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Abstract. Covert communication working at the physical
layer provides an important means for ensuring the security
of private user data. This work proposes a novel covert
communication system based on binary quasi-differential
stochastic process keying (BQDSPK). At the transmitter,
the polarity of the correlation coefficient of two consecu-
tive stochastic sequences is modulated by one binary covert
bit. At the receiver, the correlation between two consecutively
received random sequences is computed, and the transmit-
ted covert bit is inferred through a hard decision process.
A pseudo-random sequence is introduced to eliminate the
transmitted sequences’ correlation. The transmitted signal
has the same statistical characteristics as the ambient noise
to avoid attracting the attention of eavesdroppers. We theo-
retically demonstrate that the proposed system fully satisfies
the requirement of covert communication when the signal-to-
noise ratio (SNR) is less than a certain threshold value. In
addition, theoretical bit error rate (BER) expressions are de-
rived under additive white Gaussian noise (AWGN) channels
and frequency-flat fading channels. The simulation results
show that the theoretical BERs are very close to the BERs
obtained from the simulations, regardless of which stochastic
process is used as the carrier. Specifically, when the number
of samples within a bit period is 400, the BER approaches ap-
proximately 10−5 at a SNR of−5 dB under an AWGN channel,
which adequately satisfies the communication requirements.

Keywords
Physical layer covert communication, stochastic pro-
cess, pseudo-random sequence, modulation, correlation

1. Introduction
Due to the broadcast and open nature of wireless chan-

nels, information security is an even more critical issue that

cannot be ignored [1–3]. Previously, the information security
protection either relied on the steganography [4] at the ap-
plication layer or the physical layer security (PLS) [5] at the
physical layer. However, given the constraints of resources
available for low-cost Internet of Things (IoT) end devices,
conventional steganography and PLS are insufficient to ad-
dress all security challenges within IoT systems [6], and users’
privacy concerns still need to be fully alleviated. Covert com-
munication, milestone research conducted by Bash et al. [7],
can provide a higher level of security to transmitters, which
hides the very existence of transmission from the detection
of adversaries [8], [9]. An eavesdropper will disregard these
“signals” as mere background noise and will not utilise re-
sources to tackle them. Applying the concept of covert com-
munication to wireless transmission enables the concealment
of user information within “noise”, including environmental
or artificial interference, thus mitigating privacy risks.

1.1 Related Works
Physical layer-based wireless covert channels can

be categorized into two types: coding-based wireless
covert channels and modulation-based wireless covert chan-
nels [10]. This work focuses on the latter.

Research on intelligent reflecting surface (IRS)-assisted
covert communication has been carried out recently [11–14].
Specifically, the authors in [11] investigated the multi-input
multi-output (MIMO) covert communication aided by IRS
against a multi-antenna warden. In [12], the authors inspired
by the great success of deep reinforcement learning (DRL) in
handling challenging optimization problems, DRL adjusted
the transmit beamformer vector and phase shifts matrixis
of IRS to maximum covert communication performance.
In [13], the authors proposed a novel aerial reconfigurable
intelligent surface-assisted covert communication framework
to enhance the covert performance of ground transceivers in
the presence of a warden. Combined with other techniques,
such as non-orthogonal multiple access (NOMA) [14], covert
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communications can further help to improve wireless security
while guaranteeing transmission performance. These solu-
tions may not be suitable for low-cost IoT devices lacking
MIMO RF modules and insufficient supercomputing power
to implement DRL.

In practical IoT systems, relays are often necessary,
where one device can send information to another device
through multiple relays. Works [15–17] show that relay-
assisted schemes can significantly improve covert perfor-
mance both in terms of detection error probability and
covert capacity. Two relay selection schemes are consid-
ered in [15], [16], and theoretical analysis shows that the
covert capacity under the superior-link selection scheme is
always higher than that under the random selection scheme.
In [17], an energy-efficient covert communication scheme
with an adaptive assist nodes group based on a uniform jam-
ming power strategy against the joint-phase detection of the
eavesdropper is proposed.

Many existing works exploited the noise uncertainty
for covert communication, the work [18] demonstrates that
the covert performance gain stemming from the noise uncer-
tainty is indeed fragile when the eavesdropper has multiple
antennas. The work [19] adopts the channel reverse power
control technology to ensure the constant signal power of
the receiver, and the noise uncertainty at the eavesdropper
serves as the enabler of covert communications. Work [20]
proposes a strategy that allows legitimate users to commu-
nicate reliably and secretly, where the friendly node closest
to the adversary, not being closely coordinated with Alice,
generates artificial noise. Work [21] explicitly reveals that
a higher covert rate can be achieved when the adversary does
not know the transmitter’s location.

A stochastic process rather than a conventional sine
wave is used as a carrier and one of the characteristic pa-
rameters of the carrier is modulated by a covert bit for covert
communication in works [22–28]. Due to the non-periodic
nature of the random process and its statistical characteristics
resembling environmental noise, it is challenging to capture
the adversary’s attention for covert communication purposes.
In works [22–25], the covert bits modulate the characteristic
exponent 𝛼 or skewness 𝛽 of the alpha-stable distribution.
However, the main problem is that the estimation complex-
ity of the parameters 𝛼, 𝛽 is very high, while the estimation
accuracy is not high. Xu et al. in [26] proposed a covert
communication scheme where the correlation coefficients
of two consecutive Gaussian sequences were modulated by
a covert bit. Another scheme was proposed in [27] that a non-
zero mean Gaussian sequence was used as a carrier, and the
mean value of the carrier was modulated by a covert bit. In
this work, we extend the carrier from a Gaussian-distributed
stochastic process to stochastic processes with fourth-order
moments, and a pseudo-random sequence is added to further
reduce the autocorrelation of the covert signal. Basar in [28]
proposed the concept of noise modulation (NoiseMod) and
gave an example of transmitting covert bits with Gaussian

noise of different variances. However, this scheme is easily
detected because fluctuations in the noise variance are easily
distinguishable from the time domain.

1.2 Contributions
This work proposes a novel covert communication

scheme based on binary quasi-differential stochastic process
keying. Any stochastic process with a fourth-order central
moment, rather than a traditional sine wave, is used as a car-
rier. At the transmitter, the polarity of the correlation coef-
ficient of two consecutive stochastic sequences is modulated
by one binary covert bit. Here, the selected correlation co-
efficient is close to but not equal to 1, which is called a bi-
nary quasi-differential stochastic process keying (BQDSPK)
modulation. The purpose of this design is that, on the one
hand, the correlation coefficient is not equal to 1, making
the random carriers in the two adjacent bit periods different
to increase the confusion of the eavesdropper. On the other
hand, the correlation coefficient should be as close to 1 as
possible to reduce the bit error rate of legitimate users. Fur-
thermore, a pseudo-random sequence is introduced to prevent
the eavesdropper from using correlation to detect the pres-
ence of covert signals. At the receiver, a correlation is made
between the two received consecutive stochastic sequences,
and the covert bit is estimated by hard decision. Our main
contributions can be summarized as follows:

• A novel covert communication scheme based on BQD-
SPK is proposed. Any stochastic process with a fourth-
order central moment can be used as a carrier. More
importantly, the transmitted signal obeys a normal dis-
tribution after several bit periods, irrespective of the
specific stochastic process chosen as the carrier. The
transmitted signal has the same statistical characteris-
tics as the ambient noise to avoid attracting the attention
of eavesdroppers. Further, the proposed covert commu-
nication system has a simple structure and low compu-
tational complexity, which is well suited for low-cost
IoT devices.

• Based on the theoretical analysis of the proposed covert
communication system, it is observed that when the
SNR falls below a certain threshold, complete covert-
ness is achieved, i.e., the eavesdropper is unable to de-
termine whether the legitimate user is sending data or
not.

• The theoretical BER of the system is derived under ad-
ditive white Gaussian noise (AWGN) and quasi-static
fading channels, respectively. Extensive simulations
are conducted to evaluate our proposed covert system’s
performance. Simulation results are very consistent
with the theoretical derivation.
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1.3 Organization
The rest of this work is organized as follows. The pro-

posed covert communication scheme is presented in Sec. 2.
In Sec. 3, the probability density function (PDF) of corre-
lator outputs under AWGN and quasi-static fading channels
is derived, respectively. We examine the performance of
covertness and BER in Sec. 4. Using correlation detection,
we study the synchronization of receivers in Sec. 5. Ex-
tensive numerical calculations and Monte Carlo simulations
are presented to evaluate the performance of the proposed
scheme in Sec. 6, and we present conclusions in Sec. 7.

2. Covert Communication Scheme
In this section, we briefly introduce the definition of the

Pearson correlation coefficient for two stochastic processes
and then present the proposed communication system.

2.1 Pearson Correlation Coefficient
Two mutually independent stochastic processes 𝜃 (𝑡) and

𝜖 (𝑡) with second-order moments, the Pearson correlation co-
efficient 𝜌 is defined as

𝜌 =
E [(𝜃 (𝑡) − 𝜇𝜃 ) (𝜖 (𝑡) − 𝜇𝜖 )]

𝜎𝜃𝜎𝜖

= E

[
𝜃 (𝑡) − 𝜇𝜃

𝜎𝜃

𝜖 (𝑡) − 𝜇𝜖

𝜎𝜖

]
≜ E [𝜃∗ (𝑡)𝜖∗ (𝑡)]

(1)

where 𝜇𝜃 (𝜇𝜖 ) and 𝜎𝜃 (𝜎𝜖 ) are the mean and standard devia-
tion of the stochastic process 𝜃 (𝑡) (𝜖 (𝑡)), respectively. Thus,
given two mutually independent and standardized stochastic
processes 𝜃∗ (𝑡) and 𝜖∗ (𝑡), a stochastic process 𝜆∗ (𝑡) can be
constructed such that 𝜃∗ (𝑡) and 𝜆∗ (𝑡) have a correlation co-
efficient 𝜌 ∈ [−1, 1]. The expression 𝜆∗ (𝑡) can be written as

𝜆∗ (𝑡) = 𝜌𝜃∗ (𝑡) +
√︃

1 − 𝜌2𝜖∗ (𝑡). (2)

In particular, when both 𝜃 (𝑡) and 𝜖 (𝑡) obey the same
distribution and their means are zero, then there is no need
to standardize 𝜃 (𝑡) and 𝜖 (𝑡). The stochastic process 𝜆∗ (𝑡) is
rewritten as 𝜆(𝑡) and Equation (2) simplifies to

𝜆(𝑡) = 𝜌𝜃 (𝑡) +
√︃

1 − 𝜌2𝜖 (𝑡). (3)

2.2 BQDSPK Modulation
In the proposed covert communication scheme shown

in Fig. 1, a covert bit is encoded by the correlation coef-
ficients 𝜌 of two adjacent stochastic sequences. Then the
corresponding stochastic sequences are transmitted through
the channel. The purpose of the introduced pseudo-random
sequences is to eliminate the correlation of the transmitted
sequences 𝜆(𝑡), which is elaborated in Sec. 5 and need not
be considered here. More specifically, independent iden-
tically distributed random sequences 𝜖 (𝑡) are generated by

the stochastic process generator within a covert bit period
𝑇b, independent of the delayed predecessor distribution se-
quences 𝜃 (𝑡). During the bit period 𝑇b, a stochastic se-
quences, 𝜆(𝑡) = (−1)𝑏𝜌𝜃 (𝑡) +

√︁
1 − 𝜌2𝜖 (𝑡), are transmitted,

where the covert bit 𝑏 ∈ {0, 1}. For the sake of description,
we assume that the covert bit 𝑏 = 0 is sent, such that (−1)𝑏𝜌
is written directly as 𝜌.

It can be seen from the structure of the modulator that
the transmitted signals are statistically identical regardless of
whether they are consecutively the same or different covert
bits. The modulated signals generated by the transmitter in
this way, have completely different waveforms in the time do-
main, but the spectrum is the same. This makes it impossible
for illegal eavesdroppers to determine whether a signal exists
easily, and even more difficult to demodulate the ‘0’ or/and
‘1’ bit streams.

2.3 BQDSPK Demodulation
Since the signals received by the receiver within two

adjacent bit periods are correlated, the received signals are
delayed by a one-bit period as shown in Fig. 1. The signal
of the previous bit period is correlated with the signal of the
following bit period and then compared with the threshold 0
for hard decision. A value greater than 0 is decided as bit
‘0’, and a value less than 0 is chosen as bit ‘1’, thus greatly
simplifying the demodulation process. The pseudo-random
sequence synchronization module is a critical component
within the receiver. If the pseudo-random sequences of both
the transmitter and receiver are not synchronized, there will
be no correlation between the received sequences across two
consecutive bit peroid, thereby preventing accurate demod-
ulation. In Sec. 5.3, we present a detailed solution to the
synchronization challenge associated with pseudo-random
sequences.
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Fig. 1. The block diagram of the proposed covert communica-
tion system.
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2.4 Complexity Analysis
Assuming that there are 𝜈 samples in a bit period 𝑇b.

The BQDSPK modulator depicted in Fig. 1, in addition to the
stochastic process generator for the carrier and the Bernoulli
binary random bit generator for producing covert bits, incor-
porates a remaining modulation signal module as represented
by (3) and a delayed one-bit period module, both of which ex-
hibit very low computational complexity as they are only mul-
tiplication and addition operations. Specifically, Equation (3)
requires 2𝜈 floating-point multiplications and 𝜈 floating-point
additions. In the demodulator, the computational complexity
of the correlator is also very low, involving only 𝜈 floating-
point multiplications and 𝜈 floating-point additions. At the
demodulator, it is the pseudo-random sequence synchronisa-
tion module that has the greater computational complexity.
Let us denote the length of the pseudo-random sequence
as 𝑚. In Sec. 5.3, it is stated that at most 𝑚 correlation oper-
ations, specifically 𝑚𝜈 floating-point multiplications and 𝑚𝜈

floating-point additions, are required to achieve synchroniza-
tion of a pseudo-random sequence with the transmitter. Nev-
ertheless, synchronization of the pseudo-random sequences
occurs infrequently. Consequently, the computational com-
plexity associated with the synchronization module remains
relatively low.

3. PDF of Correlator Output

We first derive the PDF of the modulating signal for the
𝑘-th covert bit, and then give the PDF of the correlator out-
put under AWGN channels and quasi-static fading channels,
respectively.

3.1 Distribution of modulated signal
Referring to the transmitter modulation process shown

in Fig. 1, the sequence of the 𝑘-th covert bit within the bit
period 𝑇b is denoted as 𝜆(𝑡 + 𝑘𝑇b). For ease of writing,
𝜆(𝑡 + 𝑘𝑇b) is abbreviated as 𝜆𝑘 and 𝜖 (𝑡 + 𝑘𝑇b) is abbreviated
as 𝜖𝑘 . According to the modulation process of the proposed
transmitter, we have

𝜆0 = 𝜖0

𝜆1 = (−1)𝑏1𝜌𝜖0 +
√︃

1 − 𝜌2𝜖1

...

𝜆𝑘 = (−1)𝑏𝑘 𝜌𝜆𝑘−1 +
√︃

1 − 𝜌2𝜖𝑘

...

(4)

where 𝜖𝑖 = 𝜂𝑖 − 𝜇𝜂 , and 𝑏𝑖 ∈ {0, 1} is the 𝑖-th covert bit.
Here 𝜆0 = 𝜖0 serves as the reference carrier and contains no
covert bit. The stochastic process 𝜂(𝑡) has a central moment
of order 1 to 4, denoted as {𝑐𝑖 , 𝑖 = 1, · · · , 4}. The central
moments are defined as

𝑐𝑖 =

∫ +∞

−∞

(
𝑥 − 𝜇𝜂

) 𝑖
𝑓 (𝑥)d𝑥 (5)

where 𝑓 (𝑥) is the PDF, and 𝜇𝜂 =
∫ +∞
−∞ 𝑥 𝑓 (𝑥)d𝑥 is the mean

of the stochastic process 𝜂(𝑡). Clearly, the variance of 𝜖 (𝑡)
is the variance of 𝜂(𝑡), i.e., 𝜎2

𝜖 = 𝜎2
𝜂 . Further, with the

definition of the central moment, it follows that 𝑐1 = 0.

From the expression in (4), it can be seen that the expres-
sion for the PDF of the modulated signal 𝜆𝑘 is very complex,
except for the fact that the stochastic process 𝜖𝑖 is normally
distributed. To better obtain the distribution of the stochastic
process 𝜆𝑘 , we rewrite (4) as follows

𝜆𝑘 = (−1)𝑏𝑘 𝜌𝜆𝑘−1 +
√︃

1 − 𝜌2𝜖𝑘

= (−1)𝑏𝑘 𝜌

(
(−1)𝑏𝑘−1𝜌𝜆𝑘−2+

√︃
1 − 𝜌2𝜖𝑘−1

)
+
√︃

1 − 𝜌2𝜖𝑘

...

= (−1)
∑𝑘

𝑗=1 𝑏 𝑗 𝜌𝑘𝜖0 +
√︃

1 − 𝜌2
𝑘∑︁
𝑖=1

(−1)
∑𝑘

𝑗=𝑖+1 𝑏 𝑗 𝜌𝑘−𝑖𝜖𝑖

= (−1)𝑚0𝜌𝑘𝜖0 +
√︃

1 − 𝜌2
𝑘∑︁
𝑖=1

(−1)𝑚𝑖 𝜌𝑘−𝑖𝜖𝑖

(6)

where 𝑚𝑖 ≜
∑𝑘

𝑗=𝑖+1 𝑏 𝑗 mod 2 and 𝑚𝑘 ≜ 0. It should be
a (𝑘 + 1)-fold convolution of 𝜖 (𝑡) since {𝜖𝑖 , 𝑖 = 0, · · · , 𝑘}
are mutually independent and identically distributed stochas-
tic processes. Fortunately, when 𝑘 is sufficiently large (e.g.,
𝑘 > 5), then by the Central Limit Theorem (CLT), the PDF
of 𝜆𝑘 tends to be normally distributed, i.e., 𝜆𝑘 ∼ N(0, 𝜎2

𝜆
).

Its mean is 0 and its variance is
𝜎2
𝜆 = E[𝜆2

𝑘]

= 𝜌2𝑘E[𝜖2
0 ] +

(
1 − 𝜌2

) 𝑘∑︁
𝑖=1

𝜌2(𝑘−𝑖)E
[
𝜖2
𝑖

]
= 𝜎2

𝜖

[
𝜌2𝑘 +

(
1 − 𝜌2

) 𝑘−1∑︁
𝑖=0

𝜌2𝑖

]
= 𝜎2

𝜖 = 𝜎2
𝜂 = 𝑐2.

(7)

Therefore, the PDF of the modulated signal 𝜆𝑘 is approxi-
mated as

𝑓𝜆 (𝑥) =
1

√
2𝜋𝜎𝜂

e
− 𝑥2

2𝜎2
𝜂 , (8)

regardless of which distribution the stochastic process 𝜂(𝑡)
obeys. Thus, the fourth-order moment of 𝜆𝑖 is E[𝜆4

𝑖
] = 3𝜎4

𝜂 .

3.2 Distribution of Correlator Outputs under
AWGN Channels
Assuming two stochastic processes with a correlation

coefficient of 𝜌 under a white Gaussian noise channel, the
expression is written as

𝑟𝑘−1 = 𝜆𝑘−1 + 𝑛𝑘−1

𝑟𝑘 = 𝜌𝜆𝑘−1 +
√︃

1 − 𝜌2𝜖𝑘 + 𝑛𝑘

(9)

where 𝑟𝑖 = 𝑟 (𝑡 + 𝑖𝑇b), 𝑛𝑖 = 𝑛(𝑡 + 𝑖𝑇b) are the received signal
and noise in the 𝑖-th bit period, respectively. The channel
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noise follows a normal distribution with mean 0 and variance
𝜎2
𝑛 , i.e., 𝑛𝑖 ∼ N(0, 𝜎2

𝑛), and 𝑛𝑖 , 𝜆𝑖 are mutually independent
stochastic processes.

Let 𝜁𝑘 = 𝑟𝑘−1𝑟𝑘 , and there is

𝜁𝑘 = 𝜌𝜆2
𝑘−1 +

√︃
1 − 𝜌2𝜆𝑘−1𝜖𝑘 + 𝜌𝜆𝑘−1𝑛𝑘−1

+
√︃

1 − 𝜌2𝜖𝑘𝑛𝑘−1 + 𝜆𝑘−1𝑛𝑘 + 𝑛𝑘−1𝑛𝑘 .

(10)

Using the mutual independence of 𝜆𝑘−1, 𝜖𝑘 , 𝑛𝑘−1, 𝑛𝑘 and
E[𝑛𝑖] = E[𝜆𝑖] = E[𝜖𝑖] = 0, we obtain the first-order and
2nd-order origin moments of 𝜁 , respectively, are

𝜇𝜁 = E[𝜁𝑘] = 𝜌𝑐2 = 𝜌𝜎2
𝜂 (11)

and

E[𝜁2
𝑘] = 𝜌2E[𝜆4

𝑘−1] + (1 − 𝜌2)𝑐2
2 + 𝜎4

𝑛 + 2𝜎2
𝑛𝑐2

= 3𝜎4
𝜂𝜌

2 + (1 − 𝜌2)𝜎4
𝜂 + 𝜎4

𝑛 + 2𝜎2
𝑛𝜎

2
𝜂 .

(12)

This gives the variance of 𝜁𝑘 as

𝜎2
𝜁 = (1 + 𝜌2)𝜎4

𝜂︸       ︷︷       ︸
𝜎2

𝜁s

+
(
2𝜎2

𝜂 + 𝜎2
𝑛

)
𝜎2
𝑛︸             ︷︷             ︸

𝜎2
𝜁i

. (13)

Let the number of samples in a covert bit period 𝑇b be
𝜈. Assuming that the receiver has been synchronized, and
combined with (10), this yields the 𝑘-th output of the receiver
correlator 𝑧𝑘 = 1

𝜈

∑𝜈
𝑗=1 𝜁𝑘, 𝑗 = 𝑧𝑘,s + 𝑧𝑘,i, i.e.,

𝑧𝑘,s =
1
𝜈

𝜈∑︁
𝑗=1

(
𝜌𝜆2

𝑘−1, 𝑗 +
√︃

1 − 𝜌2𝜆𝑘−1, 𝑗𝜖𝑘, 𝑗

)
𝑧𝑘,i =

1
𝜈

𝜈∑︁
𝑗=1

(
𝜌𝜆𝑘−1, 𝑗𝑛𝑘−1, 𝑗 +

√︃
1 − 𝜌2𝜖𝑘, 𝑗𝑛𝑘−1, 𝑗

+𝜆𝑘−1, 𝑗𝑛𝑘, 𝑗 + 𝑛𝑘−1, 𝑗𝑛𝑘, 𝑗
)

(14)

where 𝜆𝑘, 𝑗 is the 𝑗-th sample of the stochastic process 𝜆𝑘 , and
𝑛𝑘, 𝑗 is the 𝑗-th sample of the channel noise 𝑛𝑖 . Equation (14)
indicates that the 𝑘-th output 𝑧𝑘 of the correlator is known
as the sum of the signal component 𝑧𝑘,s and the interference
component 𝑧𝑘,i. The distribution of the signal component 𝑧𝑘,s
is determined by the stochastic process employed by the car-
rier. However, when the number of samples 𝜈 is sufficiently
large, and assuming that the stochastic process chosen by the
carrier has fourth-order moments, 𝑧𝑘 converges to a normal
distribution according to the central limit theorem. Combin-
ing (11) and (13), the mean and variance of 𝑧𝑘 are

𝜇𝑧 = 𝜇𝜁 = 𝜌𝜎2
𝜂

𝜎2
𝑧 =

1
𝜈
𝜎2
𝜁 = 𝜈−1𝜎2

𝜁s︸ ︷︷ ︸
𝜎2

𝑧s

+ 𝜈−1𝜎2
𝜁i︸ ︷︷ ︸

𝜎2
𝑧i

(15)

respectively.

The following is an example of a stochastic process with
a Gaussian distribution for the carriers to show that the signal

component 𝑧s converges to a normal distribution. Given that
the carrier 𝜂(𝑡) obeys the N(0, 𝜎2

𝜂) distribution with a corre-
lation coefficient of 1 (𝜌 = 1), 𝑧s obeys the central chi-square
distribution, i.e.,

𝑓𝑧s (𝑥) =
𝜈

𝜎2
𝜂

(
𝑥𝜈

𝜎2
𝜂

) (𝜈−2)/2

e
− 𝑥𝜈

2𝜎2
𝜂

1
2𝜈/2Γ (𝜈/2)

. (16)

When 𝜈 is large, then the central chi-square distribution con-
verges to a normal distribution with mean and variance ob-
tained by the CLT, which gives

𝜇𝑧s = 𝜎2
𝜂 , 𝜎

2
𝑧s = 2𝜎4

𝜂𝜈
−1. (17)

That is, the PDF of the signal component 𝑧s at the output of
the correlator is approximated as

𝑓𝑧s (𝑥) ≊
1√︃

4𝜋𝜎4
𝜂𝜈

−1
e
− (𝑥−𝜎2

𝜂)2

4𝜎4
𝜂𝜈−1

. (18)

From the PDF of 𝑧s, Equation (18), it can be seen that
when the number of samples 𝑣 increases, the mean remains
constant but the variance decreases. Taking the number of
samples 𝜈 = 100, the second-order power 𝜎2

𝜂 = 1, and the
correlation coefficient 𝜌 = 1 as an example, the PDF of the
chi-square distribution and the normal distribution are given
in Fig. 2, from which it can be seen that they are very close
to each other. Indeed, according to the CLT, the chi-square
distribution must be approximated to a normal distribution
when 𝜈 is large enough.

In communications theory, Nakagami distributions,
Rice/Rician distributions, and Rayleigh distributions are
commonly used to model scattered signals that arrive at a re-
ceiver via multiple paths. Depending on the density of the
scatter, the signal will show different attenuation character-
istics. The Rayleigh and Nakagami distributions are used to
model dense scatters, while the Rician distributions are used
to model fading with a stronger line-of-sight. The Nakagami
distributions can be reduced to the Rayleigh distributions,
but have more control over the degree of the fading. Table 1
lists the common stochastic processes, and the corresponding
PDFs and parameters, subject to the unit variance constraint.

0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

2.5

3

f(
x
)

Normal

Chi-square

Fig. 2. PDF and convergence function of 𝑧s when the carrier
uses a normally distributed stochastic process.



RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 69

Distribution PDF
Uniform 𝑓 (𝑥 ) = 1/

√
12, |𝑥 | ≤

√
3

Normal 𝑓 (𝑥 ) = 1√
2𝜋

e−(𝑥−𝜇)2/2, 𝑥 ∈ ℜ

Laplace 𝑓 (𝑥 ) = 1√
2
e−

√
2|𝑥−𝜇 | , 𝑥 ∈ ℜ

Exponential 𝑓 (𝑥 ) = e−𝑥 , 𝑥 ≥ 0
Rayleigh 𝑓 (𝑥 ) = (2 − 𝜋

2 )𝑥e−(1− 𝜋
4 )𝑥2

, 𝑥 ≥ 0

Gamma 𝑓 (𝑥 ) = 𝛼𝛼/2𝑥𝛼−1
Γ (𝛼) e−

√
𝛼𝑥 ,

𝑥 ≥ 0, 𝛼 > 0

LogNormal 𝑓 (𝑥 ) = 1√
2𝜋𝜎𝑥

e−
(log(𝑥)−𝜇)2

2𝜎2 , 𝑥 > 0,
𝜇 = − 1

2 log(2) , 𝜎 =
√︁

log(2)

Weibull

𝑓 (𝑥 ) = 𝛼
𝛽

(
𝑥
𝛽

)𝛼−1
e−

(
𝑥
𝛽

)𝛼
,

𝑥 ≥ 0, 𝛼 > 0,

𝛽 =

(
Γ

(
1 + 2

𝛼

)
− Γ

(
1 + 1

𝛼

)2
)−1/2

Rician/Rice∗ 𝑓 (𝑥 ) = 𝐼0
(
𝑥𝛼

𝛽2

)
𝑥

𝛽2 e
−
(
𝑥2+𝛼2

2𝛽2

)
, 𝑥 ≥ 0

𝛼 ≥ 0, 𝛽 > 0

Chi-square∗ 𝑓 (𝑥 ) = 2−𝑣/2
Γ (𝑣/2) e−𝑥/2𝑥𝑣/2−1,

𝑥 ≥ 0, 𝑣 ≥ 3

Nakagami∗ 𝑓 (𝑥 ) = 2
Γ (𝜇)

( 𝜇

𝜔

)𝜇
𝑥2𝜇−1e−𝑥2𝜇/𝜔 ,

𝑥 ≥ 0, 𝜇 > 0, 𝜔 > 0
∗ The generated random sequence needs Z-Score normal-
ization (observation minus mean divided by standard de-
viation). The chi-square distribution has a mean of 𝑣

and a variance of 2𝑣. The Nakagami distribution has
a mean of

√︁
𝜔/𝜇Γ

(
1
2 + 𝜇

)
/Γ (𝜇) and a variance of

𝜔
©«1 −

Γ

(
1
2 +𝜇

)2

𝜇Γ (𝜇)2
ª®¬. The expressions for the mean and vari-

ance of the Rician distribution are more complicated and
will not be written out here.

Tab. 1. PDFs of some common stochastic processes used as
carriers, which are all set to unit variance.

3.3 Distribution of Correlator Outputs under
Quasi-static Fading Channels

In wireless communication, the channel is always fad-
ing. To further evaluate the performance of the proposed
binary differential stochastic process keying system, the chan-
nel is assumed to be slow fading in this work. The so-called
“slow fading” is relative to the covert bit period 𝑇b, and it
is assumed that the channel gain remains unchanged during
the two consecutive covert bit periods, which is considered
to be a non-zero real constant. The observed signals in the
two consecutive 𝑇b are

𝑟𝑘−1 = ℎ𝜆𝑘−1 + 𝑛𝑘−1

𝑟𝑘 = ℎ

(
𝜌𝜆𝑘−1 +

√︃
1 − 𝜌2𝜖𝑘

)
+ 𝑛𝑘

(19)

where the fading coefficient ℎ is a real random variable obey-
ing a certain distribution and is independent of the carrier
and the noise.

Similar to the derivation of the probability density func-
tion of the correlator output under additive white Gaussian
channels in Sec. 3.2, we obtain that the correlator output un-

der quasi-static fading channels obeys a normal distribution
distribution. Its mean and variance are

𝜇𝑧 = ℎ2𝜌𝜎2
𝜂 (20)

and

𝜎2
𝑧 = 𝑣−1ℎ4

(
1 + 𝜌2

)
𝜎4
𝜂 + 𝑣−1

(
2ℎ2𝜎2

𝜂 + 𝜎2
𝑛

)
𝜎2
𝑛 , (21)

respectively. Therefore, its PDF can be written as

𝑓𝑧 (𝑧 |ℎ) =
1

√
2𝜋𝜎𝑧

e
− (𝑧−ℎ

2𝜌𝜎2
𝜂)2

2𝜎2
𝑧 . (22)

4. Theoretical Derivation of System
Performance
Without loss of generality, it is assumed that a Z-Score

normalization is performed on the transmitted carrier, i.e.,
the variance of the stochastic carrier 𝜎2

𝜂 = 1. It should be
emphasized that the variance, rather than the second-order
moments of origin, is chosen as the carrier power here, taking
into account the fact that some stochastic processes do not
have a mean of 0, such as the exponential distribution.

Since the carrier is a stochastic process, the SNR 𝜉 is de-
fined as the ratio of the variance of the carrier to the variance
of the noise, i.e.,

𝜉 =
𝜎2
𝜂

𝜎2
𝑛

(23)

where 𝜎2
𝜂 and 𝜎2

𝑛 are the variance of the carrier and the noise,
respectively.

4.1 Covertness
To determine whether the legitimate user is transmit-

ting, the eavesdropper faces a binary hypothesis test (i.e.,
the null hypothesis H0 and the alternative hypothesis H1),
where H0 indicates that the legitimate user is silent and H1
indicates that the legitimate user is transmitting covert in-
formation. Disregarding the issues of synchronization and
signal fading, since the modulated signal obeys a normal dis-
tribution and is independent of the noise, the signal received
by the eavesdropper is

𝑟e (𝑡) =
{
𝑛(𝑡) ∼ N (0, 𝜎2

𝑛), H0
𝜆(𝑡) + 𝑛(𝑡) ∼ N (0, 𝜎2

𝜂 + 𝜎2
𝑛), H1

. (24)

During the listening period, the eavesdropper segments
the observed samples into non-overlapping sub-sequences of
length 𝜈, then the average signal power is given by

Λ =
1
𝜈

𝜈∑︁
𝑖=1

𝑟2
e,𝑖 (25)

where 𝑟e,𝑖 is the 𝑖-th sample of 𝑟e (𝑡). Based on the average
signal power, the eavesdropper’s binary hypothesis detection
can be rewritten as

Λ ≷D1
D0

Λ0 (26)
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where Λ0 denotes eavesdropper’s testing threshold. Since
{𝑟e,𝑖} are independent of each other, the average signal power
Λ obeys a central chi-square distribution with 𝜈 of freedom.
By utilizing (16)–(18), Λ can be approximated to follow
a normal distribution and has

Λ ∼
{
N(𝜎2

𝑛 , 2𝜈−1𝜎4
𝑛), H0

N
(
(1 + 𝜉)𝜎2

𝑛 , 2𝜈−1 (1 + 𝜉)2𝜎4
𝑛

)
, H1

. (27)

The detection error probabilities are widely used to
measure the eavesdropper’s performance. When a trans-
mitter covertly sends a message to a legitimate user, and the
eavesdropper incorrectly determines that there is no commu-
nication based on the strength of the received signal, we have
a missing detection with the possibility of PMD. Further-
more, when the sender does not transmit covert information
to the legitimate receiver, but the eavesdropper erroneously
concludes that communication is taking place, we have a false
alarm with the possibility of PFA. As a result, the eavesdrop-
per’s detection error probability is given by

P
(𝑤)
e = 𝑝0PMD + 𝑝1PFA (28)

where 𝑝𝑖 is the prior probability of H𝑖 . Substituting (27)
into (28) and making dP(𝑤)

e
dΛ0

= 0 to yield the optimal threshold
Λ∗

0 that minimizes the probability of detection error by the
eavesdropper, and then substituting Λ∗

0 into (28) yields the
minimum probability of detection error for the eavesdropper.
After simplification and approximation, the minimum P(𝑤)

e
is obtained as

P
(𝑤)
e,min ≈ 𝑝0

2
©«1+Erf ©«−

√︄
(𝜉 + 1)2

𝜉 (𝜉 + 2) log
(
(𝜉 + 1)𝑝0

𝑝1

)ª®¬ª®¬
+ 𝑝1

2
Erfc ©«−

√︄
1

𝜉 (𝜉 + 2) log
(
(𝜉 + 1)𝑝0

𝑝1

)ª®¬
(29)

where the complementary error function of 𝑥 is defined as
Erfc(𝑥) = 2√

𝜋

∫ ∞
𝑥

e−𝑡2d𝑡, and the error function Erf(𝑥) =

1 − Erfc(𝑥). We note that covert communication constraint
requires P(𝑤)

e ≥ min(𝑝0, 𝑝1) − 𝜀, where 𝜀 is an arbitrarily
small positive value [7]. We assume that the probability of
covert transmission is much less than that of no transmis-
sion, i.e., 𝑝1 ≪ 𝑝0. Let’s take 𝑝1 = 1/8 as an example,
and the curve of the relationship between SNR 𝜉 and de-
tection error probability P(𝑤)

e,min is plotted according to (29),
as shown in Fig. 3. As can be seen from the figure, when
the SNR 𝜉 is less than −7 dB, then the detection error prob-
ability P(𝑤)

e,min ≈ 1/8 = min(𝑝0, 𝑝1), which fully meets the
requirement of covert communication.
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Fig. 3. Minimum probability of detection error for the eavers-
dropper, where 𝑝0 = 7

8 and 𝑝1 = 1
8 .

Kullback-Leibler divergence (K-L) [29] is used to mea-
sure statistics that quantify the proximity of two probability
distributions in the same event space. The Kullback-Leibler
divergence of 𝑄 from 𝑃 is defined to be

𝐷KL (𝑃 | |𝑄) =
∫ ∞

−∞
𝑝(𝑥) log

(
𝑝(𝑥)
𝑞(𝑥)

)
d𝑥 (30)

where 𝑝(𝑥) and 𝑞(𝑥) denote the PDFs of the random vari-
ables 𝑃 and 𝑄, respectively. When 𝑃 and 𝑄 have the same
probability distribution, the K-L distance is 0. Here, let 𝑝(𝑥)
be the PDF under the H0 assumption and 𝑞(𝑥) be the PDF
under the H1 assumption, then the K-L distance is

𝐷KL (𝑃 | |𝑄) = −1
2
+ 𝜎2

𝑛

2
(
𝜎2
𝜂 + 𝜎2

𝑛

) + log

(
𝜎2
𝜂 + 𝜎2

𝑛

𝜎2
𝑛

)
=

−𝜉
2 (1 + 𝜉) + log (1 + 𝜉) ≃ 𝜉

2
, when 𝜉 → 0.

(31)

From the point of view of K-L distance, the power of the
modulated signal is much lower than the noise power, the
more favorable the concealment is.

4.2 BER under AWGN Channels
From the definition of SNR and the variance of the car-

rier being 1, the variance of the noise is obtained as𝜎2
𝑛 = 𝜉−1.

The interference component 𝑧i of the correlator output obeys
the N

(
0, 𝜎2

𝑧i

)
distribution, where 𝜎2

𝑧i
= (2𝜉−1 + 𝜉−2)𝑣−1.

The higher the SNR, the smaller the variance of the interfer-
ence component and the smaller the effect on the BER.

Equation (15) gives the mean and variance of the corre-
lator output, combined with the condition that the variance of
the carrier 𝜎2

𝜂 = 1, yields 𝜇𝑧 = (−1)𝑏𝜌, where the covert bit
𝑏 ∈ {0, 1}. Thus the probability density function is further
simplified to

𝑓𝑧 (𝑧 |𝑏) =
1

√
2𝜋𝜎𝑧

e
− (𝑧−(−1)𝑏𝜌)2

2𝜎2
𝑧 (32)
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where 𝜎2
𝑧 = 𝜈−1 (

1 + 𝜌2 + 2𝜉−1 + 𝜉−2) . Demodulation is
done by a simple hard decision, i.e., the covert bit is esti-
mated as

�̂� =

{
0, 𝑧 ≥ 0
1, 𝑧 < 0 . (33)

Assuming that the “0” and “1” covert bits sent are of
equal probability, namely Pr(𝑏 = 0) = Pr(𝑏 = 1) = 1

2 , and
combining (32) and (33), the bit error rate is obtained as

𝑃e =
1
2

∫ ∞

0
𝑓𝑧 (𝑧 |𝑏 = 1)d𝑧 + 1

2

∫ 0

−∞
𝑓𝑧 (𝑧 |𝑏 = 0)d𝑧

=

∫ ∞

0
𝑓𝑧 (𝑧 |𝑏 = 1)d𝑧 = 1

2
Erfc

©«
𝜌√︃
2𝜎2

𝑧

ª®®¬
=

1
2

Erfc ©«
√︄

𝜌2𝜈/2
1 + 𝜌2 + 2𝜉−1 + 𝜉−2

ª®¬ .
(34)

4.3 BER under Quasi-static Fading Channels
In Sec. 3.3, the PDF of the correlator output 𝑧 under

quasi-static fading channels is obtained (cf. (22)). With the
carrier variance set to 1, this is further simplified as

𝑓𝑧 (𝑧 |ℎ, 𝑏) =
1

√
2𝜋𝜎𝑧

e
− (𝑧−(−1)𝑏ℎ2𝜌)2

2𝜎2
𝑧 (35)

where the variance of 𝑧 is also simplified as (cf. (21))

𝜎2
𝑧 = 𝑣−1

(
ℎ4

(
1 + 𝜌2

)
+ 2ℎ2𝜎2

𝑛 + 𝜎4
𝑛

)
. (36)

Considering that Pr(𝑏 = 1) = Pr(𝑏 = 0) = 1/2, the demod-
ulation still uses hard decision (as shown in (33)), then the
BER 𝑃e is

𝑃e = Eℎ

[∫ ∞

0
𝑓𝑧 (𝑧 |ℎ, 𝑏 = 1) d𝑧

]
= Eℎ

[∫ ∞

0

1
√

2𝜋𝜎𝑧

e
− (𝑧+𝜇𝑧 )2

2𝜎2
𝑧 d𝑧

]
= Eℎ


1
2

Erfc
©«

𝜌ℎ2√︃
2𝜎2

𝑧

ª®®¬


=
1
2

∫ ∞

0
Erfc

©«
𝜌ℎ2√︃
2𝜎2

𝑧

ª®®¬ 𝑓ℎ (ℎ)dℎ

=
1
2

∫ ∞

0
Erfc

(√︄
𝜌2ℎ4𝜈/2

ℎ4 (
1 + 𝜌2) + 2ℎ2𝜎2

𝑛 + 𝜎4
𝑛

)
𝑓ℎ (ℎ)dℎ.

(37)

In general, there does not exist a closed-form analytic expres-
sion for (37).

The channel model is assumed to be a frequency-flat
Rayleigh fading channel without Doppler shift, and the chan-
nel fading coefficient ℎ obeys a Rayleigh distribution with
parameter 𝛽, i.e.,

𝑓ℎ (ℎ) =
ℎ

𝛽2 exp
(
− ℎ2

2𝛽2

)
. (38)

As an example, the transmitter selects a Gaussian stochas-
tic process as the carrier, and in the following, we analyze
the BER performance of the proposed covert system under
quasi-static Rayleigh flat fading channels.

Define the SNR as the ratio of the power of the receiver
signal to the power of the noise, and apply the law of total
expectation under the condition of carrier unit variance to
obtain the SNR

𝜉 =
E

[
ℎ2𝜆2

𝑘

]
𝜎2
𝑛

=
Eℎ

[
E𝜆

[
ℎ2𝜆2

𝑘
|𝜆𝑘

] ]
𝜎2
𝑛

=
𝜎2
𝜂Eℎ [ℎ2]
𝜎2
𝑛

=
2𝛽2𝜎2

𝜂

𝜎2
𝑛

=
2𝛽2

𝜎2
𝑛

⇒ 𝜎2
𝑛 = 2𝛽2𝜉−1.

(39)

Substituting (38) and (39) into (37), we get the BER under
Rayleigh fading channel as

𝑃e =
1
2

∫ ∞

0
Erfc

(√︄
𝜌2ℎ4𝜈/2

ℎ4 (
1 + 𝜌2) + 4ℎ2𝛽2𝜉−1 + 4𝛽4𝜉−2

)
ℎ

𝛽2 exp
(
− ℎ2

2𝛽2

)
dℎ. (40)

For comparison with the BER under AWGN channels, the
fading average power is set to 1 so that the assumed fad-
ing channel obeys a Rayleigh distribution with parameter
𝛽 =

√︁
1/2. The BER under the fading channel is correspond-

ingly rewritten as

𝑃e =

∫ ∞

0
Erfc

(√︄
𝜌2ℎ4𝜈/2

ℎ4 (
1 + 𝜌2) + 2ℎ2𝜉−1 + 𝜉−2

)
ℎe−ℎ

2
dℎ. (41)

5. Correlation Detection and Pseudo-
random Sequences
In this section, we specifically address the problem of

eavesdroppers sensing the presence of covert signals through
correlation detection. To solve this problem, a pseudo-
random sequence generator is added to the transmitter of
Fig. 1. Finally, the receiver synchronizes the pseudo-random
sequence utilizing correlation detection.

5.1 Correlation Detection
The signals that have been modulated with covert bits

have a very pronounced periodicity, which exposes the exis-
tence of covert bit period as well as covert communication. To
better illustrate this issue, the modulation process is redrawn
as shown in Fig. 4. In the figure, we assume that the stochas-
tic process 𝜂(𝑡) as a carrier has the statistical properties of
having a mean of 0, a variance of 𝜎2

𝜂 , and an autocorrela-
tion function of E[𝜂(𝑡)𝜂(𝑠)] = 𝑅𝜂 (𝑡, 𝑠) = 𝜎2

𝜂𝛿(𝑡 − 𝑠). Here
𝜆(𝑡) = 𝜂(𝑡) serves as the reference carrier and contains no
covert bit. Assume further that 𝜂(𝑡 + 𝑘𝑇b), 𝜆(𝑡 + 𝑘𝑇b) are
the carrier and the modulated signal of the 𝑘th covert bit,
respectively.
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Fig. 4. Illustrative diagram of carriers and covert signals.

From the Fig. 4, it can be seen that the modulated signal
𝜓(𝑡) for the first 𝑛 covert bits can be written as

𝜓(𝑡) =
𝑛∑︁
𝑖=0

𝜆(𝑡 + 𝑖𝑇b) =
𝑛∑︁
𝑖=0

𝜆𝑖 . (42)

The autocorrelation function (ACF) of the modulated signal
𝜓(𝑡) is defined as

𝑅𝜓 (𝜏) = E[𝜓(𝑡)𝜓(𝑡 + 𝜏)] . (43)

When 𝜏 is not an integer multiple of the bit period, 𝜏 ≠ 𝑘𝑇b,
it is clear that there is 𝑅𝜓 (𝜏) = 0 due to the carrier stochastic
process’s ACF 𝑅𝜖 (𝜏) = E[𝜖 (𝑡)𝜖 (𝑡 + 𝜏)] = 𝜎2

𝜂𝛿(𝜏). We de-
rive in detail the autocorrelation coefficient of the modulated
signal 𝜓(𝑡) when 𝜏 = 𝑘𝑇b as follows.

First, to simplify the description of the problem, we
assume that the covert bits sent are all zeros. Hence, Equa-
tion (4) is reduced to



𝜆0 = 𝜖0

𝜆1 = 𝜌𝜖0 +
√︃

1 − 𝜌2𝜖1

...

𝜆𝑘 = 𝜌𝑘𝜖0 +
𝑘∑︁
𝑖=1

𝜌𝑘−𝑖
√︃

1 − 𝜌2𝜖𝑖

...

. (44)

Second, based on (7) , we obtain the variance of the
modulated signal 𝜓(𝑡) as

𝜎2
𝜓 = 𝑅𝜓 (0) = E

[
𝑛∑︁
𝑖=0

𝜆2
𝑖

]
= (𝑛 + 1)𝜎2

𝜂 . (45)

Third, referring to Fig. 4, we obtain the ACF of the modulated
signal 𝜓(𝑡) when 𝜏 = 𝑘𝑇b as

𝑅𝜓 (𝑘𝑇b) = E [𝜓(𝑡)𝜓(𝑡 + 𝑘𝑇b)] =
𝑛−𝑘∑︁
𝑖=0
E [𝜆𝑖𝜆𝑘+𝑖]

=

𝑛−𝑘∑︁
𝑖=0
E


𝜆𝑖

(
𝜌𝑘𝜆𝑖 +

√︃
1 − 𝜌2

𝑘∑︁
𝑙=1

𝜌𝑘−𝑙𝜖𝑖+𝑙

)
︸                                  ︷︷                                  ︸

𝜆𝑘+𝑖


= 𝜎2

𝜂

𝑛−𝑘∑︁
𝑖=0

𝜌𝑘 = 𝜌𝑘 (𝑛 − 𝑘 + 1)𝜎2
𝜂

(46)

where the mutual independent of 𝜆𝑖 and 𝜖𝑖+𝑙 is used, i.e.,
E[𝜆𝑖𝜖𝑖+𝑙] = 0.

Finally, we obtain the normalized autocorrelation coef-
ficient of the modulated signal 𝜓(𝑡) as

𝜌𝜓 (𝜏) =
𝑅𝜓 (𝜏)
𝜎2
𝜓

=

{
0 for 𝜏 ≠ 𝑘𝑇b(
1 − 𝑘

𝑛+1

)
𝜌𝑘 for 𝜏 = 𝑘𝑇b

=

(
1 − 𝑘

𝑛 + 1

)
𝜌𝑘𝛿(𝜏 − 𝑘𝑇b)

=

(
1 − |𝑘 |

𝑛 + 1

)
𝜌 |𝑘 |𝛿(𝜏 − 𝑘𝑇b) for |𝑘 | ≤ 𝑛

(47)

where the last equation is established by the symmetry of the
correlation coefficients.

From (47), it can be seen that there is a significant au-
tocorrelation of the modulated signals 𝜓(𝑡). Therefore, if
an eavesdropper intercepts the transmitter’s signal, and then
uses correlation analysis to reveal the existence of covert
communications. To visualize this problem more, we demon-
strate it with MATLAB simulation. The carrier sequence af-
ter modulation by a covert bit stream (all covert bits are 0) is
shown in Fig. 5 together with the normalized autocorrelation
sequences for the modulated signals. The autocorrelation
function “xcorr” of the MATLAB software is used here to
compute the normalized correlation sequences of the modu-
lated signals.



RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 73

0 1000 2000 3000 4000 5000 6000

Sequence number

-4

-3

-2

-1

0

1

2

3

4
Modulated carrier sequences

-6000 -4000 -2000 0 2000 4000 6000

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

S
a

m
p

le
 a

u
to

c
o

rr
e

la
ti
o

n

Normalized autocorrelation sequences for the modulated carriers
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Normalized autocorrelation sequences for the covert signals
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Fig. 5. Modulated signal sequences and its normalized autocor-
relation sequences, where all covert bits are 0, the carrier
uses Gaussian noise with a mean of 0 and variance of 1,
the correlation coefficient 𝜌 = 0.9, the number of sam-
ples in a covert bit period 𝜈 = 100, the pseudo-random
sequence period 𝑚 = 31, and the number of covert bits
𝑛 = 50.

5.2 Pseudo-random Sequences
To avoid this problem and to increase the difficulty

for eavesdroppers to sense the existence of covert commu-
nications, a pseudo-random generator is introduced in this
work. The carrier sequences, modulated by a covert bit-
stream, are multiplied with the pseudo-random sequences
and then transmitted to the channel as covert signals. The
“comm.PNSequence” function of the MATLAB software is
used to generate the pseudo-noise (PN) sequence. The gener-
ating polynomial for the PN sequence is 𝑥5+𝑥2+1. As shown
in Fig. 5, the autocorrelation of the covert signal has disap-
peared, thus increasing the difficulty for the eavesdropper to
perceive the presence of the covert signal. After the multi-
plication of a pseudo-random sequence, the covert signal’s
autocorrelation coefficient is derived as follows.

Let 𝑚 be the pseudo-random sequence period, then the
normalized autocorrelation coefficient of the PN sequence is
approximately 𝜌PN (𝜏) = 𝛿(𝜏 − 𝑚). Let LCM(𝑎, 𝑏) be the
least common multiple of 𝑎 and 𝑏. In particular, when 𝑎

and 𝑏 are prime, LCM(𝑎, 𝑏) = 𝑎𝑏. In this work, the num-
ber of samples in a bit period is 𝑣 and the period of the
pseudo-random sequence is 𝑚, then it is easy to choose 𝑣 and
𝑚 such that LCM(𝑣, 𝑚) = 𝑣𝑚. Since the pseudo-random
sequences and the modulated sequences are mutually inde-
pendent stochastic processes, the normalized autocorrelation
coefficient of the covert signal sequences can be obtained
directly from (47), which is rewritten as
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Fig. 6. Relationship between the normalized correlation coeffi-
cient 𝜌𝜓 (𝑚𝑇b ) of the first period of the covert signal and
the correlation coefficient 𝜌, where 𝜈 = 100, 𝑚 = 31,
𝑛 = 50.

𝜌𝜓 (𝜏) =
(
1 − |𝜏 |/𝜈

𝑛 + 1

)
𝜌 |𝜏 |/𝜈𝛿(𝜏 − 𝑘𝜈)𝛿(𝜏 − 𝑚)

=

(
1 − |𝜏 |/𝜈

𝑛 + 1

)
𝜌 |𝜏 |/𝜈𝛿 (𝜏 − 𝑘LCM(𝜈, 𝑚))

=

(
1 − |𝑘 |𝑚

𝑛 + 1

)
𝜌 |𝑘 |𝑚𝛿(𝜏 − 𝑘𝑚𝑣)

(48)

when |𝑘 |𝑚 ≤ 𝑛. Following the parameters set in Fig. 5,
we get LCM(𝑣, 𝑚) = 3100, i.e., the first periodicity of
the covert signal does not appear until the 31st-bit pe-
riod. However, the correlation coefficient at this moment
is (1−𝑚/(𝑛+1))𝜌𝑚 = 0.015, which can be considered com-
pletely uncorrelated, especially in the presence of channel
noise, since the correlation coefficient is even smaller. As
a result, the covert signal after the pseudo-random sequence
processing is not relevant anymore. Hence, it is difficult for
an eavesdropper to use the correlation to sense the presence
of covert communication.

Figure 6 illustrates the relationship between the normal-
ized correlation coefficient 𝜌𝜓 (𝑚𝑇b) =

(
1 − 𝑚

𝑛+1
)
𝜌𝑚 of the

first period of the covert signal and the correlation coefficient
𝜌 of the adjacent two-bit periods. We choose suitable 𝜈 and
𝑚 such that on the one hand the correlation period of the
covert signal becomes very long, and on the other hand the
correlation becomes very small, thus very favorable to the
covertness of the transmitted signal. At the same time, we
choose the correlation coefficient 𝜌 as large as possible, since
this will reduce the BER of the communication system.

5.3 Synchronization
The receiver must make the local pseudo-random se-

quence synchronized with the transmitter’s pseudo-random
sequence before performing the correlation demodulation. In
the modulation-demodulation scheme proposed in this work,
due to the short period of the pseudo-random sequence (e.g.,
𝑚 = 31), the brute force exhaustive method can be used for
pseudorandom sequence synchronization.
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It is assumed that 𝑛 = 50 zeros are used by both le-
gitimate communicating parties for the synchronization se-
quence of the pseudo-random sequence. The simulation pa-
rameters are the same as in Fig. 5, resulting in a total of
(𝑛+1)𝜈 = 5100 samples of the synchronized signal. Assum-
ing that the receiver loses the first 840 samples, the receiver
uses brute-force exhaustion to recover the synchronization of
the pseudo-random sequence. The SNR of the AWGN chan-
nel is 0 dB. The receiver first generates a pseudo-random
sequence of the same length as the received signal sam-
ples, then multiplies the pseudo-random sequence with the
received signal samples, and finally performs a normalized
autocorrelation for this sequence. The receiver determines
whether it has been synchronized on the fact that more than 5
autocorrelation coefficients are greater than a certain thresh-
old (e.g. 0.3). If it is judged to be unsynchronised, the pseudo-
random sequence is circularly shifted by one chip position.
The synchronized pseudo-random sequence is found after at
most 𝑚 = 31 attempts.
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(a) Difference between the pseudo-random sequence recovered at
the receiver and the pseudo-random sequence at the transmitter
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(b) Normalized autocorrelation sequence of received signals after
synchronization of pseudo-random sequences

Fig. 7. Resynchronization of pseudo-random sequences, where
the parameters of the simulation are the same as in
Fig. 5, with an offset of 840 samples, i.e., 8.4𝑇b and
SNR 𝜉 = 0 dB.

As can be seen from Fig. 7, the recovered pseudo-
random sequence is out of sync with the transmitter’s pseudo-
random sequence in the first dozen chips, but then it is com-
pletely synchronized. This is caused by the length of the
received signal not being an integer multiple of the length of
the pseudo-random sequence. From the setting of the simu-
lation parameters, there exists a synchronous code-chip error
of Mod((𝑛 + 1)𝜈 − 840, 𝑚) = Mod(5100 − 840, 31) = 13,
which is consistent with the results of the simulation.

6. Simulation and Analysis
The BER of the proposed differential stochastic process

keying system is simulated using MATLAB software and
compared with the theoretically derived results. The simu-
lation system constructed is shown in Fig. 1, which mainly
consists of modulation, channel, demodulation, and BER
statistics modules. The simulation parameters are shown in
Tab. 2.

A stochastic process generator generates the carrier, and
four random processes, namely, uniform, Gaussian, exponen-
tial, and Rayleigh distributions, are chosen in the simulation.
A Bernoulli binary random number generator generates the
covert source, and equal probability ‘0’ and ‘1’ bit streams are
mapped to {−1, +1}, which are then used to control the polar-
ity of the correlation coefficients of the two adjacent stochas-
tic carrier sequences. The channel consists of Rayleigh fading
multiplied by the modulating signal and summed Gaussian
white noise, with the fading coefficients remaining constant
over two covert bit periods. If the fading of the channel is
not considered, simply set the fading coefficient to 1. In the
receiver, differential demodulation is used to obtain an es-
timate of the transmitted bits after hard decision, and then
the BER of the system is obtained by comparison and statis-
tics. During demodulation in the receiver, it is assumed that
synchronization has been obtained.

First, we verify that the modulation signal 𝜆𝑘 of the 𝑘th
covert bit (i.e. Eq. (6) in Sec. 3.1) obeys a normal distribution
from three aspects. Although a uniform-distributed stochas-
tic process is used for the carrier, the modulated signal after
multiple covert bits shows a normal distribution, which is the
power of the central limit theorem, as shown in Fig. 8.

The purpose of introducing the “normplot” function of
the MATLAB software in the study is to evaluate how close
the random variable is to the normal distribution. The plot
will be linear if the sample data are normal, otherwise, other
distributions will introduce curvature.

Carrier Uniform/Normal/Exponential/Rayleigh
𝑛 Number of covert bits
𝑇b Covert bit period
𝜈 Number of samples in 𝑇b
𝜉 SNR
𝜌 Correlation coefficient

Fading PDF 𝑓ℎ (ℎ) = 2ℎe−ℎ2
, 𝑥 ≥ 0

Tab. 2. Simulation parameters.
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Fig. 8. Normal probability plot, K-S test and K-L divergence
of the modulated signals for the 𝑛-th covert bit, when
a uniform-distributed stochastic process is used as the
carrier, where the correlation coefficient 𝜌 = 0.9, the
number of samples in a covert bit period 𝜈 = 104, and
the number of covert bits 𝑛 = 100.

In Fig. 8(a), the plot has the sample data displayed with
the plot symbol ‘+’, and a line joining the first and third
quartiles of the sample data is superimposed on the plot.
The modulated signal of the 100th covert bit fits the normal
distribution very well.

The one-sample Kolmogorov-Smirnov test [30] is used
to test the goodness of fit of a given set of data to a theoretical
distribution. The one-sample Kolmogorov-Smirnov test was
performed using MATLAB software’s “kstest” function. Test
decisions were confirmed by visually comparing the empiri-
cal cumulative distribution function (CDF) with the standard
normal CDF. As shown in Fig. 8(b), the two curves are very
close together.

Kullback-Leibler divergence (K-L) is used to measure
statistics that quantify the proximity of two probability dis-
tributions in the same event space. Here, let 𝑝(𝑥) be the
empirical PDF of the modulated signal and 𝑞(𝑥) be the PDF
of the standard normal distribution in (30). As can be seen
from Fig. 8(c), the modulated signal after 5 or 6 covert bits,
the K-L distance decreases dramatically and tends to 0, which
indicates that the modulated signal obeys a normal distribu-
tion.

Second, we examine the BER performance of the system
under AWGN channels. Due to the requirement of covert-
ness, the power of the transmitted covert signal must be less
than the power of the channel noise, that is, the SNR is less
than 0 dB. We examine the BER performance when the num-
ber of samples in a bit period is 𝜈 = 100, 400 and 1000,
respectively. Stochastic uniform, normal, exponential, and
Rayleigh distribution processes are used as carriers. The
covert bitstream is randomly generated with equal probabil-
ity. As can be seen from Fig. 9, no matter which carrier uses
a stochastic process, their BERs are very close to each other,
which is consistent with our theoretical analysis.

Interestingly, when the number of samples in a covert
bit period 𝜈 = 100, the simulation yields a better perfor-
mance than that derived by theory within the periods of the
SNR [−5,−1] dB, which may be because 𝜈 is not sufficiently
large, resulting in the output of the correlator not completely
following the normal distribution. On the one hand, when
the SNR is low, e.g. −15 dB, increasing 𝜈 does little effect on
reducing BER and results in a reduction in transmission rate.
On the other hand, when the SNR is large, then increasing 𝜈

has a very significant effect on reducing BER.

𝑃e =

∫ ∞

0
Erfc

[
0.9ℎ2

√︂
𝑣/2

1.81ℎ4 + 2ℎ2 + 1

]
ℎe−ℎ

2
dℎ

=

∫ 1

0
[·] dℎ +

∫ ∞

1
[·] dℎ︸       ︷︷       ︸

1.456510−18

≈
∫ 1

0
Erfc

[
0.9ℎ2

√︂
𝑣/2

1.81ℎ4 + 2ℎ2 + 1

]
ℎe−ℎ

2
dℎ.

(49)
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(b) 𝜈 = 400
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(c) 𝜈 = 1000

Fig. 9. Theoretical versus simulated BER with 𝜌 = 0.9 under
AWGN channels.

Third, we examine the BER performance of the system
under Rayleigh fading channels, shown in Fig. 10. The the-
oretical BER is numerically calculated from (41). The BER
curves of these four distributions are very close, and the the-
ory is consistent with the simulation. The stochastic process
with normal carrier distribution, sampling number 𝜈 = 400,
SNR 𝜉 = 0 dB is an example to explain why the BER is rela-
tively high in the fading channel. As can be seen from (49),
the larger the fading amplitude ℎ, the smaller the value of
the function Erfc(ℎ). Conversely, the smaller the fading
amplitude ℎ, the greater the value of the function Erfc(ℎ).
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Fig. 10. Theoretical versus simulated BER with 𝜌 = 0.9, 𝜈 =

400 under Rayleigh fading channels.

Therefore, the BER is mainly caused by the fading of ℎ < 1.
When ℎ < 0.2, the Erfc[] value is near 1 and ℎe−ℎ2 ≈ ℎ, so
𝑃e is at least greater than

∫ 0.2
0 ℎdℎ = 0.02.

7. Conclusion
In this work, a modulation and demodulation struc-

ture, which is called differential stochastic process keying
covert communication, is proposed. The proposed scheme
has a good concealment nature. The stochastic process is
used as the carrier, the transmitted bits are "hidden" in the
noise-like carrier, and the statistical characteristics of the
waveforms of the transmitted ‘0’ and ‘1’ bits are the same.
The statistical characteristics of the transmitted ‘0’ and ‘1’
bit waveforms are identical. The proposed scheme is simple
in structure and low in complexity. No carrier recovery is
required at the receiver and the transmitted covert bit can be
estimated just by a simple correlator and hard decision. The
proposed scheme has a low BER performance. The theoret-
ical derivation and simulation show that the BER is as low
as 10−3 for an SNR of about −3 dB and a bit-period sam-
pling number of 𝜈 = 100 under the AWGN channel. The
proposed system works at the physical layer with good secu-
rity, flexibility, and BER performance. It is well suited for
IoT devices with limited resources and low transmission rate
requirements but high concealability requirements.
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