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Abstract. In order to achieve gridless azimuth and polariza-
tion parameter estimation, the polarization atomic norm min-
imization (P-ANM) algorithm is proposed. The polarization-
sensitive uniform circular array (P-UCA) consisting of con-
centered orthogonal loop and dipole (COLD) antennas is
considered in this paper for its stable estimation ability for
all 0◦ ∼ 360◦ range. The proposed method is capable of es-
timating the parameters with only single snapshot and over-
comes the grid mismatch. First, the the mathematical models
of signals received by the P-UCA are established and the
P-ANM algorithm is applied. Then, The P-UCA is mapped
into the virtual uniform linear array based on the Fourier
expansion. Subsequently, the dual method is employed to
solve the P-ANM model and determine the azimuths of the
signals. Ultimately, by reconstructing the signal vectors, the
polarization information can be inversely estimated based on
the relationship between the electrical and magnetic signals.
The simulations demonstrate that the proposed P-ANM al-
gorithm exhibits superior joint estimation ability for all the
azimuth and polarization parameters of the signals.

Keywords
Polarization Sensitive Array (PSA), Uniform Circu-
lar Array (UCA), Concentered Orthogonal Loop and
Dipole (COLD), Atomic Norm Minimization (ANM)

1. Introduction
Polarization is an important attribute of electromagnetic

waves, along with amplitude and phase. The utilization of
polarization information in array systems has been demon-
strated to markedly enhance the operating performance, in-
cluding robust detection capabilities and outstanding immu-
nity to interference [1]. Since the polarization sensitive array
(PSA) employs electromagnetic vector sensors (EMVS) in-
stead of conventional scalar sensors, it can simultaneously
sense the polarization and spatial information of the signals,
and then demonstrate superior identifying and tracking abil-

ities. Nowadays, the PSA plays an important role in various
industries, including radar detection [2], [3], aeronautics [4],
remote sensing [5], and others.

Signal parameter estimation is a crucial task for the
PSA, especially for the direction and polarization informa-
tion. Extensive research has been conducted on this topic
by scholars [6–9]. As with scalar array signal process-
ing, the traditional approach is to use spatial spectrum es-
timation techniques, such as the polarization Multiple Sig-
nal Classification (P-MUSIC) algorithm and the polariza-
tion Estimating Signal Parameter via Rotational Invariance
Techniques (P-ESPRIT) algorithm. Based on the quaternion
theory, the quaternion-MUSIC (Q-MUSIC) [10] algorithm,
the biquaternion-MUSIC (BQ-MUSIC) [11] algorithm were
proposed to deal with the polarization information. For the
ESPRIT method, the quaternion-ESPRIT (Q-ESPRIT) [12]
algorithm is also existing. The problem with the quater-
nion method is the limited improvement in estimation per-
formance compared with the P-MUSIC and P-ESPRIT. Until
now, the spectrum-based methods are still popular. In [13],
the augmented tensor-MUSIC (AT-MUSIC) was proposed
by expressing the signal models of the nested arrays as ten-
sors. And in [14], the augmented nested quaternion-MUSIC
(ANQ-MUSIC) was proposed by vectorizing the quaternion
covariance matrix of the difference co-arrays. The aug-
mented quaternion ESPRIT (AQ-ESPRIT) [15] was also pro-
posed to deal with the co-located crossed-dipole arrays.

However, the spectrum-based methods require a con-
siderable number of snapshots to construct the covariance
matrices. The methods based on signal sparse representation
bring the possibility for parameter estimation with only sin-
gle snapshot [16–18]. In recent years, it was introduced to
the PSA field. In [19], the parameters of the cross-dipole ar-
rays were estimated using weighted group lasso formulation
and an unbiased estimator was obtained. In [20], the sparse-
based algorithm was considered to deal with the situation
where there exist both time-varying and stationary parame-
ters. And in [21], the author used block-sparsity reconstruc-
tion for estimation with unknown source numbers. In [22],
the coherence signal parameters were estimated, which is
often the case in underwater situations.
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The atomic norm minimization (ANM) algorithm [23],
also known as the gridless parameter estimation method, is
attracting much attention because it can overcome the grid
mismatch caused by traditional sparse-based methods. It was
first analysed in detail for direction estimation in [24]. Later,
some more complex situations were discussed. By vectoring
the data matrices of the planar arrays, the two-dimensional
ANM algorithm was proposed [25]. And by matrix interpo-
lation, the parameter estimation of coprime arrays was solved
by ANM algorithm. Later, the signals with phase-gain er-
rors [26], [27] and the non-circular signals [28] were also
considered. However, the research was limited to the line ar-
ray situation, and there was little focus on the PSA parameter
estimation.

Since the uniform circular array (UCA) has the excel-
lent property of isotropy [29] and the concentered orthogo-
nal loop and dipole (COLD) antennas have the simple signal
models [30], this paper investigates the parameter estimation
of the polarization-sensitive UCA (P-UCA) composed of the
COLD antennas. First, the polarization ANM (P-ANM) for-
mulation is established. And then we convert the signals
received from the P-UCA into those received from the vir-
tual uniform line arrays, so that the P-ANM can deal with.
We solve the P-ANM by its dual problem and obtain the grid-
less azimuth parameters by polynomial rooting. Finally, by
the retrieval of the signal vectors, the polarization parame-
ters are obtained by analyzing the connections of the signals
received by the loops and dipoles.

The rest of the papers is organized as follows: Section 2
gives the mathematic model of the P-UCA. Section 3 pro-
poses the gridless P-ANM algorithm and its solving method.
Section 4 verifies the P-ANM algorithm by simulations. Sec-
tion 5 concludes the paper.

Notations used in this paper are as follows: (A)T,
(A)H and (A)† denote the transpose, conjugate transpose
and pseudo-inverse of the matrix A. A ⪰ 0 denotes that the
matrix A is positive semidefinite (PSD). ∥a∥∞ denotes the
infinity norm of the vector a. |•| denotes the modulus of
the complex values, Re (•) denotes the extraction of the real
part, and arg (•) denotes the extraction of the phase. (•)∗
denotes the conjugate of the complex values. �̂� denotes the
estimation of variable 𝑎.

2. The Signal Model of the P-UCA
As shown in Fig.1, in this paper we consider a P-UCA

with 𝑀 EMVS equally spaced around the entire circumfer-
ence. All the EMVS use the COLD antennas and all the
magnetic loops are placed in the 𝑥 − 𝑦 plane. Then the elec-
tric dipoles are parallel to the 𝑧−axis. As in regular circular
array model, we use polar coordinates to express the location
of each EMVS. The location of the 𝑚th EMVS is (𝑝, 𝜉𝑚),
where 𝑝 is the radius and 𝜉𝑚 is the polar angle by setting
𝑥-axis as the reference direction.
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Fig. 1. The arrangement of the P-UCA.

Suppose there are 𝐾 narrowband and far-field signals
of frequency 𝑓 (wavelength 𝜆 ) incident on the P-UCA. The
azimuth of the 𝑘th signal is 𝜃𝑘 ∈ (0, 2𝜋]. Then the spatial
response of the 𝑚th EMVS can be expressed as

𝑢𝑚 (𝜃𝑘) = e−j2𝜋 𝑓 𝜏𝑚 (𝜃𝑘 )

= e−j2𝜋𝑝 cos(𝜃𝑘−𝜉𝑚 )/𝜆, 𝑚 = 1, · · · , 𝑀
(1)

where 𝜏𝑚 (𝜃𝑘) is the propagation delay with respect to the
origin. Then the spatial steering vector of the 𝑘th signal is

u (𝜃𝑘) = [𝑢1 (𝜃𝑘) , 𝑢2 (𝜃𝑘) , · · · , 𝑢𝑀 (𝜃𝑘)]T

= e−j2𝜋𝑝cos(𝜃𝑘−𝜉 )/𝜆
(2)

where 𝜉 = [𝜉1, 𝜉2, · · · , 𝜉𝑀 ]T is the vector contains the polar
angles of all the EMVS.

Due to the central symmetry of the COLD antennas,
they are highly suitable for use in circular arrays. A COLD
antenna pair consists of an orthogonal electric dipole and
a magnetic loop, with the dipole passing through the center
of the loop. The dipole is used to receive the electric field
component of the signals, and the loop is used to receive
the magnetic field component [31], [32]. According to the
polarization theory of electromagnetic waves [33], suppose
the signals are fully polarized and the polarization parame-
ters of the 𝑘th signal is (𝛾𝑘 , 𝜂𝑘), where 𝛾𝑘 ∈ (0, 𝜋/2] is the
polarization angle and 𝜂𝑘 ∈ (0, 2𝜋] is the polarization phase
difference, the polarization vector of the 𝑘th signal can be
expressed as [34], [35]

p𝑘 =

[
𝑝
[e]
𝑘

𝑝
[h]
𝑘

]
=

[
− sin 𝛾𝑘ej𝜂𝑘

− cos 𝛾𝑘

]
. (3)

Simultaneously influenced by the spatial and polarization pa-
rameters, the final signals received by the electric dipoles and
the magnetic loops can be expressed respectively as
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xe =

𝐾∑︁
𝑘=1

𝑝
[e]
𝑘

u (𝜃𝑘) 𝑠𝑘

=

𝐾∑︁
𝑘=1

− sin 𝛾𝑘ej𝜂𝑘e−j2𝜋𝑝 cos(𝜃𝑘−𝜉 )/𝜆𝑠𝑘 ,

xh =

𝐾∑︁
𝑘=1

𝑝
[h]
𝑘

u (𝜃𝑘) 𝑠𝑘

=

𝐾∑︁
𝑘=1

− cos 𝛾𝑘e−j2𝜋𝑝 cos(𝜃𝑘−𝜉 )/𝜆𝑠𝑘

(4)

where 𝑠𝑘 is the complex amplitude of the 𝑘th signal. In the
next processing, the polarization parameters have no effect
on solving azimuth parameters, so they are first absorbed into
the signal 𝑠𝑘 as

xe =
𝐾∑
𝑘=1

u (𝜃𝑘) 𝑠e𝑘 = U (𝜃) se,

xh =
𝐾∑
𝑘=1

u (𝜃𝑘) 𝑠h𝑘 = U (𝜃) sh

(5)

where se and sh are the pseudo signal vectors containing the
polarization information, 𝜃 = [𝜃1, · · · 𝜃𝐾 ] is the vector, and
U (𝜃) = [u (𝜃1) , u (𝜃2) , · · · , u (𝜃𝐾 )] is the manifold matrix
only containing the azimuth information.

3. The Proposed P-ANM Algorithm

3.1 Traditional On-grid Algorithm
Based on (5), if using traditional on-grid methods to

estimate the azimuth parameter, we can first divide the pa-
rameter domain into a series of grids with the total number of
𝑅. The azimuth corresponding to the 𝑟th grid is 𝜃𝑟 , and we
can construct the steering vector ũ (𝜃𝑟 ) and the manifold ma-
trix Ũ (𝜃) = [ũ (𝜃1) , ũ (𝜃2) , · · · , ũ (𝜃𝑅)]. Then the signals
xe and xh can be given as

xe =
𝑅∑
𝑟=1

ũ (𝜃𝑟 ) 𝑠e𝑟 = Ũ (𝜃) s̃e,

xh =
𝑅∑
𝑟=1

ũ (𝜃𝑟 ) 𝑠h𝑟 = Ũ (𝜃) s̃h

(6)

where s̃e and s̃h are corresponding gridded pseudo signal vec-
tors, and any 𝑠e𝑟 and 𝑠h𝑟 denote the imaginary energy on the
𝑟th grid. If there exist signals on corresponding grids the 𝑠e𝑟
and 𝑠h𝑟 are non-zero, or their values are zero. In general, the
grid number is much larger than the signal number, so most
of them are zero. According to the sparse representation the-
ory [36], we can estimate the parameter by minimizing the
polarization 𝑙1 norm:

min
𝑠e𝑟

𝑅∑
𝑟=1

|𝑠e𝑟 | s.t. xe =
𝑅∑
𝑟=1

ũ (𝜃𝑟 ) 𝑠e𝑟 ,

min
𝑠h𝑟

𝑅∑
𝑟=1

|𝑠h𝑟 | s.t. xh =
𝑅∑
𝑟=1

ũ (𝜃𝑟 ) 𝑠h𝑟 .
(7)

The optimization problem is convex and can be easily solved
by many optimization tools. The aim is to reconstruct s̃e and
s̃h, and the azimuths corresponding to the locations where
the values are non-zero are the estimation results. Obviously,
if the real signals do not lie on the grids, there will be errors
in the estimation results.

3.2 The P-ANM Model and its Dual Solution
In order to estimate the gridless parameters, the 𝑙1 norm

of the pseudo signals se and sh are minimized directly as [37]

∥xe∥A = min
𝜃𝑘

{∑
𝑘

|𝑠e𝑘 | : xe =
∑
𝑘

u (𝜃𝑘) 𝑠e𝑘
}
,

∥xh∥A = min
𝜃𝑘

{∑
𝑘

|𝑠h𝑘 | : xh =
∑
𝑘

u (𝜃𝑘) 𝑠h𝑘
} (8)

which are called the polarization atomic norm of the dipoles
and the loops, respectively. And the method is called P-ANM
algorithm. Different from (7), The grids are not divided in the
azimuth domain. The U (𝜃) is seen as the unknown parame-
ter for solving the problem, and the aim is exactly to recover
the optimal atomic set U

(
𝜃

)
=
[
u
(
𝜃1
)
, · · · , u

(
𝜃𝐾

) ]
. Since

every 𝜃𝑘 in the u
(
𝜃𝑘
)
can take continuous values, the P-ANM

algorithm overcomes the grid mismatch. However, the prob-
lems are difficult to calculate directly. Instead, we use their
dual problems expressed as [38]

max
ce

Re
(
ce

Hxe
)

s.t.
U(𝜃)Hce


∞ ≤ 1,

max
ch

Re
(
ch

Hxh
)

s.t.
U(𝜃)Hch


∞ ≤ 1 (9)

where ce and ch are the dual variables. Furthermore, each
of (9) can be converted to a solvable SDP problem

max
c

Re
(
cHx

)
s.t.

[
Q𝑀×𝑀 c𝑀×1

cH 1

]
⪰ 0

𝑀− 𝑗∑
𝑖=1

Q𝑖,𝑖+ 𝑗 =

{
1, 𝑗 = 0
0, 𝑗 = 1, · · · , 𝑀 − 1

(10)

where c denotes either ce or ch, x denotes corresponding xe or
xh. And from the detail of getting (9), we know the 𝜃 solution
of

��U(𝜃)Hc
�� = 1 corresponds to the true azimuth estimation.

If ĉ is obtained from (10), and the array is uniform of element
space, u

(
𝜃𝑘
)

can be then obtained by polynomial rooting of
the trigonometric polynomial

𝑃 (z) = 1 −
��U(𝜃)Hc

��2 = 1 −
𝑀−1∑︁

𝑚=−(𝑀−1)
𝑟𝑚z𝑚 (11)

where z = exp (−j𝜋 sin 𝜃). The coefficients 𝑟𝑚 =∑
𝑀−1−𝑚
𝑙=0 𝑐𝑙𝑐

∗
𝑙+𝑚, 𝑚 ≥ 0 and 𝑟−𝑚 = 𝑟∗𝑚, are the autocorrela-

tion of ĉ. Unfortunately, the P-UCA is not a kind of uniform
arrays for the delay between any two adjacent COLD antenna
pairs are not constant. It makes it impossible to directly use
the polynomial rooting method to solve z. Further processing
is necessary.
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3.3 Virtual Mapping of the Steering Vectors
In this paper, we transform the steering vectors of the

P-UCA to the Fourier domain to solve the non-uniform situa-
tion. Define the function 𝑏 (𝜃) = U(𝜃)Hc, where the variable
𝜃 is regarded as a continuous variation. And then perform
the Fourier expansion of 𝑏 (𝜃), we have

𝑏 (𝜃) =
𝑁∑︁

𝑛=−𝑁

𝑀∑︁
𝑚=1

(𝛼𝑚 [𝑛] 𝑐𝑚) exp (j𝑛𝜃) (12)

where 𝛼𝑚 [𝑛] is the Fourier coefficients, 𝑁 is the Fourier
expansion term number. The 𝛼𝑚 [𝑛] can be calculated by
sampling from u∗ (𝜃) with large DFT points 𝑃 = 2𝑁 + 1 as

𝛼𝑚 [𝑛] = 1
𝑃

𝑁∑︁
𝑙=−𝑁

𝑢∗𝑚 (𝑙Δ𝜃) exp (−jΔ𝜃𝑙𝑛) (13)

where Δ𝜃 = 2𝜋/𝑃 and 𝑛 = −𝑁, · · · , 0, · · · 𝑁 . From (12),
it is shown that the virtual steering vector exp (j𝑛𝜃) is uni-
form with the distribution of 𝑛. And Equation (12) can be
reformulated as

𝑏 (𝜃) =
𝑁∑︁

𝑛=−𝑁
𝐵𝑛 exp (j𝑛𝜃). (14)

And combine all the coefficients 𝐵𝑛 as a vector form

h =
[
𝐵−𝑁,𝐵−(𝑁−1) , · · · , 𝐵𝑁

]T
= GHc. (15)

Note here that: 1) the Fourier expansion term number
𝑁 is the truncation of Fourier coefficients 𝛼𝑚 [𝑛]. If we want
to retain as much energy as possible of the original signals
in 𝑏 (𝜃), 𝑁 needs to reach a certain threshold. In the UCA
condition, the choice of the threshold is related to 𝑝/𝜆 and
can be chosen by advance testing. Figure 2 gives the energy
ratio with 𝑁 for the common case of 𝑝/𝜆 = 1, 2 and 3. We
can choose 𝑁 based on the figure.

2) G is only related to the array parameters, but in-
dependent of the signal parameters, so it can be calculated
offline once the array geometry is determined.
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Fig. 2. The energy ratio with 𝑁 .

3.4 Azimuth Estimation
After the virtual mapping, the SDP problem (10) can

be converted to the new formulation corresponding to the
virtual uniform array as

max
c̃

Re
(
c̃Hx̃

)
s.t.

[
Q̃𝑃×𝑃 G̃H

𝑃×2𝑀 c̃2𝑀×1
c̃HG̃ 1

]
⪰ 0

𝑃− 𝑗∑
𝑖=1

Q𝑖,𝑖+ 𝑗 =

{
1, 𝑗 = 0
0, 𝑗 = 1, · · · , 𝑃 − 1

(16)

where x̃ = [xe; xh], c̃ = [ce; ch] and G̃ = [G,G]. Here, the
two separate optimization problems in (9) are fused into one
SDP problem without dimension increasing. It is easy to be
solved by interior-point method. In the real situations, if the
signals are contaminated by additive Gaussian white noise as

ye = xe + ne,
yh = xh + nh,

(17)

the SDP problem (16) can be substituted by

max
c̃

Re
(
c̃Hỹ

)
+ 𝜏∥c̃∥2

s.t.
[

Q̃𝑃×𝑃 G̃H
𝑃×2𝑀 c̃2𝑀×1

c̃HG̃ 1

]
⪰ 0

𝑃− 𝑗∑
𝑖=1

Q𝑖,𝑖+ 𝑗 =

{
1, 𝑗 = 0
0, 𝑗 = 1, · · · , 𝑃 − 1

(18)

where ỹ = [ye; yh] and 𝜏 is the regularization parameter
to suppress the influence of noise. Our aim is to get the
solution ˆ̃c of the dual variable c̃ and later h = G̃H ˆ̃c. As
mentioned above, we then construct the dual polynomial

𝑏 (z) =
𝑁∑

𝑛=−𝑁
𝐵𝑘z𝑛 with z = exp (j𝜃). If |𝑏 (z) | = 1, the

solution of z corresponds to the true azimuth estimation.
Similarly, the nonnegative polynomial

𝐻 (z) = 1 − |𝑏 (z) |2 (19)

is formed. Its coefficients are 𝑟𝑛 =
𝑁−1−𝑛∑
𝑙=0

ℎ𝑙ℎ
∗
𝑙+𝑛, 𝑛 ≥ 0 and

𝑟−𝑛 = 𝑟∗𝑛. It is easy to find the roots. Then the azimuth
estimation can be recovered by locating the roots on the unit
circle

𝜃 = arg (ẑ) , |ẑ| = 1. (20)

It can be shown in Fig. 3 as an example that there are
three roots on the unit circle, which are the estimation results.
And other roots symmetrically distributed on both sides of
the unit circle.
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Fig. 3. The display of the polynomial rooting.

3.5 Retrieval of the Polarization Parameters
If the azimuth 𝜃 is estimated, the pseudo signal ampli-

tudes with polarization can recovered by least squares method

ŝe = U
(
𝜃

)†
ye,

ŝh = U
(
𝜃

)†
yh.

(21)

Then, between their relationship according to (4) and (5), we
can retrieve the polarization parameters as

�̂�𝑚 = arctan
(√︂(

𝑠e𝑘 × 𝑠∗e𝑘
)/ (

𝑠h𝑘 × 𝑠∗h𝑘
))
,

𝜂𝑚 = arg (𝑠e𝑘/(𝑠h𝑘 × �̂�𝑚)) .
(22)

In the summary, the entire steps of the proposed P-ANM
algorithm are shown in Algorithm 1.

Algorithm 1: The proposed P-ANM algorithm
Input: The array geometry, the sampled signal vector yh and ye,

proper regularization parameter 𝜏 and Fourier expansion
term number 𝑁 ;

Step 1: Calculate the mapping matrix G using (13) and (14) ac-
cording to the array geometry;

Step 2: Solve the SDP problem (18) by substituting yh and ye to
obtain ˆ̃c and then h = G̃H ˆ̃c ;

Step 3: Find the roots of the nonnegative polynomial (19) on the
unit circle;

Step 4: Recover the azimuth estimation 𝜃 by (20) ;
Step 5: Retrieval the pseudo signal amplitudes by (21) and then

the polarization parameters �̂� and �̂� by (22);
Output: The azimuth estimation 𝜃 and polarization estimation �̂�,

�̂�.

There are two notes here: 1) In the entire process, the
main computational burden is solving the SDP problem. The
complexity of the other processes can be relatively negligible.
For the SDP problem (10), the complexity is O

(
(𝑀 + 1)3

)
.

While for the SDP problems (16) and (18), the complexity
is O

(
(𝑃 + 1)3

)
. Usually the 𝑃 is larger than 𝑀 , so we can

see that the price of the virtual mapping is the increase of the
arithmetic complexity.

2) In general, a two-dimensional line array can estimate
both azimuth and elevation angles simultaneously. How-
ever, the two-dimensional UCA can only estimate the one-
dimensional azimuth angle. The reason is that by using
polar coordinates in (1), all the 360◦ azimuth range can
be estimated, while only 180◦ azimuth range can be esti-
mated by using line arrays. That is to say, compared with
one-dimensional linear arrays, two-dimensional linear arrays
utilize the added spatial dimension to obtain additional ele-
vation angle estimation, while the UCA extends the range of
azimuth angle estimation.

4. Simulations
In this section, the proposed P-ANM parameter estima-

tion algorithm is verified using Monte Carlo simulations.

4.1 Feasibility Verification
Experiment 1: The simulation parameters are set as

follows: The P-UCA with 40 COLD antennas pairs is ar-
ranged and its radius is set 𝑟 = 2𝜆. Then 𝑝 = 𝑟 for all
the COLD antennas using the circular origin as the ref-
erence. Corresponding 𝑁 = 30 is determined. For the
signal parameters, assume there are three far-filed, narrow-
band and fully polarized signals with their azimuth 𝜃, po-
larization angle 𝛾 and phase difference 𝜂 combinations are
(−80◦, 36◦, 54◦), (10◦, 45◦, 144◦) and (70◦, 54◦, 324◦), re-
spectively. The complex amplitudes of the signals are gener-
ated randomly with the same modules and the signal-to-noise
ratio is set SNR = 15 dB. Sampling the received signals of all
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the EMVS simultaneous as a single snapshot and performing
50 times Monte Carlo simulations, the results are shown in
Fig. 4. As shown in the figures, the estimation results of all
the azimuth and polarization parameters are around the true
locations, indicating that the proposed P-ANM algorithm is
effective and stable.

Experiment 2: In this experiment, the estimation abil-
ity of the proposed P-ANM algorithm around all the azimuths
is verified. The three targets are moved around the 0◦ ∼ 360◦
circle with step 10◦, and other parameters are kept the same
with Experiment 1. In every azimuth, 5 times simulations are
performed, the results are shown in Fig. 5. It can be seen that
the azimuth and polarization parameters can be estimated
successfully in all the 360◦ range, which indicates that the
P-ANM algorithm has stable tracking ability.
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Fig. 6. The estimation RMSE with SNR.

4.2 Estimation Performance
Experiment 3: In this experiment, the estimation ac-

curacy of the proposed P-ANM algorithm is compared with
polarization MUSIC (P-MUSIC), polarization L1NM (P-
L1NM) and polarization SPICE (P-SPICE) algorithms. And
for the azimuth parameter, the scalar ANM is also joined
with the same signals from the scalar UCA array. The root
mean square error (RMSE) of every parameter is used as the
evaluation index, which is defined as

RMSE𝜙 =

√︄
1

𝐾×Iter

𝐾∑
𝑘=1

Iter∑
𝑖=1

(
𝜙𝑘𝑖 − 𝜙𝑘

)2 (23)

where Iter is the number of Monte Carlo simulations, 𝜙𝑘 de-
notes the true value of 𝜃𝑘 , 𝛾𝑘 or 𝜂𝑘 , and 𝜙𝑘𝑖 are corresponding
estimation result of the 𝑖th Monte Carlo simulation. Total 500
times Monte Carlo simulations are run for each algorithm in
each SNR and the results are counted in Fig. 6.

There are two notations here that: 1) the P-MUSIC
and P-SPICE algorithms cannot work with only single snap-
shot. Therefore, they are performed with 20 snapshots here,
while the P-ANM and P-L1NM algorithms are performed
with only single snapshot. 2) only single snapshot is used for
the estimation, so higher SNR is need compared with mul-
tiple snapshots, and the SNR variation is set 5 dB ∼ 25 dB.
The simulation results show that the proposed P-ANM al-
gorithm has excellent performance in all the SNR variations
compared with the others.

Experiment 4: Finally, the resolution is verified.
Two signals are set with the parameters (10◦, 30◦, 120◦),
(10◦ + Δ, 60◦, 240◦), where the Δ is the azimuth spacing of
the two signals and increased from 2◦ to 15◦ with step 1◦.
The SNR is set 15 dB and 100 times Monte Carlo simulations
are performed. If two signals are estimated and the total er-
ror is less than 5◦, this estimation was marked as a success.
The success probability of all the algorithms are shown in
Fig. 7. It shows that the proposed P-ANM algorithm has
a high angular resolution compared with the others. If the
threshold is reached, its estimated success probability can
extremely increase.

2 4 6 8 10 12 14 16

 spacing

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

P-ANM

P-MUSIC

P-L1NM

P-SPICE

Fig. 7. The success probability with azimuth spacing.
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5. Conclusion
In this paper, the novel P-ANM algorithm is proposed

for joint azimuth and polarization estimation based on the
P-UCA. The P-UCA model is converted into the virtual uni-
form array model to apply the P-ANM algorithm. The dual
SDP problem is used to calculate the P-ANM formulate and
the polynomial roots are searched for the parameter estima-
tion. The simulations show the proposed P-ANM algorithm
has good estimation performance with only single snapshot.
It also has stable estimation performance within the range
0◦ ∼ 360◦. And compared with other algorithms, it has
lower RMSE for all the azimuth and polarization parameters
and higher probability of successful estimation.

References

[1] PAN, B., DONG, L., YU, X., et al. Joint polarization-space-
time processing for mainlobe jamming via CP decomposition.
IEEE Sensors Journal, 2023, vol. 23, no. 13, p. 14781–14794.
DOI: 10.1109/JSEN.2023.3279069

[2] ZHANG, Q., JIANG, H., LIU, Y. Joint range, angle and polarization
estimation in polarimetric FDA-MIMO radar based on Tucker tensor
decomposition. EURASIP Journal on Advances in Signal Processing,
2023, no. 1, p. 2023–2039. DOI: 10.1186/s13634-023-00997-8

[3] HU, Y., ZHAO, Y., CHEN, S., et al. Two-dimensional direction-of-
arrival estimation method based on interpolation fitting for airborne
conformal MIMO radar in a multipath environment. Digital Signal
Processing, 2022, vol. 122, p. 1–13. DOI: 10.1016/j.dsp.2021.103374

[4] XU, Z., WU, J., XIONG, Z., et al. Low-angle tracking algorithm
using polarisation sensitive array for very-high frequency radar. IET
Radar, Sonar and Navigation, 2014, vol. 8, no. 9, p. 1035–1041.
DOI: 10.1049/iet-rsn.2014.0041

[5] EBIHARA, S., KURODA, T., KORESAWA, Y., et al. Im-
proved discrimination of subsurface targets using a polarization-
sensitive directional borehole radar. IEEE Transactions on Geo-
science and Remote Sensing, 2016, vol. 54, no. 11, p. 6429–6443.
DOI: 10.1109/TGRS.2016.2585178

[6] BARAT, M., KARIMI, M., MASNADI-SHIRAZI, M. A. Direction
of arrival estimation in vector-sensor arrays using higher-order statis-
tics. Multidimensional Systems and Signal Processing, 2022, vol. 33,
no. 1, p. 161–187. DOI: 10.1007/s11045-020-00734-z

[7] JAMSHIDPOUR, S., KARIMI, M., MASNADI-SHIRAZI, M. A.
A coarray processing technique for nested vector-sensor arrays with
improved resolution capabilities. Digital Signal Processing, 2022,
vol. 130, p. 1–10. DOI: 10.1016/j.dsp.2022.103715

[8] ZHAO, W., MENG, X., CAO, B., et al. Efficient DOA-polarization
estimation for 2-D mirrored array based on the hybrid aperture
expansion. Digital Signal Processing, 2024, vol. 145, p. 1–13.
DOI: 10.1016/j.dsp.2023.104344

[9] YANG, Y., JIANG, G. Efficient DOA and polarization es-
timation for dual-polarization synthetic nested arrays. IEEE
Systems Journal, 2022, vol. 16, no. 4, p. 6277–6288.
DOI: 10.1109/JSYST.2021.3134470

[10] MIRON, S., LE BIHAN, P., MARS, J. I. Quaternion-
MUSIC for vector-sensor array processing. IEEE Transactions
on Signal Processing, 2006, vol. 54, no. 4, p. 1218–1229.
DOI: 10.1109/TSP.2006.870630

[11] LE BIHAN, N., MIRON, S. M., MARS, J. I. MUSIC algo-
rithm for vector-sensors array using biquaternions. IEEE Transac-
tions on Signal Processing, 2007, vol. 55, no. 9, p. 4773–4784.
DOI: 10.1109/TSP.2007.896067

[12] LI, Y., ZHANG, J., HU, B., et al. A novel 2-D quaternion ESPRIT
for joint DOA and polarization estimation with crossed-dipole. In
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Vancouver (Canada), 2022,
p. 1038–1043. DOI: 10.1109/ICASSP43922.2022.9746221

[13] QU, Y., LU, J., ZHAO, X., et al. Augmented tensor MUSIC
for DOA estimation using nested acoustic vector-sensor array.
IEEE Signal Processing Letters, 2022, vol. 29, p. 1624–1628.
DOI: 10.1109/LSP.2022.3191254

[14] LOU, M., QU, X., WANG, Z., et al. Augmented quaternion
ESPRIT-type DOA estimation with a crossed-dipole array. IEEE
Transactions on Signal Processing, 2023, vol. 61, p. 1–14.
DOI: 10.1109/TGRS.2023.3274182

[15] CHEN, H., WANG, W., LIU, W. Augmented quaternion ES-
PRIT for DOA estimation with polarization-sensitive arrays. IEEE
Transactions on Signal Processing, 2022, vol. 29, p. 548–552.
DOI: 10.1109/LSP.2019.2962463

[16] MALIOUTOV, D., CETIN, M., WILLSKY, A. S. A sparse signal
reconstruction perspective for source localization with sensor ar-
rays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8,
p. 3010–3022. DOI: 10.1109/TSP.2005.850882

[17] WEI, Z., LI, X., WANG, W., et al. An efficient super-resolution DOA
estimator based on grid learning. Radioengineering, 2019, vol. 28,
no. 4, p. 785–792. DOI: 10.13164/re.2019.0785

[18] RAJ, A. G., MCCLELLAN, J. H. Single coarray snapshot super-
resolution DOA estimation using sparse Bayesian learning. IEEE
Transactions on Signal Processing, 2019, vol. 26, no. 1, p. 119–123.
DOI: 10.1109/LSP.2019.2962463

[19] TIAN, Y., SUN, X., ZHAO, S. Sparse-reconstruction-based direction
of arrival, polarisation and power estimation using a cross-dipole ar-
ray. IET Radar Sonar and Navigation, 2015, vol. 9, no. 6, p. 727–731.
DOI: 10.1049/iet-rsn.2013.0169

[20] DAS, A. A Bayesian sparse-plus-low-rank matrix decompo-
sition approach for direction-of-arrival estimation. IEEE Sen-
sors Journal, 2017, vol. 17, no. 15, p. 4894–4902.
DOI: 10.1109/JSEN.2017.2715347

[21] CHANG, W., RU, J., DENG, L. Stokes parameters and DOA esti-
mation of polarised sources with an unknown number of sources.
IET Radar Sonar and Navigation, 2018, vol. 12, no. 6, p. 218–226.
DOI: 10.1049/iet-rsn.2013.0415

[22] SHI, S., LI, Y., YANG, D., et al. Sparse representation-based
direction-of-arrival estimation using circular acoustic vector sen-
sor arrays. Digital Signal Processing, 2020, vol. 99, p. 1–17.
DOI: 10.1016/j.dsp.2020.102675

[23] CHANDRASEKARAN, V., RECHT, B., PARRILO, P. A., er al.
The convex geometry of linear inverse problems. Foundations of
Computational Mathematics, 2012, vol. 12, no. 6, p. 805–849.
DOI: 10.1007/s10208-012-9135-7

[24] BHASKAR, B. N., TANG, G., RECHT, B. Atomic norm denois-
ing with applications to line spectral estimation. IEEE Transac-
tions on Signal Processing, 2013, vol. 61, no. 23, p. 5987–5999.
DOI: 10.1109/TSP.2013.2273443

[25] CHI, Y., CHEN, Y. Compressive two-dimensional harmonic re-
trieval via atomic norm minimization. IEEE Transactions on
Signal Processing, 2015, vol. 63, no. 4, p. 1030–1042.
DOI: 10.1109/TSP.2014.2386283



RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 117

[26] CHEN, P., CHEN, Y., CAO, J., et al. A new atomic norm for DOA esti-
mation with gain-phase errors. IEEE Transactions on Signal Process-
ing, 2020, vol. 68, p. 4293–4306. DOI: 10.1109/TSP.2020.3010749

[27] GONG, Q., REN, S., ZHONG, S., et al. DOA estimation us-
ing a sparse array with gain-phase error based on a novel
atomic norm. Digital Signal Processing, 2022, vol. 120, p. 1–14.
DOI: 10.1016/j.dsp.2021.103266

[28] TENG, L., WANG, Q., CHEN, H., et al. Atomic norm-based
DOA estimation with sum and difference co-arrays in coex-
istence of circular and non-circular signals. Circuits Systems
and Signal Processing, 2021, vol. 40, no. 10, p. 4293–5053.
DOI: 10.1007/s10208-021-01708-7

[29] CHEN, H., WANG, W. L., LIU, W., et al. Derivative ESPRIT for DOA
and polarization estimation for UCA using tangential individually-
polarized dipoles. Digital Signal Processing, 2020, vol. 96, p. 1–10.
DOI: 10.1016/j.dsp.2020.102599

[30] ZHANG, Y., WONG, K. The "Co-centered orthogonal loop/dipole"
(COLD) array’s "Spatial matched filter” beam-steering. IEEE Trans-
actions on Aerospace and Electronic Systems, 2022, vol. 58, no. 6,
p. 5932–5936. DOI: 10.1109/TAES.2022.3171749

[31] CHEN, H., WANG, W. L., LIU, W., et al. An exact near-field
model-based localization for bistatic MIMO radar with COLD arrays.
IEEE Transactions on Vehicular Technology, 2023, vol. 69, no. 12,
p. 16021–16030. DOI: 10.1109/TVT.2023.3294625

[32] YIN, K., DAI, Y., GAO, C. Near-field DOA-range and polarization
estimation based on exact propagation model with COLD arrays. Cir-
cuits Systems and Signal Processing, 2022, vol. 41, p. 5183–5200.
DOI: 10.1007/s10208-022-02029-z

[33] NEHORAI, A., PALDI, E. Vector-sensor array processing for
direction-of-arrival estimation and source polarization. IEEE Trans-
actions on Signal Processing, 1994, vol. 42, no. 2, p. 376–398.
DOI: 10.1109/78.275610

[34] LI, J., STOICA, P., ZHENG, D. Efficient direction and polar-
ization estimation with a COLD array. IEEE Transactions on
Antennas and Propagation, 1996, vol. 42, no. 2, p. 539–547.
DOI: 10.1109/78.489306

[35] WEN, F., SHI, J., ZHANG, Z. Joint 2D-DOD, 2D-DOA and polariza-
tion angles estimation for bistatic EMVS-MIMO radar via PARAFAC
analysis. IEEE Transactions on Vehicular Technology, 2019, vol. 69,
no. 2, p. 1626–1637. DOI: 10.1109/TVT.2023.2957511

[36] DONOHO, D. L. Compressed sensing. IEEE Transactions on
Information Theory, 2006, vol. 52, no. 4, p. 1289–1306.
DOI: 10.1109/TIT.2006.871582

[37] CANDES, E. J., FERNANDEZ-GRANDA, C. Towards a math-
ematical theory of super-resolution. Communications on Pure
and Applied Mathematics, 2014, vol. 67, no. 6, p. 906–956.
DOI: 10.1002/cpa.21455

[38] XENAKI, A., GERSTOFT, P. Grid-free compressive beamforming.
Journal of the Acoustical Society of America, 2015, vol. 137, no. 4,
p. 1923–1935. DOI: 10.1121/1.4916269

About the Authors . . .

Tao YU was born in Qinhuangdao, China. He received
his B.A. degree from Harbin Engineering University in
2012. He is currently pursuing his Ph.D. degree for Informa-
tion and Communication Engineering in Harbin Engineering
University. His research interests include the array signal
processing.

Lutao LIU (corresponding author) was born in Harbin,
China. He received the B.A. degree in Electrical Engineer-
ing from Southeast University, Nanjing, China, in 2000, the
M.Sc. degree in Telecommunication Engineering from the
Harbin Institute of Technology, Harbin, China in 2003, the
M.Sc. degree in Microelectronics from the Delft University
of Technology, Delft, The Netherlands, in 2005, and the Ph.D.
degree in Telecommunication Engineering from Harbin En-
gineering University, Harbin, in 2011. He was a Visiting
Scholar with Signal Processing and Communication (SPAC)
Laboratory, Stevens Institute of Technology, Hoboken, NJ,
USA, in 2013. He is currently an Associate Professor with the
College of Information and Communication, Harbin Engi-
neering University. His research interests include the general
area of signal processing for telecommunication.


