝜃
𝑙1 ,𝑙2 , · · · ,𝑙𝐻
𝐻,min , represents the spatial resolution can be achieved

by TDNN, which is expressed by

Δ𝜃 = Δ𝜃𝐻 =
𝜃max − 𝜃min
𝐺𝐻𝐿𝐻

=
𝜃max − 𝜃min

𝐿1𝐿2 · · · 𝐿𝐻−1𝐿𝐻
(10)

where we can get𝐺𝐻 = 𝐿1𝐿2 · · · 𝐿𝐻−1 based on (6). And the
final estimated DOA 𝜃 is related to the classification labels
of all the levels, which is given by

𝜃 = 𝜃min + ℓTΔ𝛉 = 𝜃min +
𝐻∑︁
ℎ=1

𝑙ℎΔ𝜃ℎ (11)

where Δ𝛉 = [Δ𝜃1,Δ𝜃2, · · · ,Δ𝜃𝐻 ]T. Equations (10) and (11)
show the DOA estimation accuracy of the proposed TDNN
classifier depends on the values of 𝐻 and 𝐿ℎ.
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Fig. 2. The proposed TDNN contains 𝐻 levels and each level
has 𝐿1𝐿2 · · · 𝐿ℎ−1𝐿ℎ MLNNs, so the angle interval is
also divided in to smaller sub-intervals with the increas-
ing of TDNN’s depth.

3.2 Training Procedure
All the MLNNs in the proposed TDNN classifier are

feed forward networks and composed of three parts, one in-
put layer, one output layer and some hidden layers. Since the
networks in the same level has the same number of input and
output neurons, in order to reduce the training burden, we
let the networks in the same level have the identical network
structure and we can train them in the parallel manner. Dℎ

represents an arbitrary network in the level ℎ of TDNN, sup-
posing it has 𝐾 layers including one input layer, one output
layer and 𝐾 − 2 hidden layers, then the computation steps of
the 𝑘-th layer in Dℎ are given by

q𝑘ℎ = W𝑘,𝑘−1
ℎ

g𝑘−1
ℎ + b𝑘ℎ, g𝑘ℎ = A[q𝑘ℎ] (12)

where 1 ≤ ℎ ≤ 𝐻, 1 ≤ 𝑘 ≤ 𝐾 . g𝑘
ℎ

denotes the output vector
in the 𝑘-th layer of Dℎ, where g0

ℎ
= r and g𝐾

ℎ
is the output

of Dℎ. W𝑘,𝑘−1
ℎ

represents the fully-connected weight matrix
between the (𝑘 − 1)-th layer and 𝑘-th layer, and b𝑘

ℎ
is the

bias vector. A[·] denotes the activation function, it is set as
ReLU function for hidden layers, while Softmax function for
output layer.

In order to reduce the unstability caused by the uncertain
signal waveforms, we choose the signal sample covariance
matrix R as the input feature for the proposed TDNN classi-
fier. In addition, due to the unknown noise variance and the
lower left elements of R are conjugate replicas of the upper
right ones, then delete the redundant elements in R and the
final input vector is reformulated by the off-diagonal upper
right elements of R, given by

r =
[
Re(r̄T), Im(r̄T)

]T ∈ R𝑀 (𝑀−1)×1 (13)

where r̄ =
[
𝑅1,2, · · · , 𝑅1,𝑀 , 𝑅2,3, · · · , 𝑅𝑀−1,𝑀

]T ∈
C𝑀 (𝑀−1)/2×1 and 𝑅𝑖, 𝑗 denotes the (𝑖, 𝑗)-th element of R.
In the prediction period, since the covariance matrix is un-
available, the testset consists of the off-diagonal upper right
elements of the sample covariance matrix R̃.

Since MLNNs in level ℎ have same structures, let zℎ
represent the one-hot form label vector for trainingDℎ, which
is an 𝐿ℎ × 1 binary vector with ∥zℎ∥ = 1 and its relationship
with ℓ can be expressed as

zℎ (ℓ(ℎ)) = zℎ (𝑙ℎ) = 1. (14)

Therefore, by combining the training data and training la-
bel, the complete training set for the 𝑖-th MLNN is given as
T = {(r, zℎ)}. Then we define ẑℎ as the output prediction
vector of Dℎ for r, which is in the form of probability distri-
bution. So we choose binary cross entropy (BCE) as the loss
function and it is given as

loss = − 1
𝐿ℎ

𝐿ℎ∑︁
𝑙ℎ=1

[
zℎ (𝑙ℎ) log(ẑℎ (𝑙ℎ))+

(1 − zℎ (𝑙ℎ)) log(1 − ẑℎ (𝑙ℎ))
]
.

(15)

Then the optimal weights and biases of Dℎ can be obtained
by minimizing this loss function.

3.3 Complexity Analysis
In the prediction stage, only one MLNN in each level

of TDNN is activated for per DOA estimation, then the com-
plexity of TDNN comes from two parts, i.e., model com-
plexity and computation complexity. Firstly, we define the
model complexity as the number of output classes required
for achieving a specific resolution Δ𝜃, so the model com-
plexity of conventional DNN is M(DNN) = O (𝑁), where
𝑁 = (𝜃max−𝜃min)/Δ𝜃. Then the model complexity of TDNN
is given by

M(TDNN) = O
( H∑︁
ℎ=1

𝐿ℎ

)
, (16)

from (10) we know 𝑁 = 𝐿1𝐿2 · · · 𝐿𝐻 , so it is obvious that
M(TDNN) ≪ M(DNN).

As discussed in [11], the computation complexity of
a network is proportional to the number of layers and the
number of neurons in each layer. So as the summation of
all the activated MLNNs, the computation complexity of
TDNN is

C(TDNN) = O
(
𝐻∑︁
ℎ=1

𝐾−1∑︁
𝑘=1

𝑊 𝑘
ℎ𝑊

𝑘+1
ℎ

)
(17)

where 𝑊 𝑘
ℎ

denotes the number of neurons contained in the
𝐾-th layer of Dℎ. And the comparison with the computation
complexity of conventional DNN models will be displayed
in simulation section.

4. Extensive TDNN-based Method for
Multi-Emitter Scenarios
As the number of signal sources increases, the corre-

sponding DOA estimation problem is converted into a multi-
label learning problem. For conventional DNN-based DOA
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estimation algorithms, each unit in the output layer corre-
sponds to an independent angle, so when the combined sig-
nals from𝑄 different sources are input to the DNN, the train-
ing label vector will be a binary vector zDNN which contains𝑄
’1’ elements, i.e., ∥zDNN∥1 = 𝑄. However, for our proposed
TDNN, since the output neurons of each level correspond
to different angular regions, it is possible that several DOAs
in the same region under the multi-emitter case, then there
will appear that different signals marked by same label and
thus the binary vector cannot express it. Therefore, we give
an 𝐿ℎ ×𝑄 binary label matrix for classifying the 𝑄-emitters
signals input to Dℎ

Zℎ =
[
zℎ1 , z

ℎ
2 , · · · , z

ℎ
𝑄

]
(18)

where zℎ𝑞 denotes the one-hot form label vector of the 𝑞-th
signal and ∥zℎ𝑞 ∥1 = 1.

Since the feature vector r is only constructed by the
upper right elements of R and has no connection with noise,
then by observing (5) that r can be separated into 𝑄 compo-
nents under 𝑄-sources cases as

r = r1 + r2 + · · · + r𝑄 (19)

where r𝑞 is the feature component of 𝜃𝑞 and its elements
are from the upper right part of 𝜎2

𝑠𝑞
a(𝜃𝑞)aH (𝜃𝑞). There-

fore, by drawing on the idea of binary relevance, we consider
transforming the 𝑄-emitters DOA estimation problem into
𝑄 single-source problems. And when solving the 𝑞-th prob-
lem, we can regard r𝑞 as the principal component and r is
classified as 𝜃𝑞 . Then the 𝑄-TDNN algorithm is proposed
based on this principle.

As shown in Fig. 3,𝑄-TDNN is composed of𝑄 TDNNs
with same structures, and TDNN 𝑞 is used to solve the 𝑞-th
problem. Firstly, r is separately input to these 𝑄 TDNNs,
ℓ𝑞 = [𝑙𝑞,1, 𝑙𝑞,2, · · · , 𝑙𝑞,𝐻 ]T denotes classification result of
TDNN 𝑞, then we can obtain the estimation result of 𝜃𝑞 as

𝜃𝑞 = 𝜃min + ℓT
𝑞Δ𝛉 = 𝜃min +

𝐻∑︁
ℎ=1

𝑙𝑞,ℎΔ𝜃ℎ, (20)

then by combining all the 𝑄 results, the complete DOA
estimation result of 𝑄-TDNN is given as �̂�𝑄−TDNN =

[𝜃1, 𝜃2, · · · , 𝜃𝑄].
r

TDNN 1 TDNN 2 TDNN Q...

1
̂

2
̂ ˆ

Q


...

Fig. 3. Proposed 𝑄-TDNN for multi-emitter DOA estimation.

Since the 𝑄-TDNN contains 𝑄 TDNNs, and they have
the same architectures, then the computation complexity of
𝑄-TDNN is given by

C(𝑄 − TDNN) = 𝑄 · C(TDNN). (21)

Then in the training duration, the training strategy for each
TDNN is basically same as that for basic TDNN, let zℎ𝑞 denote
the training label vector of r in D𝑞,ℎ which is an arbitrary
DNN in the ℎ-th layer of TDNN 𝑞, and zℎ𝑞 (𝑙𝑞,ℎ) = 1. In
addition, to increase the flexibility of the algorithm so that it
is not limited to just 𝑄-emitters case, we can add the signals
of𝑄′-emitters into the training set, where𝑄′ ≤ 𝑄, then when
a𝑄′-emitters signal need to be estimated, we can just activate
the first 𝑄′ TDNN classifiers of 𝑄-TDNN. In this way, the
proposed method can handle the scenario that the number of
emitters is variable, and it makes 𝑄-TDNN more practical
than ML-DNN.

5. Simulation Results
In this section, the DOA estimation performance of

the proposed methods is verified by performing a series
of numerical simulations. The receive array is equipped
with a 64-elements ULA, the DOAs of all the signals are
fall in the angular region Θ = [−60◦, 60◦]. These simula-
tions were all completed on a desktop computer with Win-
dows 10, AMD Ryzen 7 5800X CPU and NVIDIA GeForce
RTX 4070Ti GPU. The software environment setup com-
prises Python 3.9 and Tensorflow 2.6.0. The angular range
is uniformed sampled with interval 1◦, the considered SNR
range is [−20 dB, 10 dB] and SNR sample interval is 5 dB,
and each sample is randomized 50 times, so the size of train-
ing dataset is 𝑁t = 50𝑁𝜃𝑁SNR. The validation dataset is 10%
part of training dataset. The test dataset is constructed based
on the same principle as training dataset with the number of
randomization is 1000. Adam [20] is employed as optimizer,
the learning rate is 0.005, the number of batch size and epochs
are set as 1000 and 150 1. The proposed TDNN method is
mainly compared to DNN and root-MUSIC, where the fully-
connected DNN considered in this work is a widely used
DL model in the DOA estimation [18], regression DNN [21]
and root-MUSIC is a classical subspace-based off-grid DOA
estimation algorithm [22].

Table 1 lists the model parameters of the proposed
TDNN, where 𝐻 denotes the depth of TDNN and 𝐺ℎ rep-
resents the number of DNNs contained in each level. The
specific network structures of the DNNs are also shown in
this table. The selection of these model parameters is depend
on complexity and the requirement of DOA estimation res-
olution. Increasing the depth 𝐻 or the number of MLNNs
in each level can improve the resolution, but also adds the
complexity, so we have to make a balance between resolution
and complexity when design a TDNN.

1The source code of this paper is available on request, readers can contact authors for it.
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𝑯 𝑮𝒉 Input layer Hidden layers Output layer
2-level TDNN 2 1/12 4032 512, 256, 128, 64, 32, 16 12/10
3-level TDNN 3 1/6/30 4032 512, 256, 128, 64, 32, 16 6/5/4

Tab. 1. Model parameters of the proposed TDNN.

Figure 4 plots the training performance versus the model
complexity of DNNs. From this figure, it is seen that the
model accuracy of DNNs becomes worse with the increas-
ing of output classes. This means small-scale networks can
have better model accuracy than large-scale networks. The
specific impact on DOA estimation performance will be an-
alyzed in the following by combining Fig. 5.

Figure 5 demonstrates the DOA RMSE versus SNR
of the proposed TDNN with DNN, root-MUSIC and CRLB.
The specific parameters involved in this simulation are as fol-
lows: the number of snapshots 𝑇 = 50, 𝑄 = 1 and 𝜃 = 27◦.
From this figure, it can be seen that TDNN attains obvi-
ous performance gains over conventional DNN and root-
MUSIC at SNR ≤ −5 dB. TDNN can also nearly achieve
CRLB at SNR = −10 dB, while DNN can only achieve
it at SNR = 0 dB. The proposed TDNNs also have sig-
nificantly performance advantages over regression DNN as
SNR ≤ −10 dB, which has higher resolution than DNNs
designed based on classification principle. Additionally, the
comparison between TDNNs with different structures is note-
worthy. The performance of 3-level TDNN is better than
2-level TDNN, and from Tab. 1 we can find the model com-
plexity of 3-level TDNN is also lower than 2-level TDNN.
Therefore, by combining the conclusion of Fig. 4, we can
conclude lower model complexity makes higher DOA esti-
mation accuracy, and it is a key index must be considered
when a TDNN model is constructed.

In order to evaluate the performance of the proposed
method across the entire test set, Figure 6 plots the RMSE
values of TDNN and root-MUSIC at different angular posi-
tions within [−60◦, 60◦], where SNR = −10 dB and 𝑇 = 50.
From this figure we can see, the proposed TDNNs achieve
significantly advantages over traditional method at all the
angular positions. And similar to the conclusion obtained
from Fig. 5, 3-level TDNN also has better performance than
2-level TDNN at most angular positions. So the proposed
TDNN has guaranteed DOA estimation performance at entire
angular region.

Figure 7 depicts the DOA estimation RMSE versus of
𝑄-TDNN, DNN and root-MUSIC under the multi-emitter
scenarios and SNR = −8 dB, and the DOAs are selected from
set {−15◦,−5◦, 5◦, 15◦, 25◦}. It can be seen from this figure
the RMSE of these three methods are very close when𝑄 = 1,
but as the number of emitters increases, the performance gap
between the other two methods and TDNN is increasing,
when 𝑄 = 5, 𝑄-TDNN has about 16◦ performance advan-
tage over root-MUSIC and 8.5◦ over DNN. Therefore, the
proposed 𝑄-TDNN is confirmed to be a much more accurate
method for the multi-emitter cases.

Finally, Figure 8 shows the computation complexity
of TDNNs and DNN. TDNN is equivalent to 𝑄-TDNN as
𝑄 ≥ 2. Since the structure of conventional DNN keeps in-
variant with the increases of 𝑄, its computation complexity
is also fixed. As TDNN only activates one network in each
level for per DOA estimation, the computation complexity
of TDNN is significantly lower than that of DNN with any
structures. The computation speeds of TDNNs and DNN are
also given in Tab. 2, it’s obviously that the proposed TDNN,
whether it is 2-level or 3-level, takes much less time than
DNN to perform a DOA estimation, and the difference is
more than 2 seconds. Then combining all the simulation re-
sults, it can be concluded that TDNN is a much better model
than conventional DNN because it can achieve significantly
higher accuracy with much lower computation complexity.
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2-level TDNN 3-level TDNN DNN
Time [s] 1.35 1.87 3.86

Tab. 2. Computation time per DOA estimation.
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6. Conclusions
In this work, a novel multi-level tree-based DNN model

for high-resolution DOA estimation with massive MIMO re-
ceive array was proposed. Each level of TDNN adopts small-
scale MLNNs as nodes to partition the target angular interval
into multiple sub-intervals and each output class is associ-
ated to a MLNN at the next level. As the number of MLNNs
increases from the first level to the last level, and so as the
sum output classes. Therefore, TDNN can improve the DOA

estimation accuracy by adding the number of levels without
increasing the model complexity of each MLNN. The pro-
posed TDNN performs much better than conventional meth-
ods like Root-MUSIC, DNN when SNR is in the extremely
low region (< −5 dB). Additionally,𝑄-TDNN method is also
designed for multi-emitter scenarios on basis of TDNN. The
performance enhancement of 𝑄-TDNN over DNN and root-
MUSIC also increases as the number of emitters increases.
In the future, we will continue to explore the applications
of deep learning in areas such as sensing, positioning, and
expand the research scenarios to wideband, near-field, etc.
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