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Abstract. The echo signals from ships and sea clutter are
coherently accumulated. Therefore, it is difficult to capture
and distinguish the features within the signals. In addition,
due to poor measurement conditions, the radar system can
only collect data from a limited number of non-cooperative
ships. In this article, a method termed supervised exponential
sparsity preserving projection (E-MMC-SPP) is proposed for
recognizing ship classes based on high-resolution range pro-
file (HRRP). The method consists of three parts: First, to
extract richer features from sea clutter, a maximum margin
criterion sparse reconstructive relationship is constructed,
which maximally preserves the sparse reconstruction of data
and enhances class separability. Second, matrix exponen-
tial is utilized to ensure the positive definiteness of the co-
efficient matrices, thereby addressing the small-sample-size
(SSS) problem. Finally, an efficient numerical method is
presented for solving the corresponding large-scale matrix
exponential eigenvalue problem. Experimental results on
measured radar data demonstrate that the proposed method
effectively reduces feature dimensionality and enhances tar-
get recognition performance with limited training data.

Keywords
Supervised exponential sparsity preserving projection,
high-resolution range profile, ship recognition, small-
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1. Introduction
High-resolution range profile (HRRP) is a real vector,

which is the amplitude of coherent summations of the com-
plex time return from target scatterers in each range resolu-
tion cell. HRRP can reveal the detailed physical structure
characteristics of the target, such as target size, scatterer dis-
tribution and other abundant information. During the past

couple of years, HRRP has been extensively studied in the
area of radar automatic target recognition (RATR) [1–3].
Feature extraction, a fundamental problem in HRRP recog-
nition, is a key aspect of pattern recognition. Usually, feature
extraction is achieved via raw data dimensionality reduc-
tion (DR), which is transformation of high-dimensional data
into low-dimensional data. Currently, the most widely used
DR methods are subspace transformation and deep learning
(DL). Subspace transformation methods, such as principal
component analysis (PCA) [4], linear discriminant analysis
(LDA) [5], Laplacian eigenmaps (LE) [6], are especially use-
ful for high-dimensional data modeling. They can be formu-
lated as eigenproblems by offering great potential for efficient
learning of nonlinear and linear models without local min-
ima. DL methods, including Convolutional Neural Networks
(CNN) [7], Long Short-Term Memory Networks (LSTM) [8],
and their derived architectures [9–11], help reduce reliance
on manually designed feature extraction rules. Instead, they
automatically extract deep descriptive features of the target.

At present, the recognition technology based on HRRP
is mainly used in air targets. Due to most of the research
results obtained in the environment of Gaussian white noise,
the HRRPs of air targets are mainly affected by noise. Dif-
ferent from air targets, the echo signals of ships and sea
clutter are coherently accumulated. The sea clutter is related
to many factors, usually showing the obvious non-stationary
and non-Gaussian characteristics. In addition, due to the poor
measurement conditions, the radar system cannot guarantee
the detection and tracking of non-cooperative ship targets for
a long time, which severely limits the collection of HRRP
data. In summary, HRRP of ship has the following three
characteristics: i) It contains sea clutter, ii) It has a higher
data dimension, iii) The training data is small. However,
DR methods usually require substantial data for estimating
parameters, and their recognition performance generally de-
grades severely with the decrease of the training samples, es-
pecially for the complicated statistical model with numerous
unknown parameters. Therefore, one of the most challenging
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Fig. 1. The idea architecture of the overall ship recognition under small training data size.

tasks in ship recognition based on HRRP is the small-sample-
size (SSS) problem.

In the last decades, many approaches have been pro-
posed to deal with the SSS problem. Even there are some
researchers who discuss theoretical aspects of the small train-
ing data size problem [12]. The first type of these approaches
is the preprocessed method which employs PCA as a prepro-
cessor before executing the DR method. This type has been
widely used in the primitive articles such as neighborhood
preserving embedding (NPE) [13] and sparsity preserving
projection (SPP) [14]. However, the PCA stage may dis-
card some valuable information contained in the joint null-
space of the coefficient matrices, and be computationally
expensive due to the use of the singular value decomposi-
tion (SVD). By using the regularized method, the second
type includes regularized LDA [15] and regularized locality
preserving projection [16] transforms the original general-
ized eigenvalue problem (GEP) to a solvable one by using
regularization techniques. Yet, the performance of this type
is strongly dependent on the regularization parameters, and
there is no direct way of evaluating the parameters. The
third is the kernel trick such as multiple kernel projection
subspace fusion (MKPSF) [17], kernel joint discriminant an-
alysis (KJDA) [18] and multiple kernel learning (MKL) [19].
They map a low-dimensional space to a linearly divisible
higher-dimensional space through a kernel transformation
However, choosing a proper kernel function for a specific
real-world problem is challenging. The fourth type focuses
directly on the DL methods such as sparse auto encoder
(SAE) [20], discriminant deep autoencoders (DDAEs) [21],
generative adversarial network (GAN) [22] and lightweight
transformer network (LTN) [23]. Yet, the balance between
network depth and model generalization performance, as well
as the problem of network overfitting should be considered.
Another type of these approaches is the exponential method
such as exponential LDA (EDA) [24], exponential discrim-
inant locality preserving projection [25], exponential NPE
(ENPE) [26] and exponential SPP (ESPP) [27]. while, this
type involves huge computational cost due to computing ma-
trix exponentials and solving the matrix exponential eigen-
value problem.

In recent years, some linear and nonlinear supervised
DR techniques based on the maximum margin criterion
(MMC) [28] have been proposed, such as neighborhood-

preserving discriminant projections (NPDP) [29]. In [30],
we propose a method termed as multi-scale fusion kernel
sparse preserving projection based on Kernel SPP to extract
the richer feature information of ship from sea clutter. In
this paper, a supervised method of MMC-SPP is introduced
based on SPP and MMC. However, MMC-SPP suffers from
the SSS problem. When the sample dimension is larger
than the training sample size, the projection coefficient ma-
trix of MMC-SPP is non-positive, which will seriously affect
the recognition accuracy. To overcome the SSS problem,
motivated by the work in Wu et al. [31], Wang et al. [32],
a supervised exponential sparsity preserving projection (E-
MMC-SPP) technique is proposed for ship recognition based
on HRRP. Further, to overcome the huge computational
and solving the corresponding large-scale matrix exponen-
tial eigenvalue problem, an efficiently numerical method is
presented. Here, a two-step strategy is taken. First of all, the
maximum margin criterion sparse reconstructive relationship
is established. And then, an optimal projection direction is
automatically learned based on the E-MMC-SPP. The idea
architecture of ship recognition under small training data size
is depicted in Fig. 1. Experiments on measured data show
that the proposed method can effectively reduce the feature
dimensionality and improve the recognition performance un-
der the condition of small samples.

The major contributions can be summarized as follows.

i) A maximum margin criterion sparse reconstructive
relationship is constructed, which can make full use of data
information and simultaneously utilize the label information.
The proposed method can maximally preserve the sparse
reconstruct of data and maximize the class by separability
resorting to the thought of MMC and SPP.

ii) A novel framework, E-MMC-SPP, is mainly con-
structed for HRRP recognition with small training data. Spe-
cially, the proposed method uses matrix exponential to ensure
the positive definiteness of the coefficient matrices, which can
overcome the SSS problem.

iii) In the proposed method, we develop a numerical
algorithm to solve the large-scale matrix exponential eigen-
value problem which involves huge computational cost and
storage requirement since the exponential of a matrix is often
dense even if the matrix is sparse.
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iv) The proposed method in this paper is evaluated based
on the measured HRRP data. Extensive studies demonstrate
that the proposed method exhibits much stable recognition
performance when the training data size is small.

The rest of this paper is organized as follows. In
Sec. 2, we briefly analyze the mechanism of DR with the
SPP method. In Sec. 3, we propose the MMC-SPP technique,
and discuss the HRRP RATR procedures via E-MMC-SPP
in detail, and then develop a numerical algorithm to solve
the matrix exponential eigenvalue problem. Experiments on
measured data are conducted in Sec. 4 and conclusions are
given finally in Sec. 5.

2. DR of HRRP Based on SPP
In this section, we briefly discuss the mechanism of

DR with the SPP method [14, 33, 34]. In most existing DR
methods, we know that constructing an affinity weight ma-
trix plays a key role. The sparsity of the weight matrix is an
important means to encode the structures of the data, which
is helpful to improve the performance of the DR methods.
Based on sparse representation, SPP aims to preserve the
sparse reconstruction relationship of the data set.

Assuming that 𝐶 is the number of HRRP classes in

the training set, and 𝑁 =
𝐶∑
𝑘=1

𝑁𝑘 represents the total num-

ber of training HRRP samples, where 𝑁𝑘 (𝑘 = 1, 2, . . . , 𝐶)
is the number of training HRRP samples for each class.
X𝑘 =

[
x𝑘,1, x𝑘,2, . . . , x𝑘,𝑙𝑘 , . . . , x𝑘,𝑁𝑘

]
is the training HRRP

samples matrix of the 𝑘th class, where, x𝑘,𝑙𝑘 ∈ R𝑛 is a column
vector of the 𝑙𝑘 th HRRP sample in the 𝑘th class and 𝑛 is the
dimension of HRRP. X = [X1,X2, . . . ,X𝐶 ] ∈ R𝑛×𝑁 is all
training HRRP samples matrix. Each x𝑘,𝑙𝑘 can be sparsely
represented by the rest of HRRP by solving the following
optimization problem [14]:

s𝑘,𝑙𝑘 = arg min
ℎ𝑘,𝑙𝑘

s𝑘,𝑙𝑘1 ,

s.t. x𝑘,𝑙𝑘 = Xs𝑘,𝑙𝑘 ,
eTs𝑘,𝑙𝑘 = 1

(1)

where, s𝑘,𝑙𝑘= [𝑠𝑘,𝑙𝑘1,1, . . . , 0, 𝑠𝑘,𝑙𝑘𝑘,𝑙𝑘+1 , . . . , 𝑠𝑘,𝑙𝑘𝐶,𝑁𝐶
]T is

the sparse representation coefficient vector, the 𝑘𝑙𝑘 th ele-
ment 0 represents that the sparse representation problem has
nothing to do with x𝑘,𝑙𝑘 itself, and e represents the column
vector where all elements are 1.

In the case of noise, Equation (1) can be represented as
[14]:

s𝑘,𝑙𝑘 = arg min
ℎ𝑖

s𝑘,𝑙𝑘1 ,

s.t.
Xs𝑘,𝑙𝑘 − x𝑘,𝑙𝑘

 ≤ 𝛿,

eTs𝑘,𝑙𝑘 = 1

(2)

where 𝛿 is the noise tolerance.

Then SPP seeks a transform matrix w ∈ R𝑛×𝑑 to project
HRRP from a high-dimensional space into a 𝑑-dimensional
space, where 𝑛 > 𝑑 [14]. SPP aims to preserve the sparse
reconstruction relationship and minimize the following ob-
jective function [33]:

min
𝐶∑
𝑘=1

𝑁𝑘∑
𝑙𝑘=1

(wTx𝑘,𝑙𝑘 − wTXs𝑘,𝑙𝑘 )
2

s.t. wTXXTw = 1.
(3)

The sparse reconstructive weight matrix S can be given
as S = [s1,1, s1,2, . . . , s𝑘,𝑁𝑘

, . . . , s𝐶,𝑁𝐶
], then, the optimiza-

tion criteria of SPP method is obtained as [34]:

min
𝑉

wTX(I − S − ST + SST)XTw
wTXXTw

. (4)

Let 𝑑 denote the dimension of the embedding subspace,
then the projection matrix w′𝑠 are the eigenvectors corre-
sponding to smallest 𝑑 positive eigenvalues of the following
GEM [34]:

X(I − S − ST + SST)XTw = 𝜆XXTw. (5)

As suggested by Qiao et al. [14], in some cases the
maximum formulation can get a more numerically stable
solution, so we will focus on solving the GEM (5). If
𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑑 are the smallest 𝑑 eigenvalues of
the GEM (5), w1,w2, . . . ,w𝑑 are the corresponding or-
thonormal eigenvectors, then w1,w2, . . . ,w𝑑 form a basis
of the projected subspace, and the optimal projection ma-
trix W = [w1,w2, . . . ,w𝑑] is the solution of the following
minimization problem [34]:{

min tr[WTXLXTW]
s.t. WTXXTW = I. (6)

where L = I − S − ST + SST, and tr(·) denotes the trace of a
matrix.

Figure 2 shows the sparse representation coefficients of
all training HRRP samples. It can be seen that the decompo-
sition coefficients are sparse indeed and the primary sparse
coefficients assemble within the range of corresponding ob-
ject class.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

S
p
a
rs

e
 c

o
e
ff
ic

ie
n
t

0 200 400 600 800 1000 1200

Dictionary

Fig. 2. Sparse coefficients of HRRP.
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3. E-MMC-SPP and Its Solver

3.1 Principles of MMC-SPP
To maximize the preservation of data structure in the

dimension-reduced space while improving classification per-
formance, the strengths of SPP and MMC are combined. In
this section, we learn an optimal projection direction auto-
matically based on the MMC-SPP. The optimal projection
direction makes full use of data information and labels infor-
mation.

Similar to SPP, MMC aims to find the optimal projec-
tion direction 𝑊 to maximize the margin between interclass
samples. The objective function can be expressed as follows:

min tr[WTXLXTW]
max tr[WT (Sb − 𝜂Sw)W]
𝑠.𝑡. WTXXTW = I,

(7)

and Sb =
1
𝑁

𝐶∑︁
𝑖=1

𝑛𝑖 (m𝑖 − m) (m𝑖 − m)T,

Sw =
1
𝑁

𝐶∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(x𝑖, 𝑗 − m𝑖) (x𝑖, 𝑗 − m𝑖)T

where Sb and Sw are the between-class scatter matrix and
within-class scatter matrix, respectively, 𝜂 is positive con-
stant, m𝑖 and m are the mean vectors of the class and training
HRRP samples, respectively.

The solution to the multi-objective constrained opti-
mization problem in (7) is to find a subspace which maxi-
mizes the margin between different classes simultaneously
and preserves the sparsity property. So, we can change (7)
into the following constrained problem, like:

min tr[WT [XLXT − (Sb − 𝜂Sw)]W]
s.t. WTXXTW = I. (8)

Here, we set e𝑖, 𝑗 = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R𝑁 which
is the canonical basis vector of dimensions, then we can ob-
tain x𝑖, 𝑗 = Xe𝑖, 𝑗 .

Thus, we can obtain:

m𝑖 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

x𝑖, 𝑗 = X
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

e𝑖, 𝑗 =
1
𝑛𝑖

XB,

and

m = X
1
𝑁

𝐶∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

e𝑖, 𝑗 =
1
𝑁

XD0

where B = [0, 0, . . . , 1, 1, 1, . . . , 0, 0]T ∈ R𝑁 and D is the 𝑁

dimensional column vector of 1𝑠.

Sb and Sw can be expressed as:

Sb = 1
𝑁

𝐶∑
𝑖=1

𝑛𝑖 (m𝑖 − m) (m𝑖 − m)T

= X[ 1
𝑁

𝐶∑
𝑖=1

1
𝑛𝑖

BBT − 2
𝑁2

𝐶∑
𝑖=1

BDT + 1
𝑁2 DDT]XT,

and

Sw = 1
𝑁

𝐶∑
𝑖=1

𝑛𝑖∑
𝑗=1

(x𝑖, 𝑗 − m𝑖) (x𝑖, 𝑗 − m𝑖)T

= X[ 1
𝑁
𝐼 − 2

𝑁

𝐶∑
𝑖=1

𝑛𝑖∑
𝑗=1

1
𝑛𝑖

e𝑖, 𝑗BT

+ 1
𝑁

𝐶∑
𝑖=1

𝑛𝑖∑
𝑗=1

( 1
𝑛𝑖

2 BBT)]XT

where I is the identity matrix.

Then

Sb − 𝜂Sw

= X[ 1
𝑁

𝐶∑
𝑖=1

1
𝑛𝑖

BBT − 2
𝑁2

𝐶∑
𝑖=1

BDT + 1
𝑁 2 DDT − 𝜂 1

𝑁
I

+𝜂 2
𝑁

𝐶∑
𝑖=1

𝑛𝑖∑
𝑗=1

1
𝑛𝑖

e𝑖, 𝑗BT − 𝜂 1
𝑁

𝐶∑
𝑖=1

𝑛𝑖∑
𝑗=1

( 1
𝑛𝑖

2 BBT)]XT

= XKXT

where K is the symmetric matrices.

So, we can change (8) into the following constrained
problem:

min tr[WT [XLXT − (Sb − 𝜂Sw)]W]
= min tr[WT [X(L − K)XT]W]
= min tr[WT (XMXT)W]
s.t. WTXXTW = I

(9)

where M = L − K is the symmetric matrices.

Equation (9) can be solved by Lagrange multiplier
method. The minimization criterion (9) can be transformed
into solving the following GEM:

XMXTw = 𝜆XXTw. (10)

3.2 Ship Target Recognition Based on E-MMC-
SPP
To overcome the SSS problem arising in MMC-SPP,

we consider the matrix exponential approach, and propose
a supervised exponential sparsity preserving projection (E-
MMC-SPP) technique for the ship recognition. And then
a method for solving the exponential eigenvalue problem is
presented.

i) Supervised exponential sparsity preserving pro-
jection

Given an 𝑛 × 𝑛 matrix A, its exponential is defined as
follow [35]:

exp(A) = I𝑛 + A + A2

2!
+ . . . + A𝑘

𝑘!
+ . . .

where I𝑛 is the 𝑛 × 𝑛 identity matrix.

The following results about the matrix exponential are
essential and useful for analyzing E-MMC-SPP.

i) exp(A) is a finite matrix.
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ii) If square matrix A commutes with B, i.e., AB = BA,
then

exp(A + B) = exp(A) exp(B).

iii) For an arbitrary square matrix A, there exists the
inverse of exp(A). This is given by

exp (A)−1 = exp(−A).

iv) If T is a nonsingular matrix, then

exp(T−1AT) = T−1 exp(−A)T.

v) If v1, v2, . . . , v𝑛 are eigenvectors of exp(A) that are
related to the eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛, then v1, v2, . . . , v𝑛
are also eigenvectors of exp(A) that are related to the eigen-
values 𝑒𝜆1 , 𝑒𝜆2 , . . . , 𝑒𝜆𝑛 of exp(A) .

Similar to the minimization problem for MMC-SPP, the
criterion of E-MMC-SPP can be transformed to:

min tr[WT exp(XMXT)W]
s.t. WT exp(XXT)W = I. (11)

Then the optimal w′𝑠 are the eigenvectors correspond-
ing to the smallest eigenvalues of the following GEP:

exp(XMXT) = 𝜇 exp(XXT)w. (12)

We can follow from the property of matrix exponential
that exp(XMXT) and exp(XXT) are both positive definite.
Then E-MMC-SPP does not suffer from the SSS problem
and the GEP is equivalent to the following standard eigen-
value problem:

exp (XXT)−1 exp(XMXT)
= exp(−XXT) exp(XMXT) = 𝜇w.

(13)

Algorithm 1. Computing E-MMC-SPP (base version).

Input: Training data matrix X = [X1, X2, . . . , X𝐶 ] and the corre-
sponding labels C; The dimension 𝑑 of the projected subspace; Testing
data X′.
Output: Transformation matrix W and representation matrix Y.

1: Construct the weight matrix S by solving the SPP problem, and form
the matrix L.

2: Construct the between-class scatter matrix Sb and within-class scatter
matrix Sw, and form the matrix K and the matrix M.

3: Compute matrices XXT, XMXT, exp(−XXT ) and exp(XMXT ) .
4: Solve the SEP for eigenvectors {w𝑖 }𝑑𝑖=1 corresponding to the smallest

𝑑 eigenvalues.
5: Set W = [w1, w2, . . . , w𝑑 ] which spans the projected subspace and

compute Y = WTX.

Extra computations of exp(−XXT) and exp(XMXT)
are needed in Algorithm 1. When 𝑛 is large, computing the
matrix exponential is very time-consuming. Therefore, we
should design an effective way to evaluate the matrix expo-
nential.

ii) Solution to E-MMC-SPP

As discussed above, Algorithm 1 can not only obtain
more valuable information than SPP, but also keep active

even if the SSS problem occurs. However, it still suffers from
heavy computational cost and storage requirement since one
has to compute exp(−XXT) and exp(XMXT), and then solve
the large-scale matrix exponential eigenvalue problem (13).

For large-scale eigenvalue problem, the Krylov sub-
space methods [36], [37] are the power tool, which is used
to evaluate the matrix exponential-vector products. As we
known, in a certain Krylov subspace method, the main cost
is the computation of matrix vector products. Therefore, the
key to deal with the eigenvalue problem of large-scale matrix
exponential is the computation of matrix exponential-vector
products, meaning that there is no need to compute the ma-
trix exponential exp(−XXT) and exp(XMXT). In the rest
of this subsection, we will show a numerical algorithm to
evaluate the matrix exponential-vector products based on the
structures of the matrix XXT and XMXT.

For simplicity, we denote A = XXT, B = XMXT, then

exp (XXT)−1 exp(XMXT)
= exp(−A) exp(B) = 𝜇w.

(14)

By the matrix exponential property, if the matrix equa-
tion AB = BA holds, we have exp(A + B) = exp(A) exp(B).
But it is easily to prove that there is AB = (BA)T, not
AB = BA, so the above equation does not hold. However,
in fact, the difference of exp(−A) exp(B) and exp(B − A) is
little. Let

AB = BA + ΔT

and
exp(B − A) = exp(−A) exp(B) + ΔU.

According to theorem presented in [26], we have

∥ΔU∥ ≤ 1
2

exp(∥B∥ + ∥A∥) ∥ΔT∥ .

Contrasted to the matrix exp(−A) exp(B) and exp(B −
A), ΔU occupies a very small proportion. And then the GEP
may be replaced with:

exp(XMXT − XXT)
= exp[X(M − F)XT] = 𝜇w (15)

where F represents the square matrix and all elements are 1.

Next, we will evaluate the matrix-vector product. De-
note the QR decomposition of X by

X = Q
(

R
0

)
where Q = [Q1,Q2] ∈ R𝑚×𝑚 is an orthogonal matrix with
Q1 ∈ R𝑚×𝑛 and R ∈ R𝑛×𝑛 is an upper triangular matrix.

Since Q2 is not needed for actual computation, the mod-
ified Gram-Schmidt orthogonalization can be used to perform
QR decomposition. Then we have

X(M − F)XT = Q1R(M − F)RTQ1
T.
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Using the properties of matrix exponential, we get

exp[X(M − F)XT]
= Q1 exp[R(M − F)RT]Q1

T + Q2Q2
T.

Here, QQT = QTQ = I𝑚. Then we get

QQT = Q1Q1
T + Q2Q2

T = I𝑚.

Further

exp[X(M − F)XT]
= Q1 exp[R(M − F)RT]Q1

T + I𝑚 − Q1Q1
T.

Denote the spectral decomposition of R(M − F)RT by

R(M − F)RT = VD𝑉T

where V ∈ R𝑛×𝑛 is orthogonal, D ∈ R𝑟×𝑟 is diagonal.

According to the properties of matrix exponential, we
have:

exp[X(M − F)XT]
= Q1V exp(D)VTQ1

T + I𝑚 − Q1Q1
T.

(16)

Matrix exponential of D can be easily calculated since
it is diagonal. To avoid overflow of the matrix exponential
calculation when the biggest value in D is too large, we can
choose a proper scaling parameter 𝜏 > 0 replace R(M−F)RT

by 1
𝜏
R(M − F)RT.

The selection of 𝜏 > 0 is critical, in this paper we choose
it as 𝜏 = 𝜆𝐷 , where 𝜆𝐷 is the biggest value in D.

The whole procedure of performing classification by
E-MMC-SPP can be formally summarized as follows.

Algorithm 2. Computing E-MMC-SPP (optimized version).

Input: Training data matrix X = [X1, X2, . . . , X𝐶 ] and the corre-
sponding labels C; The dimension 𝑑 of the projected subspace; Testing
data X′.
Output: Transformation matrix W and representation matrix Y.

1: Construct the weight matrix S by solving the SPP problem, and form
the matrix L.

2: Construct the between-class scatter matrix Sb and within-class scatter
matrix Sw, and form the matrix K and the matrix M.

3: Compute the economic QR decomposition of X for Q1 and R.
4: Compute the spectral decomposition of R(M − F)RT for V and D.
5: Choose a proper scaling parameter 𝜏.
6: Solve the SEP for eigenvectors {w𝑖 }𝑑𝑖=1 corresponding to the smallest 𝑑

eigenvalues by a certain Krylov subspace method using (16) to generate
the matrix-vector products.

7: Set W = [w1, w2, . . . , w𝑑 ] which spans the projected subspace and
compute Y = WTX.

After the mapping matrix is obtained, both the train-
ing samples and the testing samples can be mapped into a
low-dimensional feature space

Y = WTX

and
Y′ = WTX′.

The proposed method belongs to subspace transforma-
tion, which is one of the pattern recognition. In this paper,
the SVM classifier is adopted in the testing stage.

4. Experimental and Results
In this section, several experimental results are pre-

sented to demonstrate the effectiveness of the proposed
method for classification tasks on the measured datasets. The
real data experiment includes two sub-experiments: one is
the data dimensionality reduction ability and algorithm op-
timization performance verification experiment, another is
the recognition accuracy comparison experiment with small
training data.

4.1 HRRP Data Set of Ship
To verify the robustness and effectiveness of the pro-

posed method, several key experiments were conducted using
measured datasets. The datasets with three common radar
bands are balanced and composed of four classes of ships
respectively. The datasets are measured by numerous homo-
geneous coastal surveillance radars: each band belongs to
L, X, or S. The bandwidth of L band is 50 MHz, there are
225 targets of each class, 900 in total, and the size of each
raw HRRP is 512. The bandwidth of X band is 200 MHz,
there are 360 targets of each class, 1400 in total, and the size
of each raw HRRP is 1024. The bandwidth of S band is
300 MHz, there are 500 targets of each class, 2000 in total,
and the size of each raw HRRP is 2048. The labels of the
data samples are derived from intelligence support and the
labels are confirmed by the operator.

Generally, the antenna erection height of coastal surveil-
lance radar ranges from tens of meters to more than one
thousand meters above sea level, and the maximum detection
distance is tens of kilometers. Ignoring the inclination of the
ship caused by the waves, it can be calculated that the range
of the radar grazing angle is approximately 0.5◦ to 5◦. Rela-
tive to the azimuth angle that can be changed in the range of
0◦ to 360◦, the influence of the change of the grazing angle is
negligible. Therefore, the azimuth sensitivity is mainly con-
sidered in this paper. Here we define attitude angle, which
is the included angle between radar line of sight and target
heading, and its value ranges from 0◦ to 180◦. When the
attitude is greater than 70◦ or less than 110◦, the sea surface
ship target is in tangential or approximate a tangential motion
state. At this time, HRRPs cannot completely represent the
inherent structural characteristics of the target.

Hence, HRRPs with the attitude range of 0◦ to 70◦ are
selected for experimental analysis. The datasets are balanced
and consist of four classes of range profiles. A characteris-
tic example HRRP of each class with L-band, X-band and
S-band radar can be seen in Fig. 3. For the sake of ensuring
the sample balance of the training samples and the testing
samples, we divide the samples into 7 small parts accord-
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ing to 10◦ posture interval, and randomly extracts data from
the 7 parts according to the proportion to form the training
samples and the testing samples. The number of HRRPs for
training and testing are tabulated in Tab. 1. So as to reduce
the impact of amplitude sensitivity on the recognition results,
the HRRPs are normalized.

(a)

(b)

(c)

Fig. 3. (a) Characteristic example HRRPs of ship target with L-
band radar; (b) Characteristic example HRRPs of ship tar-
get with X-band radar; (c) Characteristic example HRRPs
of ship target with S-band radar.

4.2 Recognition Accuracy Comparison with
Different Feature Dimensions
In the experiments, the dimensionality reduction capa-

bility and optimization performance of the proposed algo-
rithm is compared and analyzed with the classical PCA [38]
and SPP [33]. The experiments are made from two aspects:
one is to show the CPU time of implementing each algo-
rithm, another is to evaluate the ship recognition performance
of the proposed E-MMC-SPP method. All experiments are
performed in MATLAB R2017b on an Intel Core 4 GHz PC
with 16GB memory under Windows 10 system.

To compare the CPU time of implementing each al-
gorithm, we conduct the experiment with different cropped
sizes, that is, 𝑛 = 512, 𝑛 = 1024 and 𝑛 = 2048. As compar-
ison, the performance of SPP by keeping 98% energy in the
PCA preprocessing step, abbreviated as PCA (0.98) + SPP,
is also given. We run PCA, PCA (0.98) + SPP, Algorithm 1
and Algorithm 2. Table 2 shows the CPU times in seconds,
barring the procedure of constructing weight matrix S since
the procedure is run once for PCA (0.98) + SPP, Algorithm 1
and Algorithm 2.

From Tab. 2, we observe that the CPU times spent by all
four algorithms increase as the cropped size increases. Com-
pared with PCA and PCA (0.98) + SPP, Algorithm 1 and
Algorithm 2 have higher CPU times, and they increase much
faster with the data dimension increasing. This is mainly
because the calculation of matrix exponents is time consum-
ing. Besides, Algorithm 2 takes slightly less CPU times
than Algorithm 1 with an order of magnitude difference. In
fact, Algorithm 1 needs to compute the matrix exponential
exp(−XXT) and exp(XMXT). Algorithm 2 only needs to
compute the matrix exponential exp(D). Then, it can be seen
that the proposed numerical algorithm (Algorithm 2) can
solve the large-scale matrix exponential eigenvalue problem.

Target Training samples Testing samples Band
Class 1 125 100 L
Class 2 125 100 L
Class 3 125 100 L
Class 4 125 100 L
Class 1 200 150 X
Class 2 200 150 X
Class 3 200 150 X
Class 4 200 150 X
Class 1 300 200 S
Class 2 300 200 S
Class 3 300 200 S
Class 4 300 200 S

Tab. 1. The number of HRRP for training and testing for the four
classes targets.

𝑛 512 1024 2048
PCA 0.55 0.84 1.22

PCA(0.98) + SPP 0.91 1.53 5.14
Algorithm 1 45.37 659.21 4302.58
Algorithm 2 8.65 49.87 355.96

Tab. 2. CPU times of four algorithms on the measured HRRP.
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Fig. 4. (a) Recognition accuracy with different feature dimen-
sions of L-band; (b) Recognition accuracy with different
feature dimensions of X-band; (c) Recognition accuracy
with different feature dimensions of S-band.

In this section, we will show the reduced feature di-
mension of the corresponding algorithms on the measured
datasets. Figure 4 shows the average recognition accuracy
of four classes with different feature dimensions base on
three datasets. From the analysis, the average recognition
accuracy of all methods improves with increasing feature di-
mensions. However, after a certain feature dimension, the
average recognition accuracy performance remains almost

unchanged. It can be seen that the average recognition accu-
racy of the four methods is very low with a lower reduced
dimension. Besides, we observe that E-MMC-SPP can reach
and even achieve higher recognition accuracy rates than PCA
and PCA (0.98) + SPP, which indicates that E-MMC-SPP
may have more capability SSS problem. Moreover, Algo-
rithm 2 performs better than Algorithm 1 since the former
can obtain more accurate projected subspace by using the
structures of the coefficient matrices.

4.3 Recognition Accuracy Comparison with
Different Training Sample Sizes

To verify the proposed method can solve small sample
problem, the performance of the proposed method with other
small sample recognition methods is compared. We have
selected five comparison models. In this study, four types of
DL networks are chosen, including: SAE [20], DDAEs [21],
lightweight transformer network (LTN) [23], GANSO [39]
and a subspace transformation ESPP [27] method.

i) Introduction to the comparative models

i) ESPP method: ESPP model is implemented through
the MATLAB R2017b. The steps of the ESPP model in-
clude constructing the weight matrix, computing economic
QR decomposition and the projected subspace.

ii) DL method: DL methods are implemented through
the Pytorch, which includes four typical networks: LTN,
SAE, DDAEs and GANSO. The feature extraction module
of LTN consists of a local RNN module and a Transformer
encoder modified. The classifier consists of a linear layer and
a SoftMax function. The implementation of RNN is based
on LSTM cells. The input sequence length is 31, and each
time point is a 16-D vector. The SAE model is a stack of five
auto encoders, where the number of neurons in each layer is
300, 600, 900, 2000, and 4. DDAEs are constructed with
seven layers. The number of neuron from the bottom layer to
the top layer are 256, 600, 400, 300, 300, 600 and 3, respec-
tively. In addition, the sparsity target of the network is set
to 0.05. GANSO consists of a generator and a discriminator.
The generator consists of three linear layers and two ReLU
layers. The number of linear layer is 256, 128, and 64 from
the bottom to the upper layer. The discriminator consists of
three linear layers and two ReLU layers. The number of linear
layer is 64, 128, and 256 from the bottom to the upper layer.

In addition, if any researcher needs code, please contact
the author, and it can be provided after evaluation.

ii) Experimental results using all training data

The training process of this experiment used all HRRP
training samples, Among them, there are 500 samples of L-
band, 800 samples of X-band and 1200 samples of S-band.
The recognition rate and average recognition rate of the four
classes in each band are used as evaluation indexes. More-
over, we also consider the balance between the recognition
rates of various classes.
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According to Tabs. 3–5, the recognition performance of
different models for each class of there bands. It can be seen
that the proposed model can effectively classify four classes.
Comparing LTN, SAE, DDAEs and GANSO four typical DL
methods, the proposed method has an average recognition
rate of 6.17%, 4.88% and 7.93%, higher than the SAE model
among there bands. It has an average recognition rate of
6.62%, 4.47% and 6.45%, higher than the DDAEs model. It
has an average recognition rate of 2.25%, 1.45% and 1.43%,
lower than the LTN model. It has an average recognition rate
of 1.13%, 3.1% and 2.35%, lower than the GANSO model.
Comparing with the traditional ESPP method, the model pro-
posed in this article has an average recognition rate of 9.26%,
10.15% and 11.59% higher.

After analyzing the overall recognition performance of
each method, the confusion matrix of each method is shown
in Figs. 5–7. As can be seen, the accuracy of the pro-
posed method is relatively average for all classes recognition.
Among them, at S band, class4 with the highest recognition
accuracy and class3 with the lowest recognition accuracy
differ by only 3.43%. Other bands, the highest recognition
accuracy and the lowest recognition accuracy differ is 1.99%
and 1.67% respectively, which shows that the method pro-
posed can model the characteristics of the four classes of ship
in a more balanced manner. That is because the proposed
model can use not only the latent physical structure infor-
mation of the target shared by the training data set but also
utilizes MMC to extract better separable features.

Methods Class 1 Class 2 Class 3 Class 4 Average
Algorithm2 81.2 82.55 80.56 81.69 81.5

ESPP 70.52 76.3 78.77 63.37 72.24
LTN 80.22 90.8 76.51 89.43 84.24
SAE 70.98 82.17 78.44 69.73 75.33

DDAEs 72.62 76.84 73.5 76.56 74.88
GANSO 82.66 85.14 83.58 80.62 83

Tab. 3. Recogniton results of different methods at 125 training
datasets of L-band [%].

Methods Class 1 Class 2 Class 3 Class 4 Average
Algorithm2 86.12 85.45 84.98 86.65 85.8

ESPP 72.61 80.1 82.67 66.86 75.65
LTN 84.22 92.11 83.44 89.23 87.25
SAE 75.88 85.67 82.19 79.86 80.92

DDAEs 79.56 86.2 81.88 77.68 81.33
GANSO 87.58 92.44 89.4 86.18 88.9

Tab. 4. Recogniton results of different methods at 200 training
datasets of X-band [%].

Methods Class 1 Class 2 Class 3 Class 4 Average
Algorithm2 90.01 91.88 88.64 92.07 90.65

ESPP 75.12 81.57 84.66 74.89 79.06
LTN 91 93.87 93.14 90.31 92.08
SAE 78.59 86.74 83.77 81.78 82.72

DDAEs 82.5 88.9 84.67 80.73 84.2
GANSO 92.4 94.88 93.08 91.64 93

Tab. 5. Recogniton results of different methods at 300 training
datasets of S-band [%].

Other models, more or less, have the problem of imbalance
in recognition ability among various classes. For example,
based on GANSO, although the average recognition rate of
the four classes of ship reached 83% at S-band and 88.9%
at X-band, the highest recognition accuracy and the lowest
recognition accuracy differ is 4.52% and 6.26% respectively.
The same problem is evident in ESPP, LTN, SAE and DDAEs.
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Fig. 5. Confusion matrix comparison of different models at 125
training datasets of L-band.
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Fig. 6. Confusion matrix comparison of different models at 200
training datasets of X-band.



152 X. YANG, G. ZHANG, H. SONG, RADAR HRRP RECOGNITION BASED ON SUPERVISED EXPONENTIAL . . .

class1 class2 class3 class4

class1

class2

class3

class4

Algorithm2

4.1

1.21

0.49

5.88

4.33

3.55

3.47

2.54

3.89

0.64

1.48

5.82

90.01

91.88

88.64

92.07

class1 class2 class3 class4

class1

class2

class3

class4

ESPP

9.81

4.97

3.09

11.87

8.24

6.58

9.52

8.55

15.44

3.49

0.07

2.13

75.12

81.57

84.66

74.89

class1 class2 class3 class4

class1

class2

class3

class4

LTN

2.14

2.71

0.94

4.22

3.66

3.82

2.58

2.23

4.93

2.2

1.76

0.49

91

93.87

93.14

90.31

class1 class2 class3 class4

class1

class2

class3

class4

SAE

6.47

2.7

2.73

12.8

6.66

5.67

5.98

5.33

9.82

2.63

1.46

6.87

78.59

86.74

83.77

81.78

class1 class2 class3 class4

class1

class2

class3

class4

DDAEs

4.05

1.08

2.15

8.35

6.02

6.88

6.25

5.37

10.24

2.9

1.68

8.23

82.5

88.9

84.67

80.73

class1 class2 class3 class4

class1

class2

class3

class4

GANSO

1.49

1.09

0.78

3.66

1.58

3.55

2.09

2.77

4.03

1.85

0.86

4.25

92.4

94.88

93.08

91.64

Fig. 7. Confusion matrix comparison of different models at 300
trainingdata sets of S-band.

iii) Recognition results with different training sam-
ple sizes

The training sample size which is tabulated in Tab. 1
is set as 20%, 40%, 60%, 80%, and 100% of the original
training sample size, respectively, and then we use all of the
testing sample size as testing sample size to evaluate perfor-
mances. Finally, the involved experimental results are shown
in Fig. 8.

It can be seen from the experiments of three band
datasets that under the condition of different number of train-
ing samples, the recognition accuracy of all methods in-
creases with the increase of the number of training samples.
In particular, LTN and GANSO networks are superior to
the proposed E-MMC-SPP method (Algorithm 2) across all
cases. But, Algorithm 2 outperforms the traditional ESPP
and two types of DL methods, include SAE and DDAEs. As
shown in Fig. 8, the recognition effect of SAE and DDAEs
are more sensitive to the decrease of training sample size,
especially when the training sample is small. This indicates
that SAE and DDAEs have limited recognition ability under
small sample conditions. In addition, compared with the ap-
plication in air target recognition, SAE and DDAEs do not
achieve the corresponding ship recognition performance with
the small training samples. This may be that SAE and DDAEs
networks are more suitable for anti-Gaussian white noise, and
the anti-sea clutter ability is relatively weak. Meanwhile, Al-
gorithm 2 performs better than ESPP since the former can
obtain label information by using MMC.
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Fig. 8. (a) Recognition accuracy with different training sample
size of L-band; (b) Recognition accuracy with different f
training sample size of X-band; (c) Recognition accuracy
with different training sample size of S-band.
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5. Conclusion
In this paper, we propose a supervised exponential spar-

sity preserving projection (E-MMC-SPP) to enhance ship
recognition based on HRRP with small training datasets.
The main idea of E-MMC-SPP is that the maximum margin
criterion and matrix exponential are introduced to SPP. To
maximally preserve the structure of the data in the dimension-
reduced space and improve the classification performance si-
multaneously, the merits of SPP and MMC are fused, which
can maximally preserve the sparse reconstruct of data and
maximize the class by separability. Meanwhile, the pro-
posed method uses matrix exponential to ensure the posi-
tive definiteness of the coefficient matrices, which can over-
come the SSS problem. In further, a numerical algorithm is
presented to solve the large-scale matrix exponential eigen-
value problem which involves huge computational cost and
storage requirement. The experiments are conducted on
three band datasets: L, X and S. Extensive studies on the
measured data demonstrate that the proposed method ex-
hibits stable recognition performance even with small train-
ing datasets. Moreover, compared with other methods in
HRRP target recognition, it shows the superiority of the
proposed method.However, the comparative analysis experi-
ments were conducted on different band data sets. In the next
step, we plan to carry out relevant work on the universality
of different band data and improve the recognition accuracy.
In a word, the involved results could supply some reference
for engineering application.
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