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Abstract. Active jamming's flexibility and variability pose 

significant challenges for frequency-agility radar (FAR) 

detection, as it can continuously intercept and retransmit 

radar signals to suppress or deceive the radar. To tackle 

this, we propose an intelligent learning method for FAR 

based on reinforcement learning (RL), integrating signal 

processing with compressed sensing (CS). We introduce 

an inter-pulse carrier-frequency hopping combined with 

intra-pulse sub-frequency coding (IPCFH-IPSFC) signal 

model to address time-domain discontinuities caused by 

active jamming, enabling effective mutual masking of 

pulses through agile waveform parameters. We develop 

jamming signal models and design four jamming strategies 

based on two common types of active jamming, providing 

essential data for the FAR intelligent learning method. To 

enhance FAR’s adaptive anti-jamming and target detection 

performance, we propose an RL-based intelligent learning 

model. This model includes five submodules: signal pro-

cessing, anti-jamming evaluation, target detection, optimi-

zation constraint design, and optimization algorithm de-

sign. We apply a proximal policy optimization combined 

with a generative pre-trained transformer (PPO-GPT) to 

solve this model, allowing FAR to adaptively learn jam-

ming strategies and optimize IPCFH-IPSFC waveform 

parameters for effective anti-jamming. Simulation results 

confirm that our method achieves robust performance and 

rapid convergence, finding optimal anti-jamming strate-

gies in just 215 training iterations. The FAR effectively 

counteracts jamming while accurately estimating target 

range and velocity. 
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1. Introduction 

As jamming technology advances, future electronic 

warfare (EW) equipment will learn and adapt to the envi-

ronment. Radar workers encounter a more demanding and 

complicated work environment [1]. Digital radio frequency 

memory (DRFM) and active jamming modes are being 

developed quickly. This lets jammers make flexible and 

variable jamming signals that can precisely target the radar 

operating frequency, which makes it much harder for radar 

to find targets [2]. Jamming types include interrupted sam-

pling repeater jamming (ISRJ), smart noise, etc. ISRJ 

switches sampling and modulating the radar-transmitted 

pulses, causing false targets [3]. Instead of traditional noise 

suppression jamming, smart noise jamming convolves or 

multiplies the received radar signal with narrowband noise 

[4]. It matches the radar signal and automatically targets 

the carrier frequency. With suppression and deception, 

these active jamming modes may construct several false 

targets and be coherent with radar signals. Researching 

radar anti-active jamming technology to increase radar 

detection is crucial. 

Radar uses waveforms to perceive the environment, 

and anti-jamming and target detection performance are 

highly connected to waveforms [5]. Traditional waveform 

modulation is straightforward, and it is simple to identify 

by jammers in intelligent countermeasure scenarios [6]. 

Complex modulation techniques and parameter hopping 

technologies make the agile waveform less predictable, 

which makes it harder for jammers to intercept and easier 

for targets to tell apart [7], [8]. Frequency-agile technology 

usually randomly selects the carrier frequency or transmits 

the waveform in a fixed mode, and more attention is paid 

to waveform design and parameter estimation [9], [10]. 

The jammer uses DRFM to generate different jamming 

modes. If jamming learning techniques are not incorpo-

rated into FAR anti-jamming research, it will not fulfill 
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intelligent countermeasure demands [11]. Some researchers 

call the frequency agility design problem a deterministic 

optimization problem; however, it involves the artificial 

calculation of jamming and target properties to get the 

ideal waveform parameters [12], [13]. Active jamming 

varies rapidly, making real-time manual parameter estima-

tions impossible for radars with limited resources. There is 

an urgent need for adaptive implementation methods. 

Some researchers use RL in radar anti-jamming to 

boost radar's learning capabilities in jamming environments 

[14], [15]. Intelligent radar anti-jamming decision-making 

is solved by treating radar and jamming as a sequence 

decision-making issue [16], [17]. A new frequency-

hopping strategy design method using Q-learning and deep 

Q network (DQN) algorithms is shown in case cognitive 

radar can't reliably find the smart jamming mode [18]. The 

reward function for finding something in a coherent pro-

cessing interval (CPI) is made by processing the FAR echo 

signal in a way that isn't coherent, and a DQN-based ap-

proach for optimizing the frequency waveform is given 

[19]. To examine two FAR hopping techniques, a DQN 

with a long-short-term memory (LSTM) algorithm is de-

veloped to address jammer dynamics uncertainty [20], 

[21]. A proximal policy optimization (PPO) using LSTM is 

presented to autonomously develop efficient anti-jamming 

tactics for variable and intelligent jamming strategies [22]. 

The FAR error problem in the electromagnetic game is 

caused by wrong jamming state monitoring. To fix this, 

a strong anti-jamming strategy learning system was created 

using imitation learning and Wasserstein robust reinforce-

ment learning (WR2L) [23]. A FAR anti-jamming approach 

uses RL and supervised learning to tackle the problem of 

the RL algorithm not handling non-stationary jamming 

tactics [24]. One problem with the above studies is that the 

optimal design is based on the inter-pulse carrier frequency 

agility of FAR, which makes it difficult to suppress the 

ISRJ of intra-pulse sampling and repeaters. Therefore, 

frequency-agile waveform and parameter-intelligent learn-

ing methods to deal with active jamming created by DRFM 

must be researched quickly. 

The FAR agile waveform design must also handle 

coherent processing of the echo signal to determine target 

parameters. Since FAR carrier frequency hopping causes 

phase discontinuity, fast Fourier transform (FFT) is no 

longer a viable approach for calculating target information 

[25]. Non-coherent processing is used to calculate target 

detection probability [26]. A signal-to-noise ratio (SNR) 

weighting technique coherently accumulates echoes of the 

same carrier frequency. Some researchers use CS for radar 

target detection [27]. CS transforms the detection challenge 

of moving targets into a sparse signal estimation problem, 

and signal sparse reconstruction in CPIs is utilized to esti-

mate target information [28]. High-resolution range-

Doppler reconstruction of random frequency hopping and 

pulse repetition frequency (PRF) agility for FAR was sug-

gested using CS sparse optimization [9]. Two-dimensional 

sparse reconstruction using a conjugate gradient solver is 

presented to efficiently recreate high-resolution range-

Doppler pictures from frequency and PRF agility wave-

forms [12]. The above studies support FAR target detec-

tion; however, they do not address the unique challenges of 

applying CS to the FAR in jamming environments. In the 

context of active jamming, FAR must research ways to 

suppress jamming and properly estimate target information. 

The above mentioned studies did not consider how 

FAR, when confronting active jamming with dynamic 

jamming strategies, can learn jamming strategies through 

multi-round interactive learning and adaptively generate 

anti-jamming strategies. At the same time, they seldom 

consider the issue of ensuring efficient target detection and 

accurate information estimation while successfully counter-

ing jamming. Therefore, in response to the flexible and 

variable nature of active jamming patterns, there is an ur-

gent need to develop intelligent anti-jamming methods for 

FAR, while also addressing the challenge of estimating 

target distance and velocity information due to the difficul-

ty of directly accumulating phase-coherent FAR echo sig-

nals. To address these issues, we propose an RL-based 

intelligent learning method for FAR that integrates radar 

signal processing techniques with RL and CS technologies. 

This approach enables FAR to utilize adaptive waveform 

strategies to counteract the evolving patterns of active 

jamming. The main contributions of this work are summa-

rized as follows: 

 We have designed an IPCFH-IPSFC signal model for 

FAR, which facilitates pulse-to-pulse and sub-pulse 

mutual masking in complex and dynamic active jam-

ming environments. Based on two typical types of ac-

tive jamming—ISRJ and smart noise jamming—we 

have developed four jamming strategies, providing 

a data foundation for the intelligent learning method 

for FAR. 

 We have developed an RL-based intelligent learning 

model for FAR. This model comprises five submod-

ules: signal processing, anti-jamming evaluation, tar-

get detection, optimization constraint design, and op-

timization algorithm design. In complex jamming 

environments, this model enables effective signal ac-

cumulation of FAR target echoes and accurate estima-

tion of target distance and velocity. By employing 

a PPO-GPT algorithm to solve the intelligent learning 

model, we not only enhance FAR’s adaptive anti-

jamming performance but also improve target detec-

tion capabilities. The proposed RL-based intelligent 

learning model for FAR allows continuous learning 

of jamming strategies, adaptive adjustment of IPCFH-

IPSFC waveform parameters to generate optimal anti-

jamming strategies, and precise estimation of target 

distance and velocity. 

 Finally, we conducted simulations to validate the pro-

posed RL-based intelligent anti-active jamming 

method for FAR and compared it with alternative ap-

proaches. The results demonstrate that this method 
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exhibits strong robustness, fast convergence, optimal 

anti-jamming capability, and the most accurate esti-

mation of target range and velocity. It not only ena-

bles FAR to adaptively generate anti-jamming strate-

gies and successfully block jamming signals from 

entering the FAR receiver, but also allows for precise 

estimation of target range and velocity. 

The rest of this paper is organized as follows: The 

agile waveform and jamming strategies are explained in 

Sec. 2. The intelligent learning method design based on 

PPO-GPT algorithm is described in Sec. 3. Section 4 

shows the simulation results, followed by the conclusions 

presented in Sec. 5. 

2. Agile Waveform and Jamming 

Strategies 

2.1 Agile Waveform of FAR 

We created the IPCFH-IPSFC waveform with intelli-

gently agile parameters to protect FAR from active jam-

ming and accurately measure target range and velocity. In 

particular, the carrier frequency hopping provides mutual 

cover between pulses. Intra-pulse uses linear frequency 

modulation (LFM). Sub-frequency coding in each pulse 

ensures sub-pulse mutual cover. Inter-pulse carrier fre-

quency hopping combined with intra-pulse sub-frequency 

coding improve radar anti-jamming. Therefore, we assume 

that the FAR transmits N pulses in a CPI, and the k-th sub-

pulse of the n-th pulse is 
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 is the window function. 

γ = Bsub/Tsub is the slope of LFM. Bsub is sub-pulse band-

width. Tsub is sub-pulse width. Tp = K×Tsub is pulse width. t̂  

is fast time. ak,n is the k-th sub-frequency coding, 

ak,n  {0,1,2,…,K – 1}. f is a sub-frequency interval. The 

n-th transmitted pulse signal by FAR is represented as (2): 
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where tn = (n – 1)Tr is slow time, ˆ
nt t t  . Tr is the pulse 

repetition interval (PRI). fn is carrier frequency, 

fn = f0 +a(n)F. f0 is the initial carrier frequency. F is the  

 
(a) 

 
(b) 

Fig. 1. Time-frequency diagram of the transmitted IPCFH-

IPSFC waveform. (a) is the time-frequency diagram of 

pulses in a CPI. (b) is the time-frequency simulation 

result of sub-pulses in a PRI. 

minimum frequency interval. a(n) is carrier frequency 

coding, a(n)  {0,1,2,…,M –1}. The diagram is shown in 

Fig. 1. 

The FAR target echo in the observation scenario for 

an aircraft target is  r ,ˆ ns t t . 
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where 0 is the target backscatter coefficient. n = 

2(R0 – v(n – 1)Tr)/C is the target delay. C = 3×108 m/s is 

light speed.  
2

s b

ˆj

u( ) rect /ˆ eˆ tu t t T   is a complex enve-

lope function. We assume that there is an aircraft target and 

it is a scatterer with radial velocity v. R0 is the initial range 

of FAR and aircraft target. 

2.2 Jamming Strategies for Active Jamming 

We established signal models for ISRJ and smart 

noise jamming, two active jamming modes. The jammer of 

a time-sharing system with co-located transmitting and 

receiving antennas alternately samples and repeats inter-

cepted radar signals during the current PRI. Deception 

jamming after pulse compression can seriously impair 

target detection. Different repeater methods divide ISRJ 
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into direct, repeat, and cyclic modes. We focus on direct 

repeater ISRJ. It samples a short radar signal segment. The 

modulated signal is quickly forwarded. Assume that 

 T ,ˆ ns t t  is intercepted by the jammer. The directly for-

warded sampling is rectangular pulse  ,ˆ np t t . Direct-

repeater ISRJ can be expressed as (4) [29]. 
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where Aj is the jamming amplitude. Tj is sample time. Ts is 

sample period, Ts = 2Tj. Z = Tp /Ts is a slice number.  is 

the rounding operation. j is jamming delay. Tj determines 

the false target's delay from the real target after ISRJ pulse 

compression [29]. To produce different jamming effects, 

the jammer can adjust the sampling time to move the false 

target in the range domain. 

Modulating the FAR-transmitted signal that the jam-

mer has intercepted with narrow-band noise produces 

smart noise jamming [30]. It has convolution and product 

modulation modes. We primarily focus on smart noise 

jamming based on product modulation. Smart noise jam-

ming utilizes intelligent algorithms to analyze radar signal 

characteristics, such as frequency, pulse width, and repeti-

tion frequency, in order to generate jamming signals that 

closely resemble target signal properties, with the aim of 

suppressing or deceiving the radar system. This type of 

jamming not only enhances the coherence between the 

jamming signal and the target echo but also exhibits ran-

domness and non-stationarity, similar to noise-modulated 

jamming. Additionally, it automatically aligns with the 

radar's operating frequency, resulting in more concentrated 

energy. 

The smart noise jamming first intercepts the target 

signal, and then modulates it using a noise sequence. As-

suming the jammer samples the FAR-transmitted signal 

 T ,ˆ ns t t  with full pulse storage and the narrow-band 

noise is noise  ˆ, nt t . The specific mathematical represen-

tation of the time domain of smart noise jamming is shown 

in (5)[30]: 
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where KFM is the frequency modulation slope of the smart 

noise jamming, and noise(t) is the instantaneous frequency 

noise function, which follows a zero-mean Gaussian sto-

chastic process.  

Smart noise jamming based on product modulation is 

the product output of the radar-transmitted signal and nar-

row-band noise signal. After applying the Fourier trans-

form to the smart noise jamming, the output of the matched 

filter is obtained as follows [30]: 
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where F is the filter delay. h(t – F) is the conjugate time-

reversed function, h(t – F) = J*
SNJ(F –t). 

The jammer with smart noise jamming can automati-

cally aim at the radar’s working frequency without the 

frequency measurement system's guidance and concentrate 

the jamming signal's energy within the radar’s working 

bandwidth. According to smart noise jamming after pulse 

compression, the range domain range depends on the nar-

row-band noise signal duration [4]. Therefore, by changing 

the narrow-band noise signal duration, the jammer can 

change the range-domain jamming coverage. 

The ISRJ samples the sub-pulse signal because its 

sampling time is smaller than a PRI. We developed jam-

ming strategies Ⅰ and Ⅱ, as depicted in Fig. 2. For jamming 

strategy Ⅰ, the sampling time of ISRJ is equal to one sub-

pulse width, resulting in a sample period of Ts = 2Tsub. In 

jamming strategy Ⅱ, ISRJ sampling time equals two sub-

pulse widths, resulting in a sample period of Ts = 4Tsub. 

Smart noise jamming samples signals using full pulse 

storage. We developed jamming strategies Ⅲ and Ⅳ, as 

depicted in Fig. 2. In jamming strategy Ⅲ, smart noise 

jamming sampling time Twidth is one PRI, and narrow-band 

noise signal duration is Tp. In jamming strategy Ⅳ, smart 

noise jamming sampling time Twidth is two PRI, and nar-

row-band noise signal duration is 2Tp. Jamming strategies 

are assumed to remain unchanged in a CPI. In the FAR-

jammer game, the jammer can use different jamming strat-

egies in different CPIs, creating a dynamic environment 

with multiple jamming strategies. 

 

Fig. 2. Schematic diagram of the jamming strategies. 
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3. Intelligent Learning Method Design 

Based on PPO-GPT Algorithm 

We consider an electronic countermeasure scenario 

with a FAR and an aircraft target, and the aircraft target is 

a scatterer with radial velocity v. The initial range of FAR 

and aircraft target is R0. Airborne aircrafts use jammers 

with multiple strategies to interfere with FAR. FAR must 

continuously learn jamming strategies, adaptively optimize 

transmitted waveform parameters, and prevent jamming to 

accurately estimate target information. The FAR intelligent 

learning model is designed in Fig. 3. 

The FAR sends IPCFH-IPSFC waveforms to the en-

vironment. The intelligent anti-jamming decision-making 

system receives echo signals and processes them into base-

band signals. The intelligent anti-jamming decision-making 

system analyzes baseband signals, evaluates anti-jamming 

performance, and detects targets. Results of anti-jamming 

evaluation and target detection are sent to the learning 

algorithm module so that the best IPCFH-IPSFC waveform 

parameters can be made. Finally, the optimized IPCFH-

IPSFC waveform is sent outside. The intelligent learning 

model includes an electronic countermeasure environment, 

radar receiver, intelligent anti-jamming decision-making 

system, and radar transmitter. We designed the FAR intel-

ligent anti-jamming decision-making system. Five sub-

modules make up the FAR intelligent anti-jamming deci-

sion-making system: signal processing module, anti-

jamming evaluation module, target detection module, op-

timization constraint design module, and learning algo-

rithm design module. We will provide a detailed introduc-

tion to each sub-module. 

3.1 Signal Processing Module Based on 

Segmented Pulse Compression 

IPCFH-IPSFC waveforms have dynamic parameters 

in the time-frequency domain, and FAR transmits signals 

with different sub-frequency coding, so we must distin-

guish sub-pulses by sub-frequency coding. The active 

jamming's time domain discontinuity allows it to suppress 

jamming signals by sorting out echo signals not sampled 

by the jammer. The signal processing method uses seg-

mented pulse compression. To obtain sub-pulse signals at 

various sub-frequencies, a bandpass filter (BPF) processes 

the baseband signal in the frequency domain. The n-th 

pulse is fed into BPF for FFT with a bandwidth of 

BBPF(n,k) to obtain the frequency domain signal, where 

an,kf – Bsub /2  BBPF(n,m)  an,kf + Bsub /2. Inverse fast 

Fourier transform (IFFT) is used to obtain the time-domain 

signal. After obtaining sub-pulse signals for different sub-

frequency encodings, we use a parallel processing structure 

to compress each sub-pulse. The sub-pulse compressed 

signal  ˆ, ,ny t t k  is formulated as (7): 

      
T_sub
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ˆ, ,n t n k  is the noise signal. 

3.2 Anti-jamming Evaluation Module Based 

on Adaptive Variance Threshold 

After obtaining the sub-pulse compressed signal, we 

compare the energy variance of the jamming and the target 

to determine if the pulse signal contains jamming. The 

SINR measures whether the intelligent anti-jamming deci-

sion-making system chose the best strategy in the previous 

confrontation. The active jamming has time-domain dis-

continuities. Some sub-pulses have jamming after com-

pression, while others have only noise and target. A much 

higher jamming energy than the target energy will distin-

guish jamming. After segmented pulse compression, 

jammed and unjammed sub-pulses have different ampli-

tude fluctuation characteristics. Variance can reflect the 

amplitude fluctuation characteristics, and the jammed sub-

pulse has a higher variance than the unjammed one. 

  ˆvar , ,ny t t k  is a symbol for the amplitude variance.  

The adaptive variance threshold is defined as 
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Therefore, the jamming recognition result is expressed as (8) 
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where  is the scaling factor, which is selected with respect 

to the amplitude distribution of the target, jamming, and 

noise. It can be set empirically, or the maximum output 

SINR criterion can be used. 

Equation (8) determines if all sub-pulses after pulse 

compression jam. Sub-pulses with a variance less than the 

threshold  × Λ0 are target signals, and those with a vari-

ance greater than the threshold  × Λ0 are jamming signals. 

Thus, to obtain the pure sub-pulse  ˆ, ,ny t t k , we set the 

jammed sub-pulse amplitude to 0. After jamming suppres-

sion, all sub-pulses within a PRI are accumulated to obtain 

signal  ˆ, ny t t . 
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where An,k is the amplitude of the target signal, and 

 3
ˆ, nn t t  is noise. 
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Fig. 3. FAR intelligent learning model. 

We figure out the sub-pulse output SNR in the time 

domain based on the results of jamming recognition to see 

how well the previous confrontation worked at stopping 

jamming. This is defined as SNR0: 

 s
0 2

noise

SNR



  (11) 

where  
2

s
ˆ, ,ny t t k   is the total energy of the sub-

pulse. 2
noise is the total energy of the noise. 

According to (9), the jamming signal's amplitude is 0, 

so its SNR cannot be calculated. Sub-pulse recognition as a 

jamming signal indicates that anti-jamming failed in the 

previous confrontation. Thus, we use signal-to-jamming 

ratio (SJR) from expert experience to evaluate the sub-

pulse containing the jamming signal in the time domain. 

The anti-jamming evaluation result is: 
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 (12) 

3.3 Target Detection Module Based on OMP 

There are discontinuous carrier frequencies in a CPI 

because the IPCFH-IPSFC waveform changes dynamically 

in time-frequency. Segmented pulse compression yields the 

intra-pulse accumulation signal  ˆ, ny t t  within a PRI, 

leaving only target signals in the FAR observation scene. 

Targets are sparse within one range unit. Therefore, we use 

the 2-dimensional sparse reconstruction method based on 

CS theory to calculate target range and velocity [31]. 

A L × W-unit 2-dimensional range and velocity plane rep-

resent the radar observation scene. There are L units in the 

range dimension and W units in the velocity dimension. We 

build a sparse dictionary matrix as Ψ [31]. 

 

 

1,1 1, ,1 ,  L W W L

L L N L W

e e e e

 

 
 

  
  

Ψ  (13) 

where el,w = φl(n)  φl(n), n = 1,2,…,N. φl(n) is the range 

phase, φl(n) = exp(–j4anF rl /C). 1  l  L. φw(n) is the 

velocity phase, φl(n) = exp[–j4(f0 + anF) vwnTr /C]. 

1  w  W. l,w is the target backscatter coefficient, 

l,w = Al,mw exp(–j4f0 rl /C). The echo signal of the q-range 

unit is y′q [31]. 

 ,     1, 2, ,q q q q Q   y Ψθ δ  (14) 

where Q is the range unit number. q is the sparse 

reconstruction vector. q is the noise vector. 

Targets typically occupy a small portion of range-

velocity coordinates in radar detection. Thus, the range-
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velocity domain echo signal  ˆ, ny t t  is sparse. Because 

there aren't many targets in the observation scene, it is 

possible to figure out the unknown vector q from the sig-

nal that was seen by solving a 1-paradigm optimization 

problem [31]. 

 
1 2

subject toˆ arg min ,  q q q q   θ θ y Ψθ  (15) 

where ˆ
qθ  is an estimate of the target amplitude in the q-th 

range cell. ε is the noise amplitude. The noise 
2q  δ  

can be estimated from neighboring range or velocity cells. 

The q is obtained by solving (15), and the target's parame-

ters are based on q's peak position. We use the OMP algo-

rithm to reduce computational complexity [32]. 

3.4 Optimization Constraint Design Module 

Based on T-ACC 

OMP-based target detection uses the observation sce-

ne and target signal to determine the observed signal, but 

the radar designer designs the dictionary matrix Ψ. Equa-

tion (14) states that the dictionary matrix is deterministic 

and must be built beforehand. However, CS theory states 

that dictionary matrix column orthogonality directly affects 

signal stability and reconstruction accuracy. Thus, we in-

vestigated the dictionary matrix and IPCFH-IPSFC wave-

form agile parameters. Next, the IPCFH-IPSFC waveform 

parameter optimization constraint is set to ensure strong 

orthogonality between dictionary matrix columns to im-

prove target recovery accuracy. The dictionary matrix 

contains range value intervals, velocity value intervals, 

carrier frequency coding, and PRF, according to (13). In 

practice, range and velocity value intervals are fixed. Our 

designed IPCFH-IPSFC waveform fixes the PRF. The 

carrier frequency coding of the IPCFH-IPSFC waveform 

determines the dictionary matrix construction in this study. 

Because carrier frequency coding is dynamically adjusted, 

the dictionary matrix differs between CPIs. Thus, optimiz-

ing the carrier frequency coding a(n) must consider the 

dictionary matrix's performance and sparse reconstruction 

accuracy. We designed the T-average coherence coefficient 

(T-ACC) as an evaluation criterion of the dictionary matrix 

correlation. The correlation coefficient μT(Ψ) of the dic-

tionary matrix is defined as (16): 

 1 , ,

1 , ,

(| ( , ) | ) | ( , ) |
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(| ( , ) | )
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N i j
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


Ψ  (16) 

where G(i,j) is the element in row i and column j in the 

Gram matrix G = ΨTΨ. μT(Ψ) is the average of all Gram 

matrix G non-diagonal elements with absolute values 

greater than a threshold T. 

Equations (13) and (16) express the dictionary matrix 

correlation coefficient as a function of carrier frequency 

coding a(n). A smaller dictionary matrix μT(Ψ) means 

stronger orthogonality between columns and higher accu-

racy in sparsely reconstructing the target signal. Thus, the 

dictionary matrix column correlation coefficient optimiza-

tion objective function is min μT(Ψ): 

1 , ,
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min ( ) min .
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


Ψ  (17) 

We optimize the carrier frequency coding a(n) to 

suppress active jamming. Parameter variations affect dic-

tionary matrix construction and target estimation accuracy. 

Therefore, we must find the optimal dictionary matrix to 

meet the FAR requirements. According to FAR parameter 

settings, we used a genetic algorithm (GA) to solve (17) by 

taking all values of a(n) to get the range of μT(Ψ) [33].The 

optimal and mean value curves are shown in Fig. 4. The 

optimal value is the best correlation coefficient up to the 

current iteration, and the mean value is the average of all 

correlation coefficients. 

Figure 4(a) shows the GA target fitness parameter Fit 

as 0 to find the minimum value of μT(Ψ) by taking all val-

ues of a(n). Figure 4(b) shows the GA target fitness pa-

rameter Fit as 1 to find the maximum value of μT(Ψ) by 

taking all values a(n). The GA algorithm converges after 

30 iterations and reaches the global optimal solution in 50 

iterations. The minimum and maximum value optimization  

 
(a) 

 
(b) 

Fig. 4. μT(Ψ) optimization curve based on GA. (a) is the 

dictionary matrix correlation coefficients when the 

fitness parameter Fit = 0. (b) is the dictionary matrix 

correlation coefficients when the fitness parameter 

Fit = 1. 
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results show that the range of μT(Ψ) is (0.19, 0.32). No 

matter how the waveform parameters are changed, the 

μT(Ψ) falls within the (0.19, 0.32) range when there is no 

jamming signal in the observation scene. Experimental 

results show that different carrier frequency coding can 

have the same μT(Ψ). Multiple μT(Ψ) values meet parame-

ter estimation accuracy requirements. In the observation 

scene, we must determine if the jamming signal affects 

target sparse reconstruction success. According to FAR 

requirements on parameter estimation accuracy and target 

sparse reconstruction success rate, the OMP algorithm is 

used to detect jammed signals. The Monte Carlo method 

generates large number of experimental samples to better 

observe experimental results [34]. We investigate how to 

choose the optimal threshold μT
opt(Ψ) in the interval 

(0.19, 0.32) to optimize the IPCFH-IPSFC waveform pa-

rameter. A simulation experiment will be introduced in 

Sec. 4.1. 

3.5 Learning Algorithm Design Module 

Based on PPO-GPT 

The FAR intelligent learning model shows that FAR 

transmits the IPCFH-IPSFC waveform to interact with the 

environment. The jammer intercepts the FAR-transmitted 

signal at time t and modulates the jamming signal accord-

ing to the jamming strategy. The FAR creates anti-jamming 

actions by improving the IPCFH-IPSFC waveform parame-

ters based on the results of the anti-jamming evaluation and 

the optimization constraint from the previous time t – 1. 

This is done after receiving the combined signal of the 

jamming and target. By RL theory, this procedure is analo-

gous to the RL model. Markov decision processes (MDP) 

are used to model the intelligent learning method of agile 

waveforms against jamming. Consider the FAR as the 

agent and the dynamically variable jamming scenario as 

the environment. The MDP can be represented as a tuple 

M = (S,A,P,R,γ), which includes state space S, action space 

A, state transition probability P, reward function R, and 

discount factor γ. 

FAR can perceive the jamming state st = [st,f, st,Tj
] at 

time t, where st  S. st,f is the carrier frequency of the jam-

ming signal. st,Tj
 is the jamming signal duration. The action 

generated by the FAR at time t is at = [at,a(n), at,an,k
], where 

at  A. at,a(n) is the carrier frequency coding. at,an,k
 is the 

sub-frequency coding. The at = [at,a(n), at,an,k
] will uniquely 

determine the FAR-transmitted IPCFH-IPSFC waveform at 

time t. The waveform parameter increases the action space 

dimension, making traditional learning algorithms ineffec-

tive. Therefore, we divide at = [at,a(n), at,an,k
] into 

at
up

 = [at,a(n)] and at
down

 = [at,an,k
]. We design the reward 

function based on the anti-jamming evaluation results and 

the optimization constraint. We designed a reward function 

Rup to optimize at
up

 = [at,a(n)] and a reward function Rdown to 

optimize at
down

 = [at,an,k
]. 
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where E̅anti-jamming is the normalization value Eanti-jamming, 

which is E̅anti-jamming  [0,1]. 

The Rup is trained first, and then the Rdown is trained. 

Finally, they are jointly optimized. The reward function 

Rjoint for joint learning is defined as (20): 
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In MDP, the objective of the agent is to maximize the 

expected future reward, i.e., the optimal action-value 

function Q*(st, at). The Q*(st, at) can be obtained by solving 

the Bellman equation [35]: 

    1 1, ( , ) ,t t t t t tQ s a E R s a Q s a

     . (21) 

Order to obtain the action-value function Q*(st, at), 

the state transition probability P needs to be known. Due to 

the uncertainty of the jamming states, the state transition 

probabilities P cannot be obtained. By continuously updat-

ing the Q-value, the deep reinforcement learning (DRL) 

algorithm finds the optimal action value without knowing 

the state transition probability P. Due to a lack of training 

data, computational power, and instability, traditional DRL 

algorithms are only suitable for smaller state space deci-

sion-making problems. Complex environments create 

a larger state and action space in the FAR-jammer game. 

Neural networks have many parameters, so traditional DRL 

algorithms cannot complete the task. As an actor-critic 

(AC) benchmark algorithm, the PPO algorithm can solve 

the above problems [35]. Some neural networks have is-

sues like low parallel computation efficiency and poor 

feature capture over long distances during training. To 

complete state space preprocessing, we introduce the GPT 

algorithm based on PPO to improve training effectiveness 

and reduce training difficulty. Therefore, we propose 

a dual PPO-GPT algorithm to realize the game of FAR 

with active jamming. The structure of the dual PPO-GPT 

algorithm is shown in Fig. 5. The dual PPO-GPT model 

mainly consists of PPO-GPT Ⅰ and PPO-GPT Ⅱ. They have 

the same structure and state space, but different action 

spaces and reward functions. 

The action of PPO-GPT Ⅰ is at
up

 = [at,a(n)], and the re-

ward function is Rup. The action of PPO-GPT Ⅱ is 

at
down

 = [at,an,k
], and the reward function is Rdown. PPO-GPT Ⅰ 
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Fig. 5.  Dual PPO-GPT algorithm architecture diagram. 

is trained first, then PPO-GPT Ⅱ is trained and finally 

jointly optimized. The reward function for joint learning is 

Rjoint. The PPO-GPT model uses GPT to analyze state in-

formation and determine the impact on current decisions 

over time. State information multiplies three weight vec-

tors: query, key, and value. It helps the neural network 

focus on the most important state-space regions. The PPO 

has actor and critic networks. The critic network calculates 

the state advantage function At
. The actor network updates 

policy function network parameters  based on At
. The 

actor network stores sampled trace i = (st, at, rt, st + 1) from 

decisions. The actor network interacts with the environ-

ment to get the reward. Based on the reward and state, the 

critic network adjusts its weights. Algorithm 1 displays the 

PPO-GPT Ⅰ algorithm, which is identical to the PPO-

GPT Ⅱ algorithm. 

4. Simulation Results 

We used Monte Carlo experiments to examine how 

jamming's JSR and sparse recovery success rate affect 

dictionary matrix correlation. To confine the learning pro-

cedure, the optimal threshold μT
opt(Ψ) is chosen. Therefore, 

Section 4.1 is to determine the optimal threshold through 

Monte Carlo simulation in order to provide constraints for 

the verification of RL-based intelligent learning methods. 

We next compare the PPO-GPT algorithm to the 

PPO-LSTM algorithm [22], the dual DQN (DDQN) algo-

rithm [36], the advantage actor-critic (A2C) algorithm [37], 

and the random method [38] using our intelligent learning 

model in Sec. 4.2, 4.3, 4.4, and 4.5, respectively. Perfor-

mance testing of PPO-GPT-based intelligent learning algo-

rithms includes checking for robustness and convergence, 

target detection, anti-jamming, and the ability to make 

accurate decisions in a setting with multiple jamming strat-

egies that are used in order.  

The simulation results presented in Sec. 4.2, 4.3, and 

4.4 are all from the online execution of the algorithm, 

while the simulation results in Sec. 4.5 are from the offline 

execution of the algorithm. The simulated hardware 

environment is as follows: GPU: GeForce RTX 2060. Intel 

Core i7-9750H. RAM: 16G. The operating system is 

Windows 10. The software is Python 3.  

Table 1 lists FAR simulation parameters. The specific 

parameters are defined in Sec. 2.1. We set the four jam-

ming strategies designed in Sec. 2.3 as the four jamming 

environments for FAR, where the jammer generates jam-

ming data according to these strategies to engage in elec-

tronic warfare against FAR. Following the PPO-GPT algo-

rithm steps outlined in Sec. 3.5 and the four jamming 

environments described in Sec. 2.3, we configure the ex-

perimental parameters of the algorithm as follows: the 

greed factor is set to 0.95, the learning rate to 0.0003, and 

the discount factor γ to 0.99. The size of memory replay 

buffer Dround for the PPO-GPT algorithm is set to 100,000, 

with 512 training samples and 64 test samples. 
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Algorithm 1: PPO-GPT algorithm. 

Input: State, confrontation termination time episodecut. 

Output: Action. 

Initialization: Initialize network parameter . 

For episode = 1 to episodecut do: 

Collect the running policies (round) = (round) in the environment and get a collection Dround = {i} of the trace. 

Calculate the weights W of the GPT. 

Get the reward Rt of the time t. 

Calculate the advantage function based on the VJ obtained from the actor network. 

Update the network by maximizing the objective function (using the Adam optimizer): 
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Use the root mean square to update the parameters of the actor network: 
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episode = episode + 1. 

End for 
 

 

Parameter Value Parameter Value 

N 16 f0 14 GHz 

M 24 F 80 MHz 

K 8 Bsub 5 MHz 

Tsub 10 μs f 7 MHz 

Tr 100 μs  R0 11 km 

Tp 80 μs  v 20 m/s 

Tab. 1. FAR simulation parameters. 

During the algorithm's training process, we set 

round = 1000 adversarial rounds for each jamming envi-

ronment, with a maximum training time of 1,000. The 

robustness of the algorithm was observed, and the results 

are presented in Sec. 4.2. In the testing phase, we designed 

round = 1000 rounds of adversarial experiments for each 

jamming environment, with each round involving 2,048 

anti-jamming decisions, resulting in a total of 2,048,000 

adversarial episodes. The convergence and anti-jamming 

performance of the algorithm were observed, and the re-

sults are detailed in Sec. 4.2 and 4.3. Each adversarial 

episode corresponds to the duration of one CPI, i.e., 

1 episode = 1 CPI. 

4.1 Monte Carlo Simulations to Determine 

the Optimal Threshold μT
opt(Ψ)  

Section 3.5 shows that μT(Ψ)'s ideal range is 

(0.19, 0.32). To find the best threshold μT
opt(Ψ), we ran 

Monte Carlo trials. The OMP algorithm detects target in-

formation in jammed scenes. If the estimation error is with-

in 0.05, the target sparse reconstruction is successful. 

Once each 100 target detection simulation tests, the success 

rate is computed. The value interval is consistently split 

into five intervals: [0.20, 0.22), [0.22, 0.24), [0.24, 0.26), 

[0.26, 0.28), and [0.28, 0.30). Each interval has 40 con-

sistent goal values that correspond to 40 IPCFH-IPSFC 

waveforms with varied parameters. 

The jamming strategy Ⅲ is utilized to intercept the 

FAR-transmitted waveform. To achieve Monte Carlo ex-

periment unpredictability, we suppose the FAR creates 

transmitted waveforms using random parameter agility. 

The success rate of target sparse reconstruction is obtained 

when the JSR varies in [42, 50] dB. The mean success rate 

H̅ was calculated using 5,000 Monte Carlo trials. The first 

experiment jams a quarter pulse but not three quarters 

pulses inside one CPI. The JSR, H̅, and μT(Ψ) relationships 

are given in Fig. 6. The second experiment jams half of the 

pulses but not the other half of the pulses inside one CPI. 

We found the JSR, H̅, and μT(Ψ) relationships in Fig. 7. 

The cubic polynomial fitting curve of H̅ and JSR for 

varying μT(Ψ) in the first experiment is shown in 

Figure 6(a). As JSR rises, H̅ falls. When JSR is 50 dB and 

μT(Ψ)  [0.28, 0.30), H̅  43%. H̅-μT(Ψ) curves for differ-

ent JSRs are shown in Fig. 6(b). The higher the μT(Ψ), the 

lower the H̅. When μT(Ψ)  [0.28, 0.30) and JSR = 42 dB, 

H̅  94%. Figures 6(c) and (d) show the link between 

μT(Ψ), JSR, and H̅. As JSR rises, μT(Ψ) rises and H̅ falls. 

To have a success rate above 90% for target sparse detec-

tion, the JSR must be below 48 dB, or μT(Ψ)  0.26. 

In Fig. 7(a), when JSR is 50 dB, μT(Ψ)  [0.28, 0.30), 

H̅  30%. In Fig. 7 (b), when μT(Ψ)  [0.28, 0.30), 

JSR = 42 dB, H̅  93%. In Figs. 7(c) and (d), to have 

a success rate above 90% for target sparse detection, the 

JSR must be below 46 dB, or μT(Ψ)  0.24. In conclusion, 

random parameters cannot be used to generate carrier fre-

quency coding of the transmitted waveform to assure target 

detection under strong JSR jamming. Thus, carrier 

frequency coding must be optimized so the jammer cannot 
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(a)                                                                                         (b) 

 
(c)                                                                                        (d) 

Fig. 6. Results of the relationships between the JSR, H̅ and μT(Ψ) in the first experiment. (a) is the cubic polynomial fitting curve of JSR-H̅. 

(b) is H̅-μT(Ψ) curves. (c) is the two-dimensional connection between μT(Ψ), JSR, and H̅. (d) is the three-dimensional connection 

between μT(Ψ), JSR, and H̅. 

 
(a)                                                                                       (b) 

 
(c)                                                                                         (d) 

Fig. 7. Results of the relationships between the JSR, H̅ and μT(Ψ) in the second experiment. (a) is the cubic polynomial fitting curve of JSR-H̅. 

(b) is H̅- μT(Ψ) curves. (c) is the two-dimensional connection between μT(Ψ), JSR, and H̅. (d) is the three-dimensional connection 

between μT(Ψ), JSR, and H̅. 
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instantaneously acquire the anti-jamming strategy. For the 

agile waveform to achieve successful target sparse recon-

struction, μT
opt(Ψ)  0.24 must be made. Order to optimize 

the agile waveform, we determine the optimal threshold 

μT
opt(Ψ) = 0.24 

4.2 Robustness and Convergence Verification 

of Intelligent Learning Method 

We test the robustness and convergence of the PPO-

GPT learning algorithm using the optimal threshold 

μT
opt(Ψ). The four jamming strategies in Sec. 2.3 were used 

to set the environment for four experiments. We prove our 

PPO-GPT algorithm's superiority over the three DRL algo-

rithms and the random algorithm. In Experiment 1, the 

jammer uses strategy I and SRJ0 = –42 dB. In Experi-

ment 2, the jammer uses strategy II and SRJ0 = –42 dB. In 

Experiment 3, the jammer uses strategy III and SRJ0 =  

–60 dB. In Experiment 4, the jammer uses strategy IV and 

SRJ0 = –60 dB. The parameters were uniformly set in four 

experiments. The unjammed echo signal power is –24 dB 

in the time domain. The unjammed echo signal SNR0 is 

15 dB. We assume that the noise power of the radar 

receiver for FAR is 0. 

The DRL algorithm updates neural network learning 

parameters using the loss function. If the loss function 

gradually converges to 0, the neural network model is more 

stable, proving the DRL algorithm is more robust. The AC 

framework is not used to build DDQN, which has one 

neural network model. The other three algorithms use actor 

and critic neural networks. Since the random algorithm has 

no neural network model, we do not test its robustness. In 

Experiments 1 and 2, the jammer picks up and changes 

IPCFH-IPSFC sub-pulse signals, so changing the inter-

pulse carrier frequency doesn't stop the jamming. The 

analysis of sub-frequency coding algorithm learning should 

be the focus. Therefore, we focus on the robustness of the 

PPO-GPT II model with Rdown as the reward function. The 

PPO-GPT II neural network model loss curve with training 

times is shown in Fig. 8. 

As training times increased from 0 to 1000, neural 

network model loss values changed. All actor neural net-

work models have negative loss values that increase to 0. 

All other neural network models have positive loss values 

that decrease to 0. Figure 8(a) shows that after 169 training 

times, the actor neural network and critic neural network 

loss values of the PPO-GPT algorithm converge to 0. Other 

algorithms' neural network loss values converge to 0 at 

a slower rate. As shown in Fig. 8(b), the actor neural net-

work and critical neural network loss values of the PPO-

GPT algorithm reach 0 after 215 training times. The other 

algorithms' neural network loss value oscillates more and is 

harder to converge to 0. 

In Experiments 3 and 4, the jammer intercepts pulse 

signals against the IPCFH-IPSFC waveform, so sub-

frequency coding does not prevent jamming. The analysis 

of carrier frequency coding learning should be the focus. 

Therefore, we focus on the robustness of the PPO-GPT I 

model with Rup as the reward function. The loss curve of 

PPO-GPT I with training times is shown in Fig. 9.  

All neural network models' loss values converge to 0 

within 40 training times, as shown in Figs. 9(a) and (b). In 

the presence of jamming strategy I, our PPO-GPT algo-

rithm is more robust. The other three DRL algorithms are 

weak in jamming strategy II environments. DRL learning 

may be harder due to the complexity of jamming states. 

The robustness of the four DRL algorithms remains con-

sistent in environments with jamming strategies Ⅲ and Ⅳ. 

Overall, jamming strategy II is the hardest to learn of the 

four. The proposed method stabilizes the neural network 

model in 215 training times, proving that the PPO-GPT 

algorithm is more robust than the PPO-LSTM, A2C, and 

DDQN algorithms. We analyze the reward function varia-

tion curve during training to verify the convergence per-

formance of the PPO-GPT learning algorithm. The DRL 

algorithm's reward function shows convergence perfor-

mance when finding the optimal solution. Analyzing the 

reward function convergence curves based on the four 

jamming strategies shows that the PPO-GPT algorithm is 

superior to the others. All neural network models' loss 

values converge to 0 within 40 training times, as shown in 

Figs. 9(a) and (b). In the presence of jamming strategy I, 

our PPO-GPT algorithm is more robust. The other three 

DRL algorithms are weak in jamming strategy II environ-

ments. DRL learning may be harder due to the complexity 

of jamming states. The robustness of the four DRL algo-

rithms remains consistent in environments with jamming 

strategies Ⅲ and Ⅳ. 

We test the convergence of the dual PPO-GPT model 

based on the joint reward function Rjoint in Experiments 1 

and 2. The joint reward function convergence curve with 

episodes is shown in Fig. 10. Rjoint's average reward values 

were recorded every 1000 episodes. 

The reward increases from 0 to 2 for the first 0.23 

million episodes in Fig. 10(a). In the exploratory phase of 

increasing reward values, the DRL algorithm's neural net-

work weight parameters are not optimal. The neural net-

work learns the jamming strategy and generates anti-

jamming actions by trial and error. Reward feedback helps 

find the best anti-jamming action. After 0.23 million epi-

sodes, the PPO-GPT algorithm's reward function quickly 

converges to optimal solution 2 and stays there. The PPO-

LSTM algorithm takes 1.77 million episodes to reach 

an optimal solution. The DDQN algorithm is just conver-

gent after 2 million episodes. A2C is better than random, 

but it converges slowly. In Fig. 10(b), the PPO-GPT algo-

rithm's reward gradually converges to the optimal solution 

at 0.124 million episodes and then remains stable. It takes 

0.785 million episodes for the DDQN algorithm to find the 

optimal solution. After 1 million episodes, the PPO-LSTM 

and A2C algorithms will reach an optimal solution. 

We evaluate the convergence of the dual PPO-GPT 

model based on the joint reward function Rjoint in Experi-

ments 3 and 4. The Rjoint convergence curve with episodes 
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(a)                                                                                      (b) 

Fig. 8. Loss curve with the training times. (a) and (b) are Experiment 1 and 2 neural network model training results. 

 
(a)                                                                                      (b) 

Fig. 9. Loss curve with the training times. (a) and (b) are Experiment 3 and 4 neural network model training results. 

 
(a)                                                                                      (b) 

Fig. 10. Convergence curves of the reward with episodes. (a) and (b) are the reward convergence curves at Experiment 1 and 2. 

is shown in Fig. 11. Figure 11(a) shows that the reward 

starts at 0 and increases over the first 0.015 million epi-

sodes. PPO-GPT algorithm rewards quickly converge to 

optimal solution 2 after 0.015 million episodes. The PPO-

LSTM algorithm does not reach the optimal solution 2 

until 0.035 million episodes. After 0.065 million episodes, 

the A2C and DDQN algorithms reach optimal solution 2. 

Figure 11(b) shows that the PPO-GPT algorithm reward 

gradually converges to optimal solution 2 from 0.023 mil-

lion episodes and then remains stable. The PPO-LSTM 

algorithm approaches optimal solution 2 after 0.061 million 

episodes. DDQN reaches optimal solution 2 at 0.1 million 

episodes. The A2C algorithm finds optimal solution 2 at 

0.104 million episodes. To conclude, Experiments 3 and 4 

improve convergence by an order of magnitude over Ex-

periments 1 and 2. It appears that these four DRL algo-

rithms are easier to learn than jamming strategies III and 

IV. When optimizing sub-frequency coding, Equations (18) 

and (19) show that carrier frequency coding between 

pulses must be optimized. Optimizing carrier frequency 

coding between pulses does not require sub-frequency 

coding learning. Therefore, the DRL algorithm has 

a harder time learning jamming strategies I and II. Further-

more, the PPO-GPT algorithm outperforms the other four 

algorithms in average convergence speed by 72.5%. 

4.3 Anti-jamming Performance Verification 

of Intelligent Learning Method 

We look at how μT(Ψ) changes during the FAR-

jammer confrontation to determine if the dictionary matrix 

made by IPCFH-IPSFC waveforms meets the learning 
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requirement. Equation (18) yields 1 if the constraint is met. 

The judgment result is 0 if μT(Ψ) does not satisfy the opti-

mization constraint. Thus, we observe the episode-based 

judgment curve. To evaluate FAR's anti-jamming effect, 

we observe the echo signal SINR change. Equation (19) 

defines SINR as SJR0 if the sub-pulse jams. SINR is SJR0 

if the sub-pulse is jam-free. Thus, we observe SINR's epi-

sode curve. 

Figure 12 shows Experiment 1 and 2 observations. 

The judgment results curves with episodes in Figs. 12(a) 

and (c) have the same trend. Because jamming strategies I 

and II intercept sub-pulses, they do not affect carrier fre-

quency learning. Thus, carrier frequency learning is inde-

pendent of the environment and only depends on the opti-

mization constraint. Until there are 0.162 million episodes, 

judgment results average is less than 1. Many episodes fail 

to satisfy the optimization constraint because the neural 

network is learning. The neural network has stabilized and 

learned the optimal solution after 0.162 million episodes, 

as the average judgment results are all 1. Except for the 

random algorithm, the other three algorithms can satisfy 

the optimization constraint but take longer. The conver-

gence time of the judgment functions for both the DDQN 

and A2C algorithms is similar, approximately 0.34 million 

episodes. The judgment function of the PPO-LSTM algo-

rithm takes longer to converge, and it does not reach the 

optimal solution even by the end of the adversarial process. 

Experiment 1 and 2 average SINR curves with epi-

sodes within a CPI are shown in Figs. 12(b) and (d). The 

SINR trend matches the reward convergence curves in 

Figs. 10(a) and (b). Training begins with a low average 

SINR because the algorithm is learning. After learning the 

jamming strategy in the environment, the algorithm can 

adjust the IPCFH-IPSFC waveform parameters to prevent 

sub-pulses from interfering. At SINR = 15 dB, the echo 

signal is guaranteed to be signal and noise. 

In Fig. 2(b), the proposed PPO-GPT algorithm 

achieves the fastest optimization of the maximum SINR 

and can make precise anti-jamming decisions, ensuring that 

after jamming suppression, only the target signal and noise 

remain. Although the PPO-LSTM algorithm optimizes 

more slowly, it can also achieve precise anti-jamming. 

However, while DDQN algorithm shows an optimization 

trend, the time it takes is too long, and it does not converge 

to the optimal SINR by the end of the adversarial process. 

The anti-jamming performance of the A2C algorithm is not 

significantly different from the random algorithm, indicat-

ing that this algorithm fails in the jamming strategy envi-

ronment set in Experiment 1. In Fig. 12(d), the PPO-GPT, 

PPO-LSTM, and DDQN algorithms all find the optimal 

strategy to achieve successful anti-jamming. The A2C 

algorithm still fails to find the optimal SINR, and increas-

ing the number of adversarial rounds might be helpful for it. 

Experiment 3 and 4 observations are in Fig. 13. Fig-

ures 13(a) and (c) show judgment curves with episodes. 

After 0.8 million episodes, our PPO-GPT algorithm learns 

the optimal solution. Other algorithms take longer. Except 

for the random algorithm, all other four algorithms con-

verge to the maximum value of 1. The convergence speed 

of the judgment function for the PPO-GPT algorithm is the 

fastest, with similar convergence and optimization perfor-

mance in both Experiment 3 and Experiment 4 environ-

ments. The convergence speed of the judgment function for 

the PPO-LSTM algorithm is second fastest. In Fig. 13(a), 

the DDQN and A2C algorithms show similar convergence 

performance for the judgment function. In Fig. 13(c), the 

DDQN algorithm has the worst convergence performance, 

with the convergence curve of the decision function show-

ing spikes, which may be caused by instability in the algorithm. 

Experiment 3 and 4 average SINR curves with epi-

sodes within a CPI are shown in Figs. 13(b) and (d). Ex-

periments 3 and 4 use the same SJR, but Experiment 3's 

minimum SINR is 20 dB higher. In Experiment 3, echo 

signals are jammed less during algorithm learning than in 

Experiment 4. The average SINR is higher in jamming 

strategy Ⅳ due to the shorter jamming duration of the 

jammer. In Fig. 13(b), the proposed PPO-GPT algorithm 

optimizes the SINR the fastest, achieving a 15 dB SINR 

after jamming suppression at around 0.8 million episodes, 

leaving only the target signal and noise. The PPO-LSTM 

algorithm optimizes more slowly, reaching the 15 dB SINR 

at approximately 1.12 million episodes. However, while 

the DDQN and A2C algorithms show an optimization 

trend, they take much longer, around 1.4 million episodes. 

In Fig. 13 (d), the PPO-GPT algorithm continues to 

maintain a clear advantage, and in this Experiment 4 jam-

ming environment, the performance of the five algorithms 

is similar to the anti-jamming results in Experiment 3. This 

is because both jamming strategy III and IV are based on 

pulse modulation, and the environment's effect on carrier 

frequency encoding is similar. By learning jamming strate-

gies, the PPO-GPT algorithm can generate waveforms that 

satisfy the optimization constraint and anti-jamming per-

formance. By blocking the jamming signal from entering 

the FAR receiver, the echo signal SINR can reach 15 dB. 

4.4 Target Detection Verification of Intelli-

gent Learning Method 

Using the OMP-based target detection method, we 

output the optimal waveform parameters of the PPO-GPT 

algorithm to sparsely reconstruct targets, and validate the 

intelligent learning method's target detection performance. 

Experiment 1 employs an intelligent learning algorithm to 

optimize sub-frequency coding, targeting the sub-pulse for 

modulation. The optimal sub-frequency coding outputted 

by PPO-GPT is shown in Fig. 14(a). Blue is radar action, 

or the waveform sub-frequency. Red represents jamming, 

or the jamming signal sub-frequency. The radar sub-

frequency targeted by the jammer is green. The jammer 

intercepts the sub-pulse at current Tsub, so it still targets the 

sub-frequency at next Tsub. The PPO-GPT algorithm learns 

the jamming strategy Ⅰ and outputs an anti-jamming strate-

gy that differentiates the sub-frequency of the current Tsub 
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(a)                                                                                      (b) 

Fig. 11. Convergence curves of the reward with episodes. (a) and (b) are the reward convergence curves at Experiment 3 and 4. 

 
(a)                                                                                      (b) 

 
(c)                                                                                      (d) 

Fig. 12. The observations of Experiment 1 and Experiment 2. (a) is the curve of the judgment results with episodes in Experiment 1. (b) is the 

curve of the average SINR with episodes in Experiment 1. (c) is the curve of the judgment results with episodes in Experiment 2. (d) is 

the curve of the average SINR with episodes in Experiment 2. 

from the sub-frequency of the next Tsub. Jamming strate-

gy Ⅱ is adjusted for sub-pulses in Experiment 2. The opti-

mal sub-frequency coding outputted by PPO-GPT is shown 

in Fig. 14 (b). The width of two sub-pulses is the ISRJ 

repeater duration. The PPO-GPT algorithm learns the 

jamming strategy Ⅱ and outputs an anti-jamming strategy 

to differentiate the sub-frequency in the current 2Tsub from 

the next 2Tsub. We output the carrier frequency coding 

within a CPI and verify the target detection performance in 

Fig. 15. Figure 15(a) shows the ISRJ-containing sub-pulse 

compression result. The target has an 11 km range, but the 

ISRJ signal masks it, leaving only a false target at 12.5 km. 

The intra-pulse accumulation results of all sub-pulses with 

ISRJ are shown in Fig. 15(b). This occurs when the jam-

mer accurately intercepts all sub-pulses in a PRI using the 

jamming strategy Ⅰ. Target energy is higher than noise, but 

false target energy is 16 dB higher than real target energy. 

The fake target still fools the FAR. Figure 15(c) shows the 

two-dimensional sparse reconstruction of the jamming 

signal. The "Amplitude" axis represents the result after 

taking the absolute value of the signals. To ensure clarity 

and comparability of the results, we chose not to add units 

to the amplitude, as their introduction may make compari-

sons between different amplitudes less intuitive. Range of 



696 J. WEI, L. YU, Y. WEI, ET AL., A REINFORCEMENT LEARNING-BASED INTELLIGENT LEARNING METHOD FOR … 

 

the false target is 12.495 km and the velocity is 19.913 m/s. 

The two-dimensional sparse reconstruction of the real 

target signal is shown in Fig. 15(d). Real target's range is 

10.9988 km, and its velocity is 19.913 m/s. They all meet 

FAR target detection requirements. 

In Experiment 2, we tested the IPCFH-IPSFC wave-

form's target detection, as shown in Fig. 16. Since jammers 

all transmit ISRJ, Experiment 2's target detection results 

are similar to Experiment 1. Figures 16(a) and (b) show 

that when the jammer employs jamming strategy II, it can 

accurately intercept the radar transmission signal and use 

the noise signal to mask the real target, leaving only a false 

target at 12.5 km. As seen in Figs. 16(c) and (d), under this 

jamming strategy II scenario, the algorithm we designed 

not only achieves target range and velocity estimation but 

also shows that the detection noise in other range-velocity 

cells is nearly zero. In conclusion, the two-dimensional 

reconstruction results of range and velocity show that ISRJ 

mostly modulates target range information and not velocity 

information. FAR cannot detect real target information in 

ISRJ's environment without optimizing IPCFH-IPSFC 

waveform parameters. 

In Experiment 3, the intelligent learning algorithm op-

timizes carrier frequency coding, while smart noise jam-

ming modulates pulses. Figure 17(a) shows the optimal 

PPO-GPT carrier frequency coding output within a CPI. 

The jammer intercepts one pulse in current Tr and modu-

lates it, so it still targets the carrier frequency of the pulse 

in next Tr. The PPO-GPT algorithm learns the jamming 

strategy Ⅲ and outputs an anti-jamming strategy to differ-

entiate the carrier frequency in the current Tr from the next 

Tr. Thus, it blocks the FAR receiver from receiving the 

jamming signal. Experiment 4 modulates jamming strate-

gy Ⅳ for pulses. Figure 17(b) shows the optimal PPO-GPT 

 
(a)                                                                                      (b) 

 
(c)                                                                                      (d) 

Fig. 13. The observations of Experiment 3 and Experiment 4. (a) is the curve of the judgment results with episodes in Experiment 3. (b) is the 

curve of the average SINR with episodes in Experiment 3. (c) is the curve of the judgment results with episodes in Experiment 4. (d) is 

the curve of the average SINR with episodes in Experiment 4. 

 
(a)                                                                                      (b) 

Fig. 14. Optimal sub-frequency coding. (a) and (b) are the optimal sub-frequency coding in Experiment 1 and 2. 
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Fig. 15. Target detection result in Experiment 1. (a) is the pulse compression result for the sub-pulse signal with ISRJ. (b) is the intra-pulse 

accumulation result of sub-pulses with ISRJ. (c) is the two-dimensional sparse reconstruction result of the fake target signal. (d) is the 

two-dimensional sparse reconstruction result of the real target signal. 
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(a)                                                                                      (b) 

 
(c)                                                                                      (d) 

Fig. 16.  Target detection result in Experiment 2. (a) is the pulse compression result for the sub-pulse signal with ISRJ. (b) is the intra-pulse 

accumulation result of sub-pulses with ISRJ. (c) is the two-dimensional sparse reconstruction result of the fake target signal. (d) is the 

two-dimensional sparse reconstruction result of the real target signal. 
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(a)                                                                                      (b) 

Fig. 17. Optimal carrier frequency coding. (a) and (b) are the optimal carrier frequency coding in Experiment 3 and 4. 

carrier frequency coding output within a CPI. Two PRIs 

make up the jamming repeater's duration. Because the FAR 

transmits pulses with different carrier frequencies, the 

jammer may modulate the jamming signal to a wider band 

in the first two PRIs. To prevent wide-band jamming, the 

PPO-GPT algorithm generates transmitted signals with the 

same carrier frequency in two PRIs after learning the jam-

ming strategy Ⅳ. Also, the carrier frequency in the current 

2Tsub is different from the next 2Tsub. 

We test the IPCFH-IPSFC waveform's target detec-

tion performance using optimal carrier frequency coding in 

Fig. 18. Figure 18(a) shows smart noise jamming pulse 

compression results. Noise completely masks the target 

signal in range cells [7.2, 20.4] km. Figure 18(b) shows 

pulse accumulation within one CPI with smart noise jam-

ming. The assumption is that the jammer accurately inter-

cepts all CPI pulses using strategy Ⅲ. The FAR cannot 

identify the target because the range unit only contains 

noise. The two-dimensional sparse reconstruction of the 

jamming signal is shown in Fig. 18(c) after target detec-

tion. Smart noise jamming is accumulated from many false 

targets, and the highest-energy false target has a range of 

12.4575 km and a velocity of 21.1739 m/s. The two-

dimensional sparse reconstruction of the real target signal 

is shown in Fig. 18(d). It can be seen that when detecting 

the real target in the absence of smart noise jamming, the 

estimation errors for its range and velocity are within ac-

ceptable limits, and no noise in other detection cells is 

estimated as a real target. This demonstrates the accuracy 

of the target detection algorithm based OMP we designed. 

In Experiment 4, we tested the target detection using 

the IPCFH-IPSFC waveform, as shown in Fig. 19. The 

target detection results of Experiment 4 are similar to those 

of Experiment 3. Figures 19(a) and (b) show that when the 

jammer employs jamming strategy IV, the smart noise 

jamming completely masks the real target. Unlike ISRJ, 

which generates false target signals to mislead the radar, 

smart noise jamming creates numerous dense false targets 

accompanied by high noise power, resulting in both decep-

tive and suppressive jamming effects on the radar. As seen 

in Figs. 19(c) and (d), under jamming strategy IV, after 

two-dimensional sparse reconstruction, the smart noise 

jamming generates multiple false targets. The false target 

with the highest energy is located at a range of 13.1884 km 

and a velocity of 16.7888 m/s, while the real target remains 

undetectable. Since jammers transmit smart noise jamming 

but have different durations, the two-dimensional recon-

struction results of range and velocity show that smart 

noise jamming can deceive and suppress target signals in 

range-velocity dimensions. 

In conclusion, our proposed intelligent learning meth-

od can prevent the jamming signal from entering the FAR 

receiver by learning the jamming strategy and accurately 

estimating the target's range and velocity using the two-di- 

mensional sparse reconstruction method in four jamming 

environments. Range and velocity estimation errors are 

0.01% and 0.34%, respectively. 

4.5 Decision-making Accuracy Verification of 

Intelligent Learning Method 

We calculate the symmetric mean absolute percentage 

error (SMAPE) between the current and optimal decision-

making results to verify the accuracy of our proposed intel-

ligent learning method in an environment with multiple 

jamming strategies in chronological order. Using SMAPE, 

we define intelligent learning's decision-making accuracy as 

 ACC 1 SMAPE 100%,    (22) 
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(a)                                                                                      (b) 

 
(c)                                                                                            (d) 

Fig. 18.  Target detection result in Experiment 3. (a) is the pulse compression result for pulse signal with smart noise jamming. (b) is the pulse 

accumulation result of pulses with smart noise jamming. (c) is the two-dimensional sparse reconstruction result of the jamming signal. 

(d) is the two-dimensional sparse reconstruction result of the real target signal. 

 
(a)                                                                                      (b) 

  
(c)                                                                                                      (d) 

Fig. 19. Target detection result in Experiment 4. (a) is the pulse compression result for the pulse signal with smart noise jamming. (b) is the 

pulse accumulation result of pulses with smart noise jamming. (c) is the two-dimensional sparse reconstruction result of the jamming 

signal. (d) is the two-dimensional sparse reconstruction result of the real target signal. 
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where B is the sample size. xb is the b-th sample optimal 

solution. ˆ
bx  is the thb sample predicted value. 

We assume a jamming environment with sequential 

jamming strategies. Figure 20 shows how CPI cycles trans-

form the four jamming strategies chronologically. A game 

cycle has 300 CPIs: Within 0 to 60 CPIs, the jammer uses 

strategy III, and within 61 to 180 CPIs, strategy II. Then it 

uses jamming strategy IV in 181–260 CPIs. Finally, the 

261–300 CPIs use jamming strategy I. 

In testing the decision accuracy of the intelligent 

learning method, we used an approach where the algorithm 

is trained offline, while anti-jamming strategies are gener-

ated and executed online. Specifically, we first trained the 

designed FAR intelligent learning method based on the 

PPO-GPT algorithm using an offline approach, and the 

trained data was stored in an anti-jamming knowledge 

base. When facing different jamming strategies, the FAR 

system can timely select anti-jamming strategies from 

various knowledge bases through an online selection process. 

In detail, for the four experiments mentioned above, 

after learning algorithm was trained and tested, we saved 

the last 50,000 decision results from the test in chronologi-

cal order and stored them in the anti-jamming knowledge 

base. From a data perspective, we set up four arrays, each 

containing 50,000 decision results for the four experiments. 

The first array, Anti-jamming Strategy Library I, contains 

50,000 anti-jamming strategies for jamming strategy I. The 

second array, Anti-jamming Strategy Library II, contains 

50,000 anti-jamming strategies for jamming strategy II. 

The third array, Anti-jamming Strategy Library III, con-

tains 50,000 anti-jamming strategies for jamming strate-

gy III. The fourth array, Anti-jamming Strategy Library IV, 

contains 50,000 anti-jamming strategies for jamming strat-

egy IV. When the jamming environment is set to the jam- 

 

Fig. 20.  Multiple jamming strategies in a game cycle. 

 

Fig. 21. The average value of the accuracy in the environment 

of multiple jamming strategies. 

ming strategy shown in Fig. 20, at each time step, after the 

anti-jamming assessment is complete and the jamming 

strategy is determined, we randomly sample strategies from 

the corresponding anti-jamming strategy library. We then 

generate the IPCFH-IPSFC waveform based on the se-

lected anti-jamming strategy and engage in countermeas-

ures against the jamming environment. We used Monte 

Carlo simulations to test the average decision accuracy of 

the intelligent learning methods over 1,000 adversarial 

cycles, as shown in Fig. 21. 

It shows that the PPO-GPT algorithm has 99.95% de-

cision-making accuracy. The decision-making accuracy of 

PPO-LSTM, DDQN, and A2C algorithms is above 85%. 

We think the database's optimal solution percentage affects 

decision-making accuracy. The PPO-GPT algorithm has 

the highest percentage of optimal solutions in the database 

because it finds them quickly during training. 

4.6 Applications and Discussion 

The proposed method can be applied to the field of 

FAR for active jamming suppression through offline train-

ing and online execution. For example, in the jamming 

scenario involving jamming strategy I, where the jammer 

generates ISRJ according to jamming strategy I, FAR gen-

erally needs to follow the steps below to counter the jam-

mer: 

(a) Simulating the jamming environment: Write the 

code for the jamming environment according to jamming 

strategy I to generate the jamming signal. 

(b) Generating waveform optimization constraint via 

simulation: According to the method in Sec. 3.4 and the 

experimental steps in Sec. 4.1, pre-generate the waveform 

optimization thresholds to provide optimization criteria for 

FAR to counteract jamming. 

(c) Offline training of the proposed algorithm: The 

process of one round of confrontation between FAR and 

the jammer is as follows: The jammer generates a jamming 

signal based on jamming strategy I. FAR simulates the 

IPCFH-IPSFC waveform according to Sec. 2.1 and simu-

lates the target signal received by the FAR receiver for the 

current round. The jamming signal and the target signal are 

additively combined, and then the combined echo signal is 

processed using the method in Sec. 3.1. The processed 

signal is then evaluated for anti-jamming effectiveness 

using the method in Sec. 3.2 and target detection is per-

formed using the method in Sec. 3.3. Finally, the anti-

jamming evaluation results and target detection results are 

fed back to the learning algorithm module proposed in 

Sec. 3.5. The PPO-GPT algorithm is used to optimize the 

anti-jamming strategy, generating the optimal IPCFH-

IPSFC waveform parameters for the current round to en-

gage in the next round of confrontation. 

This confrontation process is repeated in a loop to 

train the PPO-GPT algorithm, optimizing its anti-jamming 
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effectiveness in the simulated jamming environment. Ac-

cording to the method in Sec. 4.5, the offline-trained data is 

stored in the anti-jamming knowledge base. 

(d) Online execution of the proposed algorithm: In 

practical applications, the anti-jamming knowledge base is 

loaded onto the FAR system. According to the method in 

Sec. 4.5, when the real-world environment corresponds to 

a jamming scenario involving jamming strategy I, the FAR 

decision system searches for the corresponding anti-

jamming strategy in the knowledge base. Based on the anti-

jamming strategy, FAR generates the IPCFH-IPSFC wave-

form to counteract the jamming. 

This process ensures that the proposed method can 

adapt to real-world conditions while maintaining the effi-

ciency and effectiveness of FAR in jamming suppression. 

5. Conclusions 

The FAR signal model of the IPCFH-IPSFC agile 

waveform and active jamming signal models were created. 

The discontinuity of jamming signals in the time domain 

determines the four jamming strategies. We created a FAR 

intelligent learning model and designed five sub-modules. 

FAR achieved adaptive anti-jamming and precise target 

range-velocity estimates through five sub-module interactions. 

We use Monte Carlo experiments to examine the rela-

tionship between sparse reconstruction success, JSR, and 

dictionary matrix correlation. Finally, the optimal threshold 

μT
opt(Ψ) = 0.24 constrains the intelligent learning method. 

Based on the four jamming strategies, we create four ex-

periments to test our method's robustness, convergence, 

anti-jamming, and target detection. Our suggested method 

can quickly learn the jamming strategy in four jamming 

environments and stabilize the neural network model in 

215 training times by assessing its loss function. Analysis 

of the reward function and comparison with the other four 

algorithms improves the average convergence speed of our 

proposed method by 72.5% and finds the optimal solution. 

Our suggested method stops the jamming signal from 

reaching the FAR receiver by continuously learning the 

jamming strategy. At the end of the learning process, the 

high echo signal SINR can reach up to 15 dB. Our method 

can accurately estimate target information, and the range 

and velocity estimate errors are 0.01% and 0.34%, respec-

tively. Finally, the suggested method's decision-making 

accuracy is 99.95% in the environment of sequential jam-

ming strategies. 

Our future study will focus on intelligent learning 

methods for agile waveform anti-jamming based on chron-

ologically ordered multiple jamming strategies. To prove 

our strategy works, we will conduct experiments to gather 

more data and expert knowledge and add them to the 

knowledge base. Note: Part of the source codes or addi-

tional information are available upon request from the 

authors. 
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