
92 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

Edge Cloud Resource Scheduling with Deep
Reinforcement Learning

Youling FENG, Mengzhao LI, Jun LI, Yawei YU

School of Management Science and Information Engineering, Jilin University of Finance and Economics,
Changchun 130117, China

{limengzhaolihai,cheeseyu}@foxmail.com, {fengyouling, lĳun}@jlufe.edu.cn

Submitted November 10, 2024 / Accepted January 16, 2025 / Online first March 18, 2025

Abstract. Designing optimal scheduling algorithms for task
allocation in edge cloud clusters presents significant chal-
lenges due to the constantly changing workloads and ser-
vice requests in edge cloud data center environments. These
challenges stem from the need to manage the vast amounts of
information transmitted by IoT devices, as well as the neces-
sity of offloading computational tasks to cloud data centers.
To tackle this issue, we propose a novel deep reinforcement
learning-based resource allocation method called Decima#,
which offers an effective resource optimization solution for
edge cloud data centers. We utilize a transformer architec-
ture to capture resource states on directed acyclic graphs
(DAGs), accelerating the aggregation speed of the Graph
Neural Network (GNN). Moreover, we develop innovative re-
ward functions and concurrent processing mechanisms to
minimize training time. Furthermore, we enhance the Proxi-
mal Policy Optimization (PPO) algorithm to improve adapt-
ability, increase the accuracy of likelihood ratio estimation,
identify a more suitable activation function, and impose con-
straints on gradient updates. In simulation environments,
Decima# reduced the average job duration by 19% com-
pared to the Decima algorithm, while also achieving a 56%
increase in training convergence speed. Code has been
made available at https://github.com/limengzhaolihai/spark-
decimasharp-ppog.

Keywords
Edge computing, deep reinforcement learning, resource
scheduling

1. Introduction
In recent years, with the continuous growth in resource

demand, an increasing number of enterprises and organiza-
tions have opted to migrate applications and data to cloud
data centers, making the transition to edge data centers a sig-
nificant trend. However, traditional cloud computing models
rely on centralized computing architectures, necessitating the

transfer of data and applications from Internet of Things (IoT)
devices to remote central cloud servers for processing and
computation, followed by the return of results to the devices.
This model presents challenges such as high latency and
substantial network load. In response, edge computing has
emerged as an extension of core cloud computing technolo-
gies, establishing a form of distributed computing on edge
devices that facilitates the offloading of computational power
to the network’s edge. By being positioned closer to the data
source, edge computing not only optimizes bandwidth uti-
lization but also enhances service quality, reduces network
traffic, lowers latency, and improves user experience. Fur-
thermore, edge cloud computing integrates the advantages
of both edge and cloud computing, enabling the decentral-
ization of resources and computational capabilities to the
edge network. This approach facilitates smarter and more ef-
ficient resource allocation through centralized management
and scheduling, effectively meeting low-latency requirements
while providing greater flexibility to support complex appli-
cation scenarios.

Resource management issues have become a key re-
search area in data centers, involving virtual machine man-
agement [1], [2], resource scheduling and load balanc-
ing [3–6], as well as task allocation [7], [8]. Resource
scheduling directly impacts the real-time allocation of re-
sources and the efficiency of task execution, making it a cru-
cial factor in enhancing overall system performance. The effi-
ciency and reliability of task allocation are central to improv-
ing the effectiveness of resource scheduling. Currently, one
of the most significant challenges in resource scheduling is to
efficiently allocate tasks, maximize system resource utiliza-
tion, and ensure both the effectiveness and reliability of task
execution. Traditionally, task allocation is managed through
algorithms such as fair scheduling, round-robin scheduling,
or heuristic scheduling. However, with the wide application
of machine learning techniques in resource scheduling, the
research in this area has been diversified. Different machine
learning techniques such as bionic solutions [9], LSTM-
based solutions [10], Q-learning based solutions [11] and
deep RL-based solutions [12], [13], all play a role in task
processing. Currently, one of the most critical challenges in

DOI: 10.13164/re.2025.0092

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 93

resource scheduling is how to efficiently allocate tasks, maxi-
mize system resource utilization, and ensure the effectiveness
and reliability of task execution. The efficiency and reliabil-
ity of task allocation is the key to the utilization of system
resources. Deep reinforcement learning’s ability to auto-
matically discover and learn optimal resource management
strategies through environment interaction is highly benefi-
cial in resource scheduling. Therefore, the main goal of this
paper is to further explore and enhance task assignment by
applying deep reinforcement learning techniques.

Among the case of resource scheduling solved by apply-
ing deep reinforcement learning methods, DeepRM [14] is by
far the most representative solution for resource management.
DeepRMPlus [15] is an improvement on the network struc-
ture and training mode of DeepRM, which reduces the train-
ing time and improves the resource utilization. TVW-RL [16]
exploits time-varying workloads and creates the technique of
creating equivalence classes in a large number of production
workloads with a novel reward function, which optimizes the
resource utilization. DRAW [17] designs a new feedback
control mechanism to enhance resource utilization. All of
these innovations in the field have improved the efficiency of
the models in handling tasks, but for a short period of time
large number of tasks generated, the data processing speed
of the above methods is still slow.

Therefore, Decima [18] uses Spark tools to process
tasks, which is currently the most representative model for
processing substantial task sets quickly. Nevertheless, Dec-
ima encounters hurdles such as extended training periods,
prolonged data collection durations, and sluggish conver-
gence, while its graph neural network (GNN) aggregation of
directed acyclic graphs (DAGs) operates with limited effi-
ciency. Decima++ [19] designs a continuous-time discount
return for training based on Decima and a GNN-based mes-
sage passing method, which greatly reduces the training time
and improves the task processing speed. Given that Dec-
ima++ still needs to further adapt to the workload and min-
imize the average task completion time and training time in
the worst case, we have improved the model network structure
and training algorithms to address these challenges.

In this paper, we design a new model Decima# based
on Decima with the following contributions:

• This study introduces a resource scheduling scheme, Dec-
ima#, for edge cloud environments, providing a robust
solution for processing and allocating large-scale tasks.

• To capture resource state information more accurately, we
employ a transformer architecture to extract feature data
on the DAG. We propose a new scheduler, termed the
Decima#, which is compared against schedulers that in-
corporate GRU and lightweight ResNet-18 architectures.

• Given that training the Decima series models for large-
scale iterations (800 times) takes over 15 hours, we de-
signed a reward function focused on resource utilization

to accelerate the iteration speed. This approach is fur-
ther supported by multithreading collaboration to address
concurrency issues.

• To enhance the stability of the training process, we pro-
pose an improved Proximal Policy Optimization Gradi-
ent (PPOG) algorithm, which boosts adaptability to the
system and provides more precise constraints on likeli-
hood ratios. This is validated with respect to gradient
constraints and compared against a series of algorithms
utilizing the PPO algorithm and its enhancements.

The remainder of this paper is organized as follows:
Section 2 discusses the literature survey. Section 3 intro-
duces preliminary information on relevant technologies and
describes the system assumptions, while also formally defin-
ing two cloud resource scheduling problems. In Sec. 4, we
present the details of Decima#. Section 5 provides the ex-
perimental environment and evaluation results. Finally, we
summarize and conclude the paper in Sec. 6.

2. Related Work
In the research on edge cloud resource management,

the work focuses on several aspects: 1) the lightweight de-
ployment of environments at edge nodes [20], which exam-
ines methods to optimize resource usage on edge devices to
enhance overall system performance; 2) dynamic schedul-
ing and load balancing of edge resources [21], which aim
to achieve efficient resource allocation through intelligent
scheduling algorithms that can adapt to varying workloads;
and 3) task allocation to improve the utilization of edge cloud
resources [22], [23], where research in this area concentrates
on effectively distributing computational tasks in edge en-
vironments to maximize resource utilization. In this paper,
we focus on analyzing the task allocation aspect, and the re-
searchers propose various meth ods to optimize the resource
utilization in edge cloud. The related work can be broadly
categorized into two types: traditional edge-cloud task allo-
cation methods and machine learning-based edge-cloud task
allocation methods.

For traditional task allocation methods, the problem
of long task waiting times may arise in the case of heavy
load. Alameddine et al. [24] proposed a method based on
the Logic-Based Benders Decomposition (LBBD) approach,
which decomposes multi-tasks and dynamically adjusts task
allocation on edge servers according to the importance and
real-time nature of tasks. Dynamic task allocation schemes in
edge clouds aim to optimize the distribution of tasks among
edge nodes by considering real-time load variations and re-
source availability. These schemes typically employ intel-
ligent algorithms, such as genetic algorithms and particle
swarm optimization, to monitor the performance and net-
work status of edge devices in real-time and dynamically
adjust the task allocation strategy.

94 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

Another category is machine learning methods. It is
widely used in resource management. For similar reasons
we focus only on the task allocation problem to maximize
the use of resources. Maximize the utilization of resources.
In edge cloud resource management, research can be catego-
rized based on different machine learning techniques, includ-
ing traditional machine learning methods and deep learning
based solutions. Traditional machine learning methods, such
as support vector machines (SVMs) and decision trees, use
training data for feature extraction and classification to opti-
mize task allocation and resource scheduling. As technology
evolves, deep learning methods are gradually being intro-
duced, which automatically learn complex feature represen-
tations through deep neural networks to enable more efficient
task scheduling and resource utilization. By combining these
different machine learning techniques, edge cloud resource
management can better adapt to dynamic environments and
improve system performance and responsiveness. Regard-
ing traditional machine learning solutions, Wang et al [25]
proposed a method for resource allocation in cloud com-
puting environments using SVMs using a machine learning
framework, which optimizes resource allocation strategies
by analyzing historical resource usage data. Ebadi et al [26]
proposed a fusion machine learning model that can be used to
optimize the resource allocation in various scenarios through
its dynamic, intelligent resource allocation Optimization so-
lutions have a significant impact on the development process
of edge cloud. It also exhibits lower latency, higher through-
put and better overall efficiency scores.

In terms of deep learning based solutions, Farahnakian
et al [27] proposed a Q-learning based approach for dynamic
allocation of incoming requests. The agent is able to make
optimal decisions by learning from previous experiences to
determine whether a host should remain active or go into
hibernation. Thonglek et al. [28] designed and implemented
a neural network model based on Long Short-Term Memory
(LSTM) to predict more efficient allocation of job resources
based on historical data.

As for deep RL-based solutions, Mao et al. proposed
a system called DeepRM, which efficiently manages nonpre-
emptive scheduling of online jobs through deep reinforce-
ment learning. However, DeepRM [14] requires a long train-
ing process and the structure of the neural network is not con-
ducive to extracting complex state-action relationships in data
centers. Subsequently, based on the spark big data process-
ing framework, Mao et al. proposed a Decima [18] system,
which uses graph neural networks to aggregate DAG task
information, and assigns corresponding resources to tasks
through a policy network. However, Decima is primarily
designed for cloud computing environments and demands
time-extensive training. Consequently, its average task com-
pletion time has not yet been adequately optimized for edge
computing environment.

3. Preliminaries
To help better understand the paper and to make the

paper self-contained, we briefly review some background
techniques. We aim to integrate the Spark environment
within the edge architecture to leverage graph neural net-
works (GNNs) for extracting feature information from DAG
structures. Through a deep reinforcement learning approach,
this setup will enable the training of an optimal scheduling
policy.

3.1 Edge Cloud Structure
Edge cloud architecture is a significant branch of cloud

computing, characterized by the deployment of computing
resources and data processing capabilities at the network’s
edge, close to end users and data sources. This architecture
is particularly well-suited for applications requiring rapid
response times, such as the Internet of Things (IoT), Aug-
mented Reality (AR), Virtual Reality (VR), and real-time
data analytics. Integrating the Decima# model into the edge
cloud data center offers significant advantages that enhance
overall system performance (see Fig. 1). By bringing com-
putation and data processing closer to end users, the model
effectively reduces latency, enabling faster response times
essential for real-time data analytics and interactive appli-
cations in the Internet of Things (IoT), Augmented Reality
(AR), and Virtual Reality (VR) environments. Additionally,
deploying the Decima# model at the edge optimizes energy
consumption by allowing local data processing, which mini-
mizes the need for extensive data transmission to centralized
cloud servers. This not only lowers energy usage associ-
ated with data transfer but also enhances task allocation and
processing efficiency. The Decima# model intelligently dis-
tributes workloads across available edge cloud resources, en-
suring optimal execution of tasks. This capability improves
resource utilization, leading to cost savings and increased
scalability. Overall, the integration of the Decima# model
results in reduced latency, lower energy consumption, and
enhanced efficiency, making it a valuable asset in the edge
cloud computing landscape and enabling more effective and
responsive applications across various domains.

3.2 Apache Spark
Apache Spark applications run in a Spark-managed

cluster and utilize cluster resources by submitting jobs. Each
job is organized into a DAG of stages, each representing a set
of tasks that can be executed independently. These tasks
run on different data partitions and are distributed across the
cluster’s worker nodes. Dependencies between stages en-
sure sequential execution, with one stage completing before
the next one begins. Tasks within a stage are executed by
executors.

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 95

Fig. 1. The Decima# edge cloud architecture consists of three layers: the cloud layer, the edge cloud layer, and the IoT device layer. Each layer
processes and transmits data based on its computational capacity, enabling efficient, low-latency task management across the system.

By default, applications are assigned a fixed number
of worker nodes, but Spark can be configured to dynami-
cally adjust worker node assignments based on workload and
resource availability. Each Spark application manages its
own job scheduler, which is responsible for assigning tasks
to executors and optimizing task execution based on DAG
dependencies. This distributed computing framework pro-
vides fault tolerance, scalability, and parallel processing for
large-scale data processing tasks.

3.3 Deep Reinforcement Learning
Reinforcement Learning (RL) is a branch of machine

learning where agents learn to make decisions by interacting
with an environment. The agent takes actions in given states
to maximize cumulative rewards over time. This process
involves trial and error, where the agent explores different
actions and their outcomes to improve its policy, which maps
states to actions. The goal is to find an optimal policy that
maximizes the expected sum of future rewards, often dis-
counted to prioritize immediate rewards.

We adopt the discounted formulation for the policy op-
timization problem as described in [29]. At time 𝑡, the agent
observes a state vector s𝑡 and selects an action a𝑡 accord-
ing to the policy 𝜋𝜃 (a𝑡 |s𝑡), where 𝜋𝜃 represents the policy
parameterized by 𝜃, such as neural network weights. Our
focus is on on-policy methods, where the optimized policy
also determines the exploration distribution. Upon executing
the chosen action, the agent transitions to a new state s′𝑡 and
receives a scalar reward 𝑟𝑡 . The objective is to identify the
parameter vector 𝜃 that maximizes the expected sum of future
discounted rewards, E

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡
]
, with 𝛾 being a discount

factor in the interval [0, 1]. A lower value of 𝛾 biases the
learning process towards short-term rewards over long-term
gains.

Both PPO and PPOG gather experience tuples
[s𝑖 , a𝑖 , 𝑟𝑖 , s′𝑖] by running several episodes during each op-
timization iteration. Each episode begins with an initial
state s0, which is drawn from a stationary distribution de-
termined by the application. The episode proceeds until it
reaches a terminal (absorbing) state or the predefined maxi-
mum episode length 𝑇 is reached. After the total simulation
budget 𝑁 for the iteration is used up, the policy parameters 𝜃
are then updated.

3.4 Graph Neural Networks on DAG
We refer to a graph as the tuple G = (V,E,X) [30], [31],

where 𝑉 is the set of nodes, E ⊆ V × V is the set of edges,
and X ∈ R𝑛×𝑑 represents the node features. Each row of X is
a feature vector corresponding to a node, with 𝑛 denoting the
number of nodes and 𝑑 the feature dimension. The features
of a node 𝑣 are denoted by x𝑣 ∈ R𝑑 .

A directed acyclic graph (DAG) is a directed graph with-
out directed cycles. For a DAG 𝐺, we can define a unique
strong partial order ⪯ on the node set V such that, for any pair
of nodes 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ⪯ 𝑣 if and only if there is a directed path
from 𝑢 to 𝑣. We define the reachability relation ⪯ in a DAG
based on this partial order: 𝑢 ⪯ 𝑣 if and only if 𝑣 is reachable
from 𝑢. Moreover, if 𝑢 ⪯ 𝑣, then 𝑢 is called a predecessor of
𝑣, and 𝑣 is a successor of 𝑢. Nodes without predecessors are
source nodes, and nodes without successors are sink nodes.

Graph neural networks (GNNs) have proven to be pow-
erful tools for learning representations of graph-structured
data. Applying GNNs to DAGs introduces unique opportu-
nities and challenges due to the inherent hierarchical structure
and the absence of cycles. The strong partial order in a DAG
allows for a natural topological sorting of nodes, which can
be leveraged in the message-passing framework of GNNs.

96 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

In this context, each node aggregates information from its
predecessors, allowing the network to propagate information
in a manner consistent with the directional flow of the graph.
This property is particularly advantageous for tasks that re-
quire an understanding of hierarchical dependencies, such
as temporal event prediction, structured sequence modeling,
and hierarchical classification.

3.5 Problem Formulation
In this section, we define two resource scheduling prob-

lems within the reinforcement learning framework, focusing
on minimizing training time and average job duration.

Problem 1: Scheduling for Minimum Training Time.
We aim to minimize the overall training time for jobs ar-
riving at the data center. The training time for each job 𝐽𝑖
is denoted as 𝑇train,𝑖 . The objective is to minimize the av-
erage training time across all jobs, while ensuring that the
total allocated resources at any given time do not exceed the
available resource capacity.

The formulation can be stated as:

min
𝐷𝑖 (𝑡)

lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1
𝑇train,𝑖

subject to:

𝑛∑︁
𝑖=1

𝑥𝑖𝑗 (𝑡) ≤ 𝑐 𝑗 , ∀𝑡, 𝑗 = 1, . . . , 𝑑

Problem 2: Minimizing Average Job Duration. We also
consider the problem of minimizing the average duration of
jobs. The duration of a job is defined as the total time taken
from the start of the job until its completion, which includes
both waiting time and run time.

The objective is to minimize the average duration for all
jobs while adhering to resource constraints:

min
𝐷𝑖 (𝑡)

lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1
𝑇duration,𝑖

subject to:
𝑛∑︁
𝑖=1

𝑥𝑖𝑗 (𝑡) ≤ 𝑐 𝑗 , ∀𝑡, 𝑗 = 1, . . . , 𝑑.

In this context, 𝑥𝑖
𝑗
(𝑡) ≥ 0 represents the amount of re-

source type 𝑗 allocated to job 𝐽𝑖 at time 𝑡, and 𝑐 𝑗 denotes
the capacity of resource type 𝑗 . The constraints ensure that
at any time 𝑡, the total resources allocated do not exceed the
available capacities.

4. System Model
We develop a scheduling system called Decima# (see

Fig. 2), specifically designed for edge cloud environments,
rather than traditional cloud computing systems. Although
we use the same simulation environment as Decima++, our
network architecture has been differently designed with a fo-
cus on lightweight and responsive features. This ensures
that the system can efficiently operate in dynamic, resource-
constrained edge cloud environments, where low-latency
processing and quick adaptability are critical. The system
is characterized by a transformer architecture over Directed
Acyclic Graphs (DAGs), efficiently processing edge-specific
task dependencies. A policy network coordinates task al-
location and executor assignment at the edge, enabling de-
centralized operation. Furthermore, reinforcement learning
(RL) is applied to iteratively optimize system performance,
allowing real-time adaptation to varying edge network condi-
tions. Tasks are executed on designated edge executors based
on the policy chosen by Decima#, thus optimizing resource
usage and enhancing overall operational efficiency.

Fig. 2. In the Decima#’s reinforcement learning framework, the scheduling agent determines scheduling actions in the cluster environment by
observing the current state of the cluster. The agent receives rewards based on high-level goals and evaluates the selected actions using
the actor-critic (AC) network, which helps update the network parameters. The framework employs the Proximal Policy Optimization
Gradient (PPOG) algorithm to ensure stable and efficient learning.

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 97

In the design of model for edge cloud environments,
we incorporate a lightweight convolutional neural network
(CNN) within the transformer layers to enhance computa-
tional efficiency. Furthermore, in the architecture of the
DAG encoder and global encoder, we eliminate redundant
fully connected layers and simplify the classification module.
To achieve this, we adopt a streamlined structure that utilizes
only max pooling, followed by a single fully connected layer,
thereby reducing latency. Additionally, we explore the fusion
of BatchNorm layers and TransformerConv layers to simplify
computations and further optimize inference performance.

4.1 Node Messaging Process
To efficiently compute the stage representation of the

DAG, we use a transformer network layer to update the node
representation [32]. Algorithm 1 shows the node feature
encoding process.

For each node 𝑣 and neighboring node 𝑢 in the DAG,
compute the set of reachable nodes 𝑁 (𝑣). This approach lim-
its the receptive field of each node to those that are reachable,
ensuring a more focused and relevant context for processing.

𝑁 (𝑣) = {(𝑢, 𝑣) ∈≤} ∪ {(𝑣, 𝑢) ∈≤} (1)

The positional embedding is then computed considering
only the node depth, add the depth-based positional encoding
(DAGPE) to the node features before attention calculation,
denoted as

PE(𝑣, 2𝑖) = sin
(

depth(𝑣)
100002𝑖/𝑑

)
,

PE(𝑣, 2𝑖 + 1) = cos
(

depth(𝑣)
100002𝑖/𝑑

) (2)

where 𝑑 is the feature dimension and 𝑖 is the dimension index.

The formula for calculating the attention weight of node
𝑣, can be defined as

𝛼xv =
∑︁
𝑢∈𝑁𝑣

𝜅exp (x𝑣 + PE𝑣 , x𝑢 + PE𝑢)∑
𝑤∈𝑁𝑣 𝜅exp (x𝑣 + PE𝑣 , x𝑤 + PE𝑤)

𝑓 (x𝑢) (3)

where x is the feature of node 𝑣, where 𝑓 (x) = W𝑉 (x) is
a linear function and 𝜅exp is the kernel parametrized by W𝑄

and W𝐾 in 𝑅𝑑 × 𝑅𝑑 space, which is expressed as

𝜅exp (x𝑣 , x𝑢) =
x𝑣W𝑄, x𝑢W𝐾√

𝑑
. (4)

We have incorporated multiple transformer layers as
node encoders into the graph neural network, along with
a lightweight neural network to enhance computational ef-
ficiency. This approach captures the complex structure and
information of the input graph more effectively (see Fig. 3).

Fig. 3. The reachability-based graph neural network transforms
the raw information of each DAG node into a vector
representation, employing a convolutional layer in the
encoder’s initial layer as a replacement for the traditional
MLP.

Algorithm 1 Reachability-based messaging approach.

Require: DAG (V, E) with node features X ∈ R|V|×𝑐 , weight matrices
WQ,W𝐾 ,WV,W𝑅 ∈ R𝑐×𝑑

Ensure: Node representations H ∈ R|V|×𝑑
1: Initialize Q← X ·WQ, 𝐾 ← X ·W𝐾 , V← X ·WV

2: Initialize H← 0 ∈ R|V|×𝑑
3: for each node 𝑣 ∈ V do
4: 𝑁𝑘 (𝑣) ← Compute reachable nodes from 𝑣

5: 𝑑𝑣 ← Calculate depth of node 𝑣
6: 𝛼𝑣 ← Compute attention scores from Q𝑁𝑘 (𝑣) and 𝐾𝑣
7: H𝑣 ← Aggregate messages from reachable nodes 𝑁𝑘 (𝑣) using 𝛼𝑣
8: H𝑣 ← Apply non-linear transformation (e.g., ReLU) to H𝑣
9: 𝑔𝑣 ← Compute gating mechanism for node 𝑣

10: H𝑣 ← 𝑔𝑣 · H𝑣 + (1 − 𝑔𝑣) · (X𝑣 ·W𝑅)
11: H𝑣 ← Apply final non-linear transformation to H𝑣
12: end for
13: H← Concatenate all updated representations H𝑣 for 𝑣 ∈ V
14: return H

This process effectively captures the structural bias
of DAGs and leads to improved performance in various
tasks. By using transformer layers, the model leverages
self-attention mechanisms that allow it to focus on key rela-
tional features and dependencies among nodes, particularly
beneficial for directed acyclic graphs (DAGs). This con-
figuration not only captures the structural biases of DAGs
but also enables the network to process complex relation-
ships more accurately, leading to improved task performance
across a range of applications. Furthermore, the transformer
layers’ ability to dynamically weigh node interactions en-
hances the model’s generalization, making it more effective
in diverse graph-related tasks.

4.2 Overall Messaging Process
The graph neural network (GNN)-based transformer

network incorporates two additional encoders: the DAG en-
coder and the global encoder. The overall framework is
shown in Fig. 4. The DAG encoder is responsible for aggre-
gating the features of each updated node into a DAG represen-
tation, denoted as y. The global encoder z aggregates each
DAG into a global embedding value. In contrast to Decima,

98 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

Fig. 4. In this framework, a transformer integrates with a GNN for node feature extraction e𝑖𝑣 , DAG embedding y𝑖 , and global embedding z, unlike
Decima, which directly uses GNN for aggregation. For all these embeddings, a simple classification layer is employed, consisting of a max
pooling operation followed by a fully connected layer. This approach is used to calculate two key scores: q𝑖𝑣 , which represents the score
for selecting a node to schedule, and w𝑖

𝑙
, which determines the parallelism limit for the job associated with that node. Additionally, in this

framework, we reduce parameters by optimizing layer ratios and integrating batchnorm with convolution layers for better efficiency.

both encoders use max-pooling as the aggregation method,
and the aggregation process is represented as follows:{

x1
𝑣 , x2

𝑣 , . . .
}
↦−→

{
y1, y2, . . .

}
↦−→ z (5)

these values obtained from the encoder provide the condi-
tions for the policy network to calculate the score 𝑞𝑖 of the
𝑖th sampled nodes to be scheduled, and the score 𝑤𝑖 of the
sampled node jobs with parallelism constraints.

The node selection network takes as input the embed-
ding vectors of all runnable nodes and outputs their corre-
sponding scores. It is implemented as a fully connected
neural network with two hidden layers, each comprising
64 units, and an output layer containing 5 units. For each
runnable node 𝑛𝑖 , the network computes a score 𝑠𝑖 , reflecting
its scheduling priority. The computation of 𝑠𝑖 is governed
by (6). Decima’s policy network utilizes these scores to de-
termine the selection probability of each runnable node, as
defined by (7). Subsequently, a softmax layer is applied to
select the scheduling node 𝑣 by evaluating the probabilities
across all runnable nodes. The node selection network is
trained using reinforcement learning techniques.

𝑞𝑖𝑣 ≜ 𝑞
(
x𝑖𝑣 , y𝑖 , z

)
, (6)

𝑃(node = 𝑣) =
exp

(
𝑞𝑖𝑣

)∑
𝑢∈A𝑡 exp

(
𝑞
𝑗 (𝑢)
𝑢

) (7)

where 𝑗 (𝑢) represents the job assigned to node 𝑢, and A𝑡 ,
the set of nodes available for scheduling at time 𝑡, defines

a smaller action space. For each job 𝑖, the policy network of
Decima# also employs another scoring function to calculate
the score𝑤𝑙 = 𝑤(y𝑖 , z, 𝑙) , which assigns the parallelism limit
𝑙 to job 𝑖. The job parallelism limit computation process is
similar to the process of obtaining node 𝑣.

4.3 Design Reward Functions
Since our algorithm utilizes neural networks to schedule

information processing and select appropriate nodes, these
neural networks must be trained. When training a scheduling
algorithm, it is difficult to determine which scheduling action
is optimal; therefore, supervised learning methods are not ap-
plicable in this case. On the contrary, reinforcement learning
can dynamically update the scheduling algorithm based on
its results, thereby gradually improving performance. There-
fore, we employ a reinforcement learning algorithm to train
the neural network by adjusting its hyperparameters.

Firstly, we incorporate the use of time penalties, to cal-
culate the waiting time in the queue, which can be selected
as

𝑅𝐾 = −(𝑡𝑘 − 𝑡𝑘−1) ∗ numdag (8)

where 𝑡𝑘 is the time of the 𝑘 th scheduling event and numdag
represents the number of DAG applications in the system
between 𝑡𝑘−1 and 𝑡𝑘 .

In addition, We also define the machine usage rate as
in (9), which evaluates the percentage of utilization of the

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 99

currently used machines, and the addition of this incentive
mechanism allows the agent to allocate more unused ma-
chine resources to the workload, thereby increasing machine
utilization.

𝑅U = 𝐾𝑢 ∗ −
∑︁
𝑑

∑︁
𝑚∈𝑀𝑢

|𝑈𝑚 (𝑡, 𝑑) | (9)

where 𝑅U is under-utilization penalty, 𝑀𝑢 denotes the set of
machines currently in use, and 𝑈𝑚 (𝑡, 𝑑) denotes the unused
resource for machine m at time t across resource dimension
𝑑. The calibration of weight 𝐾𝑢 in the penalty function
also helps in teaching the scheduler to switch between highly
optimum placement mode (when less incoming scheduling
requests are expected) to a less optimum placement mode
(when burst of scheduling requests are expected to hit the
cluster). Decima# can have different penalty coefficients for
different resource dimensions.

Decima# utilizes the sequential continuous-time dis-
counted reward presented in Decima++. The reward function
is defined as

𝑅(𝑠, 𝑎, 𝑠′)total = −
∫ 𝑡 ′𝑠

𝑡𝑠

e−𝛽 (𝑡−𝑡𝑠) (𝑅𝑘 + 𝑅U)d𝑡

= − 1
𝛽

∑︁
𝑗∈𝐽𝑠∪𝐽𝑠′

[exp
(
−𝛽 × (max{𝑡a𝑗 ,𝑠 , 𝑡𝑠} − 𝑡𝑠)

)
− exp

(
−𝛽 × (min{𝑡c𝑗 ,𝑠′ , 𝑡𝑠′ } − 𝑡𝑠)

)
] (𝑅𝑘 + 𝑅U).

(10)

The reward generated by taking action 𝑎 in state 𝑠 to
state 𝑠′, where 𝛽 is a continuous discount factor, 𝛽 ≧ 0, can
be easily decomposed into the cumulative form of the reward
function. 𝑡 represents the current time, indicating the real-
time progress within the simulation. 𝐽 denotes the subset of
currently active jobs and 𝑁 𝑗 represents the maximum number
of events (𝐽),{ 𝑗 ∈ [𝑁 𝑗] : 𝑡 ∈ [𝑡a

𝑗
, 𝑡c
𝑗
]}, It signifies the subset

of active tasks within the simulation, where each job j with
an index from 1 to 𝑁 𝑗 is considered active if its execution time
falls between its arrival time (𝑡a

𝑗
) and completion time (𝑡c

𝑗
).

If job 𝑗 is still active in the simulation, its completion time is
indicated as infinite. The reinforcement learning algorithm
attempts to maximise the reward for each action, thus reduc-
ing scheduling as training proceeds, the interval and number
of DAG applications running in the system decreases. As
a result, the average training time can be effectively reduced.

4.4 Adaptive Resource Scheduling Algorithm
Proximal Policy Optimization (PPO) [33] is a policy

gradient method, whose loss function formulated as follows
𝐿CLIP (𝜋) = E

[
min(𝑟𝑠,𝑎 (𝜋)𝐴𝜋old (𝑠, 𝑎)),

F (𝑟𝑠,𝑎 (𝜋), 𝜖)𝐴𝜋old (𝑠, 𝑎))
] (11)

where 𝑟𝑠,𝑎 (𝜋) = 𝜋𝜃 (𝑎 |𝑠)
𝜋old (𝑎 |𝑠) is an importance sampling ratio,

𝐴𝜋old is an advantage estimate (e.g., = 𝑅 − �̂� 𝜋 (𝑠𝑘)) and
𝜖 ∈ [0, 1] is a hyperparameter, which 𝑉 calculated by base-
line. To reduce variance, Decima# inputs the relevant base-
line for Monte Carlo dominance estimation as in the follow-
ing (12).

𝑉 𝜋 (𝑠, 𝜉) = E𝜏∼𝜋 | 𝜉

[∞∑︁
𝑘=1

e−𝛽𝑡𝑘𝑅

����� 𝑠1 = 𝑠

]
(12)

This is the expected cumulative time penalty and un-
used resource penalty spent by the job during execution and
waiting, after discounting, the input-related baseline becomes

Moreover, PPO adopts the actor-critic [34] method,
where the critic’s estimate optimizes the policy 𝜋(𝑎 |𝑠; 𝜃),
also referred to as the actor parameterized by 𝜃. Following
this, the policy parameters can be updated using the gradient
of the agent objective as 𝜃𝑡+1 = 𝜃𝑡 + 𝛽∇𝐿CLIP (𝜃𝑡), where 𝛽 is
the step size. The advantage of defining such a loss function is
that, through the importance sampling rate, data reuse can be
achieved so that multiple policy updates can be made in each
training iteration, similar to mini-batch stochastic gradient
ascent over multiple iterations. In addition, clipping ensures
that 𝜃 is reasonably close to 𝜃old, thus ensuring that updates
are restrained. Therefore, we delve into the clip mechanism
in detail. In PPO, F is defined as

F PPO (
𝑟𝑠,𝑎 (𝜋), 𝜖

)
=

1 − 𝜖 𝑟𝑠,𝑎 (𝜋) ≤ 1 − 𝜖
1 + 𝜖 𝑟𝑠,𝑎 (𝜋) ≥ 1 + 𝜖
𝑟𝑠,𝑎 (𝜋) otherwise

. (13)

Algorithm 2 PPOG algorithm for training Decima#.
1: Initialize policy parameters 𝜃 and best state
2: for each training iteration do
3: for 𝑗 = 1, . . . , 𝑀 (number of training jobs) do
4: Sample time limit for job 𝑗: 𝑡max

𝑗
∼ exp(1/𝑡max)

5: Generate job sequence 𝛏 𝑗 with job arrivals before 𝑡max
𝑗

6: for 𝑖 = 1, . . . , 𝑁 (number of workers) do
7: Collect trajectory 𝛕𝑖 𝑗 by running policy 𝜋𝜃 on job sequence

𝛏 𝑗 until all jobs are completed or time limit 𝑡max
𝑗

is reached
8: end for
9: end for

10: Compute discounted returns for each trajectory 𝑅𝑖 𝑗total using decay
factor 𝛽

11: Fit return estimates 𝑅𝑖 𝑗 (𝑡) to time steps 𝑡𝑖 𝑗
𝑘

within each trajectory
12: Calculate baseline 𝑏𝑖 𝑗

𝑘
for each job sequence 𝛏 𝑗

13: Estimate advantage 𝐴𝑖 𝑗
𝑘

= 𝑅
𝑖 𝑗

total − 𝑏
𝑖 𝑗

𝑘
14: Reset best state if necessary:
15: if 𝑅𝑖 𝑗total > best_state then
16: best_state← 𝑅

𝑖 𝑗

total
17: Store current policy as best policy: 𝜃best ← 𝜃

18: end if
19: Store current policy as old policy: 𝜃old ← 𝜃

20: for 𝐸 epochs do
21: Randomly partition collected trajectories into mini-batches B
22: for each mini-batch B do
23: Compute importance sampling ratios 𝑟 𝑖 𝑗

𝑘
(𝜃) for each sample

in B
24: Update policy parameters 𝜃 by minimizing the clipped surro-

gate loss:[
min

(
𝑟
𝑖 𝑗

𝑘
(𝜃)𝐴𝑖 𝑗

𝑘
, clip(𝑟 𝑖 𝑗

𝑘
(𝜃) , 1 − 𝜖 , 1 + 𝜖)𝐴𝑖 𝑗

𝑘

)]
25: end for
26: end for
27: end for

100 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

PPG [35] offers the benefits of training both policy net-
work and value function network using a common network,
allowing the features learned for each goal to enhance the op-
timization of the other goal. GePPO [36] seeks to enhance the
stability and efficiency of reinforcement learning algorithms
in practical decision-making scenarios by enhancing assur-
ances on sample reuse and providing theoretical backing.
PPORB [37] illustrates, based on some theoretical proofs,
that its ability to prevent out-of-range ratios from going fur-
ther out of range can be improved. The PPOS smoothing
mechanism, proposed in [38], improves the clipping method
and enhances convergence. Based on PPORB and PPOS, we
find a better family of curves to limit the magnitude of the
variation in the likelihood ratio.

We define this function in (14) with a modified struc-
ture to enhance the stability of constrained likelihood ratios
and gradient updates, incorporating the softsign activation
function as a key component of our approach.

F PPOG (
𝑟𝑠,𝑎 (𝜋), 𝜖 , 𝛼

)
=

−𝛼softsign(𝑟𝑠,𝑎 (𝜋) − 1) + 1 + 𝜀 + 𝛼softsign(𝜀)
𝑟𝑠,𝑎 (𝜋) ≤ 1 − 𝜀

−𝛼softsign(𝑟𝑠,𝑎 (𝜋) − 1) + 1 − 𝜀 − 𝛼softsign(𝜀)
𝑟𝑠,𝑎 (𝜋) ≥ 1 + 𝜀

𝑟𝑠,𝑎 (𝜋) otherwise

(14)

where 𝛼 > 0, the hyperparameter 𝛼 governs the scale of the
functional clipping, with larger values leading to a more pro-
nounced decrease in slope. Algorithm 2 shows in detail the
process of training decima# using this algorithm.

We demonstrate how the PPOG can restrict the likeli-
hood ratio and impose constraints on the stability of the gradi-
ent. Let 𝐿PPOG

𝑡 (𝜃) denote the corresponding objective func-
tion for sample (𝑠𝑡 , 𝑎𝑡); and let �̂�PPOG (𝜃) denote the overall
empirical objective. The PPOG function F PPOG (𝑟𝑡 (𝜃), 𝜖 , 𝛼)
generates a negative incentive when 𝑟𝑡 (𝜃) is outside of the
clipping range. Thus, it could somewhat neutralize the incen-
tive deriving from the overall objective �̂�PPOG (𝜃). For conve-
nience, we introduce the following notation. Given parameter
𝜃0, let 𝜃CLIP

1 = 𝜃0+𝛽∇�̂�CLIP (𝜃0), 𝜃PPOG
1 = 𝜃0+𝛽∇�̂�PPOG (𝜃0).

The study in this paper is conditioned on exceeding the like-
lihood ratio (𝑟𝑠,𝑎 > 1). The set of indexes of the samples
which satisfy the clipping condition is denoted as Ω = {𝑡 |1 ≤
𝑡 ≤ 𝑇, |𝑟𝑡 (𝜃0) − 1| ≥ 𝜖 and 𝑟𝑡 (𝜃0)𝐴𝑡 ≥ 𝑟𝑡 (𝜃old)𝐴𝑡 }.

Theorem 1 Suppose that 𝑡 ∈ Ω and 𝑟𝑡 (𝜃0) satisfies∑
𝑡 ′∈Ω⟨∇𝑟𝑡 (𝜃0), ∇𝑟𝑡′ (𝜃0)

[𝑟𝑡′ (𝜃0)]2
⟩𝐴𝑡 𝐴𝑡 ′ > 0 , then there exists some

𝛽 > 0 such that for any 𝛽 ∈ (0, 𝛽), we have��𝑟𝑡 (𝜃PPOG
1) − 1

�� < ��𝑟𝑡 (𝜃PPO
1) − 1

�� . (15)

Theorem 2 Suppose that 𝑡 ∈ Ω, we have two conclusions:

1. If 𝑟𝑡 (𝜃0) satisfies
∑
𝑡 ′∈Ω⟨∇𝑟𝑡 (𝜃0), ∇𝑟𝑡′ (𝜃0)

[𝑟𝑡′ (𝜃0)]2
−

∇𝑟𝑡 ′ (𝜃0)⟩𝐴𝑡 𝐴𝑡 ′ < 0 , then there exists some 𝛽 > 0
such that for any 𝛽 ∈ (0, 𝛽), we have��𝑟𝑡 (𝜃PPOG

1) − 1
�� > ��𝑟𝑡 (𝜃PPORB

1) − 1
�� . (16)

2. If 𝑟𝑡 (𝜃0) satisfies
∑
𝑡 ′∈Ω⟨∇𝑟𝑡 (𝜃0), ∇𝑟𝑡′ (𝜃0)

[𝑟𝑡′ (𝜃0)]2
−

sec2 (𝑟𝑡 ′ (𝜃0) − 1)∇𝑟𝑡 ′ (𝜃0)⟩𝐴𝑡 𝐴𝑡 ′ < 0 , then there
exists some 𝛽 > 0 such that for any 𝛽 ∈ (0, 𝛽), we
have ��𝑟𝑡 (𝜃PPOG

1) − 1
�� > ��𝑟𝑡 (𝜃PPOS

1) − 1
�� . (17)

The proofs are in Appendix A and Appendix B.

Figure 5 illustrates the CLIP function 𝐿CLIP of the like-
lihood ratio 𝑟 for PPO and PPOG, focusing on positive ad-
vantages (top) and negative advantages (bottom). The black
circle on each plot indicates the starting point for optimiza-
tion, where 𝑟 = 1. When 𝑟 exceeds the clipping range, the
slope of 𝐿CLIP for PPOG follows the tanh function, where as
the slope of 𝐿CLIP for PPO becomes flattened. Theorem 1
demonstrates that the PPOG algorithm improves the capabil-
ity to prevent out-of-range ratios from going further out of
range, because if 𝛼 is sufficiently large, the new strategy is
guaranteed to be confined to the specified range. Theorem 2
shows that under certain conditions (similar to Lipschitz con-
tinuous), the PPOG method with softsign converges more
rapidly than PPOS and PPORB.

(a) 𝐴 > 0

(b) 𝐴 < 0

Fig. 5. Plots showing the clip function 𝐿CLIP of the likelihood
ratio 𝑟 ≜ 𝑟𝑠,𝑎 of PPO and PPOG, for positive advantages
(top) and negative advantages (bottom).

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 101

5. Experiments and Analysis

5.1 Experimental Settings
The proposed work is experimented on Pytorch. The

simulation scenarios are written in Python. The experiment
is launched on a desktop computer with the following hard-
ware configuration:

• CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz

• SSD: Samsung SSD 870 EVO 500GB

• GPU: V100, 32GB HBM2

• Operating System: Ubuntu 18.04 LTS

We initially train the model using a configuration of 50
executors, a job arrival cap of 200, and a job arrival rate of
4×10−5. Multiple optimized models are trained using various
reinforcement learning techniques and different DAG-GNN
aggregation methods.

These models are then tested with 10 executors and
a job arrival cap of 50, as well as other parameter combina-
tions. Their performance is compared against the baseline
algorithms listed in the Tab. 2.

5.2 Design Concurrent Workload
Batched arrivals. In this study, we adopt a batch arrival

strategy by randomly sampling jobs from six distinct input
sizes (2, 5, 10, 20, 50, and 100 GB) alongside all 22 TPC-
H [39] queries. This approach results in a heavy-tailed dis-
tribution. A batch random jobs, which were not included in
the training phase, is introduced simultaneously, and we mea-
sure their average job completion time (JCT). This methodol-
ogy enables a thorough analysis of the system’s performance
when handling such workloads and facilitates optimization
efforts.

Continuous arrivals. We sample TPC-H jobs of vary-
ing sizes and model their arrival times as Poisson processes.
This methodology facilitates a comparative analysis of the
job arrival rate under cluster load in relation to different
heuristic-based scheduling strategies.

Multiprocessing training. The multi-process scheme
used for training Decima employs multiple actor processes to
collect experience and compute gradients in parallel, while
a central process updates the model parameters. When the
number of GPUs is fewer than the number of actor pro-
cesses, this setup results in reduced GPU throughput due
to limited batch processing capabilities and competition for
GPU resources. To enhance throughput, they adopt an "actor-
learner" scheme, wherein the actors are solely responsible for
collecting experience, while the learner manages the learn-
ing process. This approach not only improves GPU utiliza-
tion but also facilitates the integration of experiences from
multiple actors, making it easier for PPO to adapt to more

effective learning. However, since Decima++ estimates the
value function rather than learning it, synchronization be-
tween the actors and the learner is necessary. In comparison,
Decima# employs a complex, multi-layer transformer to pro-
cess DAG information, which requires a longer experience-
gathering process and more intricate computational logic.
Consequently, Decima# has high CPU core requirements,
leading to the introduction of a concurrent processing scheme
known as "cooperative".

5.3 Performance Comparison
In this section, we will conduct two sets of experiments.

The first set aims to evaluate the training time of Decima# un-
der different objectives. The second set focuses on assessing
the average work duration of Decima# across various cluster
configurations, comparing its performance against baseline
algorithms in a simulated environment.

5.3.1Minimum Training Time (Problem 1)
Reinforcement learning (RL) agents must encounter

continuous job arrivals during training. However, provid-
ing long sequences of jobs often leads to inefficiencies and
significant wastage of training time. To address this issue, it
is essential to implement earlier reset times (see Fig. 6).

Algorithm Description
Random Random scheduling of jobs without priority

Heuristic
algorithms

FCFS (first come first service),
SJF (Shortest Job First),
HRRN (Highest Response Ratio Next)

Tetris
A cluster scheduling algorithm proposed by Microsoft,
which matches the multi-resource task requirements
to the resource availability of the machine

Fair
Simple fair scheduling, which gives each job an equal
fair share of the executors and round-robins over tasks
from runnable stages to drain all branches concurrently

Decima A representative deep RL-based resource scheduling
method

Decima++ Decima-based replacement of training methods
and DAG handling

Tab. 2. Comparison of scheduling algorithms.

Fig. 6. Continuous input of large work sequences causes inef-
ficiencies, which can be minimized by periodically re-
setting the model to its optimal state; this reduces queue
buildup and optimizes training times based on the chosen
reset intervals.

102 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

Scheduler Backbone Transformer layer FC type FC layer dims RL-methods Convergence time
Decima GNN N/A MLP 256→256 PG 8.5h ± 25min

Decima# (ours) GNN N/A MLP 256→256→128 PPOG 5.3h ± 36min
Decima# (ours) GNN-Transformer (Resnet18) 4 × 8 MLP 256→256→128 PPORB 4.6h ± 47min
Decima# (ours) GNN-Transformer (Resnet50) 3 × 4 LSTM 384→256→256 PPOS 7.5h ± 37min
Decima# (ours) GNN-Transformer (Gated) 6 × 8 MLP 512→256→128 PPOG 3.0h ± 18min
Decima# (ours) GNN-Transformer (Gated) 3 × 4 GRU 512→256→128 PPO 3.5h ± 27min

Decima++ GNN N/A MLP 512→256→128 PPO 4.2h ± 43min
Decima++ GNN-ATT 3 × 4 GRU 512→256→128 VPG 3.8h ± 28min

Tab. 1. Scheduler convergence time comparison. In this experiment, different models were trained, including LSTM (Long Short-Term Memory
networks) and GRU (Gated Recurrent Units), which represent two types of recurrent neural network architectures. MLP (Multilayer
Perceptron) refers to a standard fully connected layer model. It is important to note that N/A indicates "not available" data. In the
Spark simulation environment, models were trained according to the experimental parameters mentioned in the previous section until
convergence, and the approximate training times were recorded for comparison.

(a) TPC-H query

(b) Negative reward

Fig. 7. After time 𝑡 , we sample two job arrival sequences from
a Poisson arrival process (with an average inter-arrival
time of 10 seconds). These sequences include randomly
sampled TPC-H queries.

Fig. 8. Smooth training curve with horizontal axis representing
training time in hours and vertical axis representing the
number of concurrent jobs.

As training progresses, agents develop stronger policies
that effectively stabilize the job queue. Therefore, this paper
emphasizes the importance of earlier reset times to enhance
training efficiency while maintaining queue stability through
more robust policies.

Fig. 9. Spark-v |O | = 25, where |O | represents the dimension
of observation. Decima# reward changes under different
training algorithms.

In this case, Decima# uses 𝑅total as the reward function.
Figure 7 illustrates how different job sizes result in varying
reward values. It can be observed that smaller job sizes lead
to smaller rewards, while larger job sizes correspond to larger
rewards.

Since heuristic baseline algorithms do not require train-
ing, no comparisons are needed in this section. To understand
why Decima# outperforms Decima++, we extracted concur-
rent job data over time for comparison with training duration,
as illustrated in Fig. 8. The results clearly indicate that Dec-
ima# exhibits superior learning speed.

We can observe from Tab. 1 that Decima# significantly
reduces training time through various neural network struc-
ture configurations. Furthermore, the main goal in reinforce-
ment learning is to maximize the cumulative reward of a given
trajectory. As shown in Fig. 9, Decima# cumulative rewards
using different algorithms all increase with training time.

If the decisions of some samples are much better than
the average then there may still be room for further improve-
ment in the current strategy. Otherwise, the model has stabi-
lized as the gap becomes smaller.

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 103

(a) Fair scheduling. (b) Decima++(GNN-ATT) scheduling. (c) Decima scheduling. (d) Decima# scheduling.

Fig. 10. Decima# reduces the average job duration for 50 random TPC-H queries by 44% compared to the fair scheduler, 33% over Decima++,
and 19% over Decima in a cluster with 10 task slots (executors). The visualization uses different colors to represent various queries, with
vertical red lines marking job completions and purple segments indicating idle periods.

5.3.2Minimum Average Job Duration (Problem 2)
This section focuses on the average job duration for Dec-

ima#, examining how its resource scheduling optimizations
contribute to faster task completion times and improved sys-
tem efficiency. Decima++ demonstrates strong performance
in training time and convergence speed, though it falls short
of Decima in minimizing average job duration. Figure 10 il-
lustrates the scheduling strategies used: (a) a fairer, more re-
alistic scheduler that dynamically distributes task slots among
jobs; (b) Decima++ scheduler using topology messaging; (c)
Decima’s learning-based scheduling approach; and (d) Dec-
ima#’s scheduling method.

We evaluated the average job duration over 50 tasks.
By leveraging graph structures, the average job duration was
reduced by 44% compared to the fair scheduler, achieved
through faster short-task completion and increased parallel
efficiency. Decima# operates near its optimal parallelism
point, resetting to maintain its best state, achieving a 19%
reduction in average job duration compared to Decima and
33% compared to Decima++.

Moreover, we benchmark the model’s performance us-
ing the TPC-H dataset [39]. To validate the model’s ef-
fectiveness, we conducted experiments in scenarios closely
resembling real-world scheduling conditions, testing with
various ratios of executors to jobs. Specifically, for Dec-
ima#(a), an initial ratio of 1:20 was adopted. Additionally,
we observed that under excessively high load conditions, the
average job duration significantly increases, highlighting po-
tential performance bottlenecks. Subsequently, the ratio was
reduced to 1:10 for Decima#(b). Finally, for Decima#(c) and
Decima#(d), the ratios were further adjusted to 1:9 and 1:10,
respectively, to simulate higher load levels. We also observed
that, at the same ratio, for example, comparing Decima#(b)
with Decima#(d), an increase in the number of executors
leads to a reduction in the average job duration. The exper-
imental results demonstrate that Decima# consistently out-
performs other algorithms across different load conditions,
showcasing superior adaptability and performance. Detailed
results are presented in Table 3.

Figure 11(a) demonstrates that Decima# sustains
a lower number of concurrent jobs and a shorter average
job duration compared to Decima (Fig. 11(b)), especially un-

der high load. Performance in high-load scenarios is critical
for batch clusters, as they often face extended job queues. In
such cases, optimized scheduling decisions can significantly
reduce the need for excessive resource allocation during
workload spikes, maximizing both efficiency and resource
utilization. The data presented in Fig. 11 illustrates how
Decima#’s approach to managing job concurrency and du-
ration optimizes system resource utilization. In comparison
to Decima, Decima# demonstrates a more effective mecha-
nism for reducing job contention, resulting in a more efficient
distribution of resources and improved workload balancing.
This capability allows Decima# to accommodate a higher
volume of concurrent jobs without risking system overload,
leading to enhanced overall throughput and a reduction in
job turnaround times. Such improvements contribute to the
system’s ability to maintain high performance under varying
workload conditions, reinforcing the efficiency and scalabil-
ity of Decima# in large-scale job processing environments.

Moreover, Decima#’s adaptive scheduling dynamically
adjusts to load variations, optimizing resource allocation
across job phases. By minimizing queuing and maintain-
ing efficient resource use, it prevents bottlenecks, enhances
stability, and ensures responsive performance, making the
system more robust and scalable for fluctuating job arrival
rates.

Model Executors Jobs AJD(s)
Fair 10 200 3483.3

Decima++ 10 200 3136.7
Decima 10 200 2891.5

Decima#(a) 10 200 2620.2
Fair 10 100 1716.3

Decima++ 10 100 1557.5
Decima 10 100 1320.9

Decima#(b) 10 100 1062.8
Fair 100 900 37.8

Decima++ 100 900 35.2
Decima 100 900 33.8

Decima#(c) 100 900 31.5
Fair 200 2000 30.35

Decima++ 200 2000 28.52
Decima 200 2000 26.6

Decima#(d) 200 2000 24.75

Tab. 3. Performance of the model in terms of the number of jobs
completed with varying numbers of executors.

104 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

(a) The number of jobs completed varies over time

(b) Time as a function of average job duration

Fig. 11. The data files recorded in TensorBoard captured a time-
series analysis of arrival times for consecutive TPC-H
jobs within the Spark cluster (as illustrated in figures
a and b). The analysis reveals that, in terms of job dura-
tion, this approach outperforms Decima by completing
jobs more quickly.

Fig. 12. Performance for different objectives.

Fig. 13. Added the latency reduction ratio for each structural im-
provement step based on Decima#.

Figure 12 illustrates the performance of two objectives
(average job slowdown and average job duration) when a clus-
ter with a large number of executors handles workloads.

It is important to note that Decima# uses different re-
ward functions for each objective (see Sec 4.3 for details).
Consistent with previous results, we find that Decima# out-
performs other machine learning-based algorithms, while fair
scheduling is superior to other heuristic methods. However,
when Decima# is specifically trained to optimize each objec-
tive using the appropriate reward function, it achieves the best
performance for each goal. Thus, Decima# can be effectively
customized to target different objectives.

5.3.3Measurement of Processing Latency
The inference speed of a model can certainly be opti-

mized using metrics such as floating point operations (FLOP)
or model size. However, these metrics have a weak corre-
lation with the actual latency in edge cloud environments or
on edge devices [40]. To better address the needs of edge
applications, we have shifted the focus of our model evalua-
tion to latency-related metrics, emphasizing that our design
is specifically tailored for edge environments.

Given the stringent responsiveness requirements of edge
cloud environments, we prioritized designing models with
high responsiveness and conducted a detailed latency ana-
lysis at every stage of model operation. Figure 13 illustrates
the entire testing process, highlighting the impact of network
design details at each stage on latency. All models were
trained and validated using the TPC-H dataset. By systemat-
ically analyzing the impact of each design decision on latency
and optimizing them step by step, we minimized processing
latency and ensured optimal performance, making our mod-
els well-suited for deployment in latency-sensitive edge cloud
applications.

5.3.4Overall Summary
Through a series of experiments conducted in a simu-

lated environment, we concluded that Decima# outperforms
all baseline methods in terms of average training convergence
time and average working duration. Specifically, Decima#
demonstrates a significant improvement in training conver-
gence speed, achieving a 56% increase compared to state-
of-the-art algorithms. Additionally, it reduces the average
working time by 19%, highlighting its efficiency in resource
scheduling. These findings indicate that Decima# not only
accelerates the training process but also optimizes the oper-
ational efficiency of the tasks at hand. The reduced working
time implies that resources are utilized more effectively, al-
lowing for quicker turnaround in data-intensive applications.
This efficiency can be crucial in edge computing scenarios,
where rapid responses and resource optimization are essen-
tial for meeting the demands of real-time data processing. In
designing Decima#, a series of deliberate steps were taken to
create a lightweight network and reduce latency. The model
architecture was optimized to minimize computational over-
head by adopting efficient network structures with fewer pa-

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 105

rameters, simplified layers, and faster activation functions.
These design choices not only enhanced the model’s compu-
tational efficiency but also preserved its accuracy. Looking
forward, we plan to further streamline the model using tech-
niques such as model pruning, quantization, and knowledge
distillation. These optimizations will accelerate inference
speeds and reduce memory consumption, making the model
even more suitable for real-time edge computing tasks.

6. Conclusion
In this paper, we present Decima#, an advanced re-

source scheduling framework designed to enhance the per-
formance and user experience of cloud and edge data centers.
By incorporating constraint-gradient-based DAG optimiza-
tion, multithreaded scheduling, transformer techniques, and
lightweight network structures, Decima# improves schedul-
ing efficiency and adapts to diverse workloads. Extensive
simulations conducted in Spark demonstrate its robustness
in real-world scenarios, while curriculum learning enhances
the model’s generalization, enabling it to handle complex
scheduling tasks in dynamic environments. Looking ahead,
future work will focus on refining Decima# to achieve more
precise scheduling and exploring its integration within edge-
cloud environments. Adapting Decima# to support AI-driven
workloads and emerging technologies like 5G and edge AI
will ensure its continued relevance, enabling it to meet the
evolving demands of next-generation cloud and edge infras-
tructures. Furthermore, expanding Decima#’s scalability
will be critical to handling the growing volume of data and
increasing complexity in future applications. The frame-
work’s adaptability will also be crucial in supporting a wide
range of industries, from autonomous systems to real-time
data analytics, ensuring its versatility and long-term impact.

Acknowledgments
The authors would like to thank the anonymous re-

viewers and the Associate Editor. This work was sup-
ported by the Science and Technology Development Project
of Jilin Province (20240701127FG), the Research Project of
Jilin University of Finance and Economics (2023YB035 and
2024LH011), and the National Natural Science Foundation
of China (12271201). We also thank all participants for their
contributions.

References

[1] BELOGLAZOV, A., BUYYA, R. Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints. IEEE Transactions on Paral-
lel and Distributed Systems, 2012, vol. 24, no. 7, p. 1366–1379.
DOI: 10.1109/TPDS.2012.240

[2] GOUDARZI, H., GHASEMAZAR, M., PEDRAM, M. SLA-based
optimization of power and migration cost in cloud computing. In 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). Ottawa (Canada), 2012, p. 172–179.
DOI: 10.1109/CCGrid.2012.112

[3] ASSI, C., AYOUBI, S., SEBBAH, S., et al. Towards scal-
able traffic management in cloud data centers. IEEE Transac-
tions on Communications, 2014, vol. 62, no. 3, p. 1033–1045.
DOI: 10.1109/TCOMM.2014.012614.130747

[4] HU, J., GU, J., SUN, G., et al. A scheduling strategy on load bal-
ancing of virtual machine resources in cloud computing environ-
ment. In 2010 3rd International Symposium on Parallel Architectures,
Algorithms and Programming. Liaoning (China), 2010, p. 89–96.
DOI: 10.1109/PAAP.2010.65

[5] LEINBERGER, W., KARYPIS, G., KUMAR, V., et al. Load bal-
ancing across near-homogeneous multi-resource servers. In Proceed-
ings 9th Heterogeneous Computing Workshop (HCW 2000). Cancun
(Mexico), 2000, p. 60–71. DOI: 10.1109/HCW.2000.843733

[6] SHAW, S. B., SINGH, A. K. A survey on scheduling and
load balancing techniques in cloud computing environment.
In 2014 International Conference on Computer and Communi-
cation Technology (ICCCT). Allahabad (India), 2014, p. 87–95.
DOI: 10.1109/ICCCT.2014.7001474

[7] YANHAO, Z., ABHISHEK, N. V., GURUSAMY, M. RAVEN: Re-
source allocation using reinforcement learning for vehicular edge
computing networks. IEEE Communications Letters, 2022, vol. 26,
no. 11, p. 2636–2640. DOI: 10.1109/LCOMM.2022.3196711

[8] ZHOU, Z., LIU, P., FENG, J., et al. Computation resource al-
location and task assignment optimization in vehicular fog com-
puting: A contract-matching approach. IEEE Transactions on
Vehicular Technology, 2019, vol. 68, no. 4, p. 3113–3125.
DOI: 10.1109/TVT.2019.2894851

[9] DOMANAL, S. G., GUDDETI, R. M. R., BUYYA, R. A hybrid
bio-inspired algorithm for scheduling and resource management in
cloud environment. IEEE Transactions on Services Computing, 2017,
vol. 13, no. 1, p. 3–15. DOI: 10.1109/TSC.2017.2679738

[10] LI, R., WANG, C., ZHAO, Z., et al. The LSTM-based advantage
actor-critic learning for resource management in network slicing with
user mobility. IEEE Communications Letters, 2020, vol. 24, no. 9,
p. 2005–2009. DOI: 10.1109/LCOMM.2020.3001227

[11] MISHRA, K., RAJAREDDY, G. N. V., GHUGAR, U., et al. A col-
laborative computation and offloading for compute-intensive and
latency-sensitive dependency-aware tasks in dew-enabled vehicular
fog computing: A federated deep Q-learning approach. IEEE Trans-
actions on Network and Service Management, 2023, vol. 20, no. 4,
p. 4600–4614. DOI: 10.1109/TNSM.2023.3282795

[12] LIU, W. X., LU, J., CAI, J., et al. DRL-PLink: Deep reinforce-
ment learning with private link approach for mix-flow scheduling in
software-defined data-center networks. IEEE Transactions on Net-
work and Service Management, 2021, vol. 19, no. 2, p. 1049–1064.
DOI: 10.1109/TNSM.2021.3128267

[13] SHI, J., DU, J., WANG, J., et al. Priority-aware task offloading
in vehicular fog computing based on deep reinforcement learning.
IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 12,
p. 16067–16081. DOI: 10.1109/TVT.2020.3041929

[14] MAO, H., ALIZADEH, M., MENACHE, I., et al. Resource manage-
ment with deep reinforcement learning. In Proceedings of the 15th
ACM Workshop on Hot Topics in Networks. Atlanta (USA), 2016,
p. 50–56. DOI: 10.1145/3005745.3005750

[15] GUO, W., TIAN, W., YE, Y., et al. Cloud resource scheduling
with deep reinforcement learning and imitation learning. IEEE In-
ternet of Things Journal, 2020, vol. 8, no. 5, p. 3576–3586.
DOI: 10.1109/JIOT.2020.3025015

106 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

[16] MONDAL, S. S., SHEORAN, N., MITRA, S. Scheduling of time-
varying workloads using reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence. Virtual Event, 2021,
vol. 35, no. 10, p. 9000–9008. DOI: 10.1609/aaai.v35i10.17088

[17] CHEN, X., YANG, L., CHEN, Z., et al. Resource alloca-
tion with workload-time windows for cloud-based software ser-
vices: A deep reinforcement learning approach. IEEE Transac-
tions on Cloud Computing, 2022, vol. 11, no. 2, p. 1871–1885.
DOI: 10.1109/TCC.2022.3169157

[18] MAO, H., SCHWARZKOPF, M., VENKATAKRISHNAN, S. B.,
et al. Learning scheduling algorithms for data processing clus-
ters. In Proceedings of the ACM Special Interest Group on
Data Communication. New York (USA), 2019, p. 270–288.
DOI: 10.1145/3341302.3342080

[19] GERTSMAN, A. A faster reinforcement learning approach to effi-
cient job scheduling in Apache Spark. Master’s Thesis, University of
Illinois at Urbana-Champaign, 2023, p. 1–48. [Online]. Available at:
https://hdl.handle.net/2142/121563

[20] MORABITO, R., COZZOLINO, V., DING, A. Y., et al. Consolidate
IoT edge computing with lightweight virtualization. IEEE Network,
2018, vol. 32, no. 1, p. 102–111. DOI: 10.1145/3341302.3342080

[21] ZHANG, J., GUO, H., LIU, J., et al. Task offloading in vehicular
edge computing networks: A load-balancing solution. IEEE Trans-
actions on Vehicular Technology, 2019, vol. 69, no. 2, p. 2092–2104.
DOI: 10.1109/TVT.2019.2959410

[22] XIONG, X., ZHENG, K., LEI, L., et al. Resource allocation based
on deep reinforcement learning in IoT edge computing. IEEE Jour-
nal on Selected Areas in Communications, 2020, vol. 38, no. 6,
p. 1133–1146. DOI: 10.1109/JSAC.2020.2986615

[23] ALFAKIH, T., HASSAN, M. M., GUMAEI, A., et al. Task offload-
ing and resource allocation for mobile edge computing by deep re-
inforcement learning based on SARSA. IEEE Access, 2020, vol. 8,
p. 54074–54084. DOI: 10.1109/ACCESS.2020.2981434

[24] ALAMEDDINE, H. A., SHARAFEDDINE, S., SEBBAH, S., et
al. Dynamic task offloading and scheduling for low-latency IoT
services in multi-access edge computing. IEEE Journal on Se-
lected Areas in Communications, 2019, vol. 37, no. 3, p. 668–682.
DOI: 10.1109/JSAC.2019.2894306

[25] WANG, J. B., WANG, J., WU, Y., et al. A machine learn-
ing framework for resource allocation assisted by cloud com-
puting. IEEE Network, 2018, vol. 32, no. 2, p. 144–151.
DOI: 10.1109/MNET.2018.1700293

[26] CHEN, T., ZHANG, X., YOU, M., et al. A GNN-based supervised
learning framework for resource allocation in wireless IoT networks.
IEEE Internet of Things Journal, 2021, vol. 9, no. 3, p. 1712–1724.
DOI: 10.1109/JIOT.2021.3091551

[27] THONGLEK, K., ICHIKAWA, K., TAKAHASHI, K., et al. Im-
proving resource utilization in data centers using an LSTM-based
prediction model. In 2019 IEEE International Conference on Clus-
ter Computing (CLUSTER). Albuquerque (USA), 2019, p. 1–8.
DOI: 10.1109/CLUSTER.2019.8891022

[28] TULI, S., MAHMUD, R., TULI, S., et al. Fogbus: A blockchain-
based lightweight framework for edge and fog computing. Jour-
nal of Systems and Software, 2019, vol. 154, p. 22–36.
DOI: 10.1016/j.jss.2019.04.050

[29] HU, B., ZHANG, K., LI, N., et al. Toward a theoretical foundation
of policy optimization for learning control policies. Annual Review
of Control, Robotics, and Autonomous Systems, 2023, vol. 6, no. 1,
p. 123–158. DOI: 10.1146/annurev-control-042920-020021

[30] BIANCHINI, M., GORI, M., SCARSELLI, F. Processing directed
acyclic graphs with recursive neural networks. IEEE Transac-
tions on Neural Networks, 2001, vol. 12, no. 6, p. 1464–1470.
DOI: 10.1109/72.963781

[31] SUTTORP, M. M., SIEGERINK, B., JAGER, K. J., et al. Graphi-
cal presentation of confounding in directed acyclic graphs. Nephrol-
ogy Dialysis Transplantation, 2015, vol. 30, no. 9, p. 1418–1423.
DOI: 10.1093/ndt/gfu325

[32] LUO, Y., THOST, V., SHI, L. Transformers over directed
acyclic graphs. In Advances in Neural Information Process-
ing Systems. Vancouver (Canada), 2024, p. 47764–47782.
DOI: 10.48550/arXiv.2210.13148

[33] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., et al. Prox-
imal policy optimization algorithms. arXiv, 2017, p. 1–12.
DOI: 10.48550/arXiv.1707.06347

[34] GRONDMAN, I., BUSONIU, L., LOPES, G. A. D., et al. A sur-
vey of actor-critic reinforcement learning: Standard and natural pol-
icy gradients. IEEE Transactions on Systems, 2012, vol. 42, no. 6,
p. 1291–1307. DOI: 10.1109/TSMCC.2012.2218595

[35] COBBE, K. W., HILTON, J., KLIMOV, O., et al. Phasic policy gradi-
ent. In International Conference on Machine Learning. Virtual Event,
2021, p. 2020–2027. DOI: 10.48550/arXiv.2009

[36] QUEENEY, J., PASCHALIDIS, Y., CASSANDRAS, C. G. General-
ized proximal policy optimization with sample reuse. In Advances
in Neural Information Processing Systems. Virtual Event, 2021,
p. 11909–11919. DOI: 10.48550/arXiv.2111.00072

[37] WANG, Y., HE, H., TAN, X. Truly proximal policy optimization.
In Uncertainty in Artificial Intelligence, PMLR. Virtual Event, 2020,
p. 113–122. DOI: 10.48550/arXiv.1903.07940

[38] ZHU, W., ROSENDO, A. A functional clipping approach for policy
optimization algorithms. IEEE Access, 2021, vol. 9, p. 96056–96063.
DOI: 10.1109/ACCESS.2021.3094566

[39] BONCZ, P., NEUMANN, T., ERLING, O. TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark. In Tech-
nology Conference on Performance Evaluation and Benchmarking.
Trento (Italy), 2013, p. 61–76. DOI: 10.1007/978-3-319-04936-6

[40] KAUR, K., GARG, S., AUJLA, G. S., et al. Edge computing in the in-
dustrial internet of things environment: Software-defined-networks-
based edge-cloud interplay. IEEE Communications Magazine, 2018,
vol. 56, no. 2, p. 44–51. DOI: 10.1109/MCOM.2018.1700622

About the Authors . . .

Youling FENG received her Doctor of Science degree from
the School of Mathematics, Jilin University. Her research fo-
cuses on big data, artificial intelligence and operator theory.

Mengzhao LI (corresponding author) is a master’s student
at the Jilin University of Finance and Economics, with a pri-
mary research focus on reinforcement learning and edge com-
puting.

Jun LI received his Doctor of Science degree from the School
of Computer Science, Jilin University. His research interests
include artificial intelligence and computer vision.

Yawei YU is a master’s student at the Jilin University of
Finance and Economics, with a primary research focus on
multimodal sentiment analysis and graph neural network.

RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 107

Appendix A: Proof of Theorem1

Proof 1 Consider 𝜙(𝛽) = 𝑟𝑡 (𝜃0 + 𝛽∇�̂�PPOG (𝜃0)) − 𝑟𝑡 (𝜃0 +
𝛽∇�̂�CLIP (𝜃0)), by chain rule, we have

𝜙′ (0) = ∇𝑟⊤𝑡 (𝜃0) (∇�̂�PPOG (𝜃0) − ∇�̂�CLIP (𝜃0))

= −𝛼
∑︁
𝑡 ′∈Ω
⟨∇𝑟𝑡 (𝜃0),∇𝑟𝑡 ′ (𝜃0)/[𝑟𝑡 ′ (𝜃0)]2⟩𝐴𝑡 ′ . (A1)

In �̂�CLIP, when CLIP = PPO, for these case where
𝑟𝑡 (𝜃0) ≥ 1 + 𝜖 and 𝐴𝑡 > 0, we have 𝜙′ (0) < 0. Hence, there
exists 𝛽 > 0 such that for any 𝛽 ∈ (0, 𝛽)

𝜙(𝛽) < 𝜙(0).

Thus, we have 𝑟𝑡 (𝜃PPOG
1) < 𝑟𝑡 (𝜃CLIP

1). We obtain��𝑟𝑡 (𝜃PPOG
1)

�� < ��𝑟𝑡 (𝜃CLIP
1)

�� .
Similarly, for the case where 𝑟𝑡 (𝜃0) ≤ 1 − 𝜖 and 𝐴𝑡 < 0, we
also have

��𝑟𝑡 (𝜃PPOG
1) − 1

�� < ��𝑟𝑡 (𝜃CLIP
1) − 1

��.
Appendix B: Proof of Theorem2

Proof 2 For 𝜙(𝛽), as Theorem 1, when CLIP = PPORB, we
have
𝜙′ (0) = −𝛼

∑︁
𝑡 ′∈Ω
⟨∇𝑟𝑡 (𝜃0), (∇𝑟𝑡 ′ (𝜃0)/([𝑟𝑡 ′ (𝜃0)]2) − ∇𝑟𝑡 ′𝜃0)⟩𝐴𝑡 ′

(B1)
when CLIP = PPOS, we have

𝜙′ (0) = −𝛼
∑︁
𝑡 ′∈Ω
⟨∇𝑟𝑡 (𝜃0),

∇𝑟𝑡 ′ (𝜃0)
[𝑟𝑡 ′ (𝜃0)]2

− sec2 (𝑟𝑡 ′ (𝜃0) − 1)∇𝑟𝑡 ′ (𝜃0)⟩𝐴𝑡 ′ .
(B2)

In addition, when CLIP = PPORB or CLIP = PPOS,
for these case where 𝑟𝑡 (𝜃0) ≥ 1 + 𝜖 and 𝐴𝑡 > 0, we have
𝜙′ (0) > 0. Hence, there exists 𝛽 > 0 such that for any
𝛽 ∈ (0, 𝛽)

𝜙(𝛽) > 𝜙(0).
Thus, we have

𝑟𝑡 (𝜃PPOG
1) > 𝑟𝑡 (𝜃CLIP

1).

We obtain ��𝑟𝑡 (𝜃PPOG
1) − 1

�� > ��𝑟𝑡 (𝜃CLIP
1) − 1

�� .
Similarly, for the case where 𝑟𝑡 (𝜃0) ≤ 1 − 𝜖 and 𝐴𝑡 < 0, we
also have

��𝑟𝑡 (𝜃PPOG
1) − 1

�� > ��𝑟𝑡 (𝜃CLIP
1) − 1

��.
Appendix C: Detailed Description

Figure 14 illustrates the fitted trend of the average job
duration (AJD) as a function of the number of jobs and the
number of executors. The plot highlights how the job dura-
tion varies with changes in these two key variables, offering

insights into the relationship between workload (represented
by the number of jobs) and computational resources (indi-
cated by the number of executors). This trend is derived
from a model fitted to the data, which allows us to observe
the impact of scaling the number of jobs and executors on
the average job duration. The figure provides a clear visual
representation of how performance is influenced by these fac-
tors, helping to inform decisions regarding optimal resource
allocation and system efficiency.

To evaluate the effectiveness of our proposed method,
we use the widely recognized TPC-H benchmark dataset,
which is designed to simulate the workload of a retail product
supplier’s decision support system. We conduct the evalu-
ation in a Spark environment, enhancing performance with
Decima#. The dataset includes 22 complex SQL queries that
represent various business analysis tasks. The TPC-H dataset
features a comprehensive database schema that models vari-
ous entities, such as parts, suppliers, and orders, along with
their attributes. In this edge-cloud scenario, by applying
TPC-H queries within the Spark environment using Dec-
ima#, we can effectively assess the impact of task-oriented
Directed Acyclic Graphs (DAGs) on query performance in
a distributed setting. This allows us to identify potential
improvements in efficiency, reduce resource contention, and
optimize scheduling strategies for large-scale data processing
tasks (see Fig. 15).

Fig. 14. Performance optimization of average job duration with
varying numbers of jobs and executors.

Fig. 15. Spark’s TPC-H queries, where each node differs in the
number of tasks, task durations, and the sizes of input
and output data.

108 Y. FENG, M. LI, J. LI, ET AL., EDGE CLOUD RESOURCE SCHEDULING WITH DEEP REINFORCEMENT LEARNING

Decima# training scenario Average JCD (seconds)
Trained with 50× fewer jobs 340 ± 230
Trained with 100× more executors 36 ± 18

Tab. 4. In this test scenario, Decima#’s scheduler was used to
test the performance of the scheduler by controlling the
number of executors(10) and the number of jobs(900).

This study investigates the comparative dynamics be-
tween edge cloud and traditional cloud environments within
the context of Spark simulations, highlighting both the sim-
ilarities and inherent differences. While edge cloud can be
regarded as a form of cloud computing, its limited compu-
tational resources, such as reduced CPU cores and mem-
ory, render the Spark simulation environment at the edge
analogous to traditional cloud-based environments during
certain stages, particularly when interfacing with edge de-
vices. However, these similarities are overshadowed by sig-
nificant differences in terms of resource availability, com-
puting power, and latency, which are pivotal factors. In
particular, the constraints imposed by edge cloud environ-
ments manifest more acutely in areas such as task scheduling
and resource allocation, posing unique challenges due to the
scarcity of resources. To address these challenges, this re-
search introduces optimized resource scheduling algorithms
aimed at enhancing computational resource efficiency in edge

cloud settings, a problem that is less pronounced in traditional
cloud infrastructures.

Furthermore, this study utilizes the PyTorch framework,
differing notably from prior research like Decima, which re-
lies on TensorFlow. This choice not only shifts the toolset
but also impacts implementation and performance optimiza-
tion strategies. PyTorch’s dynamic computation graph pro-
vides crucial flexibility for designing and debugging complex
models, particularly in resource-constrained edge cloud en-
vironments. In such latency-sensitive scenarios, we focus
on lightweighting and optimizing models to ensure efficient
task execution. While sharing some experimental similari-
ties with earlier studies, this work emphasizes the efficient
execution of Spark simulations in edge clouds, addressing
challenges like limited resources, unstable networks, and
strict latency requirements. To overcome these, we introduce
strategies such as dynamic resource allocation, model pa-
rameter compression, and computational flow optimization,
enhancing Spark simulations’ efficiency and robustness. By
leveraging PyTorch’s strengths, this study not only achieves
methodological innovation but also offers valuable insights
for edge cloud research. Table 4 shows how the performance
of this agent compares to the performance of the agent trained
on the workload and cluster size in this test scenario.

