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Abstract. Brain tumor segmentation in MRI images is cru-

cial for clinical diagnosis and treatment planning but those 

scans are usually affected by imaging artifacts which de-

crease the quality of data and hamper segmentation perfor-

mance. To address these challenges, this study proposed 

a unique framework that seamlessly combines artifact cor-

rection with segmentation of tumors. The framework fea-

tures a data preparation module which is able to prepare 

realistic artifact-contaminated and artifact-free MRI image 

pairs that have been used for training. It also includes a dif-

fuse model which acts on MRI images and removes the arti-

facts thus giving high-quality inputs for segmentation. In ad-

dition, a modified 3D Convolutional Neural Network (CNN) 

architecture which integrates attention blocks and squeeze-

and-excitation (SE) layers is used to segment the tumor sub-

regions, including the enhancing tumor (ET), tumor core 

(TC), and whole tumor (WT). The framework was evaluated 

with artifact-corrupted data and clean data and achieved 

better results regarding the generation of artifact-free data 

and stable segmentation than the other baseline methods. 

This method emphasizes the magnitude of imaging artifacts 

on MRI-based segmentation and facilitates improvement in 

the clinical workflows. The code is available at 

https://github.com/Rahman3175/MMR  
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1. Introduction 

In diagnosis, treatment planning, as well as monitoring 

neuro-oncology patients, brain tumor segmentation plays 

an important role in medical image analysis. Gliomas, which 

account for about 14.5% of total tumors in the central nerv-

ous system (CNS) and 48.6% of all malignant CNS tumors, 

comprise some of the most aggressive brain neoplasms. 

Apart from newer medical therapies, glioblastoma multi-

forme (GBM), which is the most aggressive glioma variant, 

barely survives for 15 months [1]. Considering that MRI is 

likely to produce excellent images of the brain and its abnor-

malities due to its high soft tissue contrast, this kind of im-

aging is invaluable during such procedures. However, man-

ual evaluation of MRI is a time-consuming process, so 

automated computer-aided techniques are essential in the 

modern era to improve both the accuracy and efficiency of 

brain tumor segmentation [2]. More comprehensive data re-

porting is also key in minimizing the inequalities in the rates 

of tumor survival across populations of various ages [3]. 

Motion artifacts are the result of patient movement dur-

ing MRI scans, as movement interferes with the flow of K-

space data. Visual distortions such as blurring, ghosting, and 

general signal loss degrade the overall quality of the images 

produced, which blurs the view of the tumor structures [4], 

[5]. The artifacts impede the work of segmentation algo-

rithms, which depend on accurate spatial and intensity met-

rics. Recent advances, such as joint field and motion control 

in T2-weighted imaging at 7T, have shown promise in miti-

gating motion-induced field fluctuations through simultane-

ous feedback loops [6].  

Hybrid approaches that combine generalized auto cali-

brating partially parallel acquisitions (GRAPPA) with gen-

erative adversarial network (GANs) address the trade-offs of 

reduced signal-to-noise ratio in traditional PPI techniques, 

offering improved metrics like peak signal-to-noise ratio 

(PSNR) and structural similarity index measure (SSIM) for 

K-space reconstruction [7]. Deep learning models trained 

with diverse K-space subsampling techniques, accompanied 

by non-Cartesian trajectories, enable the use of extremely 

high acceleration rates without losing the quality of the re-

construction [8]. These examples prove the necessity of 

more comprehensive methods when dealing with motion ar-

tifact segmentation challenges. 

Deep learning techniques, especially CNNs, have 

demonstrated outstanding performance in various tasks, in-

cluding brain tumor segmentation, due to their ability to ef-

fectively localize multi-scale spatial features and efficiently 

handle 3D volume segmentation [9], [10]. Although archi-

tectures like 3D U-Net and its recent advancements are 

widely used, they often operate under highly constrained 



RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 167 

 

conditions, assuming either artifact-free input or requiring 

preprocessing techniques such as bias correction [11]. 

Severe artifacts, such as outliers and illumination bias, 

remain significant challenges for segmentation in medical 

imaging [12]. 

To address these challenges, we present a unique 

framework that incorporates artifact removal and tumor seg-

mentation using MRI scans. This framework consists of 

three well-defined modules including dataset preparation, 

training of a diffuse model, and training of a 3D CNN. In the 

data preparation subsection, artificial displacements, rota-

tions and warping are added to the clean images to create 

paired artifact-affected and clean images, compared to the 

real-world counterparts, which were synthesized. This ap-

proach leverages synthetic datasets to address data scarcity 

and privacy concerns, ensuring robustness and generaliza-

bility [13]. 

To ensure that the generated artifacts accurately repre-

sent real-world MRI distortions, we selected displacement, 

rotation, warping, Gaussian noise, periodic ghosting, and K-

space motion corruption due to their significant impact on 

brain tumor segmentation. The MRART dataset highlights 

the need for paired motion-corrupted and motion-free MRI 

scans to evaluate artifact correction techniques. However, 

the scarcity of such datasets necessitates synthetic motion 

artifacts to enhance segmentation model robustness and gen-

eralization [14]. Motion artifacts, including displacement, 

rotation, and warping, commonly occur in MRI scans as 

a result of involuntary patient movement during acquisition. 

These distortions introduce structural inconsistencies and 

spatial misalignment, leading to segmentation errors and re-

duced model robustness [15]. Gaussian noise is another fre-

quent artifact caused by thermal noise and electronic inter-

ference in the imaging system, affecting contrast and tumor 

boundary clarity, thereby reducing segmentation perfor-

mance [16]. Periodic ghosting arises from pulsatile motion, 

such as cardiac or respiratory activity, as well as gradient 

imperfections, resulting in the replication of structures that 

can confuse segmentation models [17]. K-space motion cor-

ruption occurs when patient movement distorts frequency-

domain data, degrading the entire image reconstruction pro-

cess, causing blurring and loss of anatomical details, and ul-

timately affecting segmentation accuracy [18]. These arti-

facts have been widely studied in MRI literature as major 

sources of degradation in automated analysis tasks. By sim-

ulating them in a controlled manner, our approach ensures 

that the segmentation model is robust to real-world imaging 

distortions, improving clinical applicability and reliability. 

The diffusion model was trained using images from the 

paired dataset generated in the dataset preparation module in 

order to turn MRI images that contain artifacts into artifact-

free images using advanced artifact correction techniques. 

Such models include motion artifact reduction through con-

ditional diffusion probabilistic models (MAR-CDPM), 

which retain more structural details while reducing the mo-

tion artifacts and improving the image quality for segmenta-

tion tasks [19]. 

Tumor subregions, such as ET, TC, and WT, are accu-

rately segmented using a modified 3D CNN-based segmen-

tation module that incorporates enhanced attention mecha-

nisms and SE layers to improve segmentation performance. 

U-Net’s attention models allow clinicians or operators to fo-

cus on specific regions while suppressing irrelevant data, 

thereby enhancing segmentation efficiency and reducing 

computational complexity [20]. The integration of SE layers 

with spatial-channel attention models further strengthens 

high-level feature extraction, improving segmentation accu-

racy and mitigating inconsistencies [21], [22], ensuring pre-

cise segmentation even in the presence of artifacts. Tradi-

tional artifact correction methods, such as bias field 

correction and filtering, have limited effectiveness when 

dealing with multiple artifacts in medical images, making 

them unsuitable for complex clinical applications [23]. In 

contrast, advanced algorithms that utilize a stack of head U-

Nets with self-assisted priors can effectively correct rigid 

motion artifacts by leveraging information from neighboring 

slices, significantly improving image quality and structural 

similarity [24]. Additionally, GANs and diffusion models 

have demonstrated their ability to generate high-quality, ar-

tifact-free images. GANs correct motion distortions through 

adversarial learning, while diffusion models simulate arti-

fact creation and iteratively restore critical anatomical struc-

tures [25], [26]. 

Recent models, such as the Denoising Autoencoder 

(DAE) [27], SwinMR [28], and RestormerGAN [29], have 

demonstrated notable effectiveness in artifact correction. 

DAE utilizes an encoder-decoder architecture to further re-

duce artifacts, resulting in clearer images. SwinMR lever-

ages the Swin Transformer framework to enhance motion 

artifact correction while preserving structural integrity, 

whereas RestormerGAN combines GANs and transformer-

based designs to generate artifact-free images. 

Despite advancements in artifact segmentation and 

motion artifact correction, most existing methods in the lit-

erature have not been highly effective due to their lack of 

integration in addressing both tasks simultaneously. To 

overcome this limitation, our proposed framework merges 

motion artifact segmentation and motion artifact correction 

into a unified pipeline, training the segmentation task with 

high-quality outputs from a diffusion model. This approach 

significantly enhances model robustness and accuracy, par-

ticularly in complex cases. Furthermore, integrating atten-

tion mechanisms and SE layers into the 3D CNN architec-

ture enhances tumor segmentation performance. Fine 

segmentation, combined with a hybrid loss function applied 

to 3D CNN-based models like SegResNet, results in higher 

Dice scores [30].  

The remainder of this paper is organized as follows: In 

Sec. 2 the proposed method is described, including dataset 

preparation, diffuse model training, and 3D CNN training. 

In Sec. 3 the experimental setup, results, and a comparative 

analysis of the framework are given. Finally, conclusion 

with a summary of findings and future research directions is 

drawn in Sec. 4. 
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2. Method 

2.1 Data Preprocessing 

In this study, the preprocessing pipeline was designed 

to standardize the spatial resolution and normalize the inten-

sity values of the MRI modalities while preserving key 

structural integrity. This involved T1ce, T1n, T2f, T2w, and 

segmentation masks, which were all reorganized to ensure 

a spatial resolution of 128 × 128 × 128 voxels. The re-

sampling process is given by   

   
, ,  
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x y z

I I x y z k x x y y z zx y z            (1) 

where I (x, y, z) is the source image, I′ (x′, y′, z′) is the 

resampled image, and k is the interpolation kernel. To stand-

ardize the intensity values across datasets, voxel intensities 

were normalized to a range between [0, 1]. This normaliza-

tion process is given by 
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where I (x, y, z) represent the voxel intensity at position x, y, 

z, and Imin and Imax are the minimum and maximum intensity 

values in the image.  

After pre-processing the data, all four MRI modalities 

for each patient were integrated into a single 4D array 

C × H × W × D, with C denoting the four modalities that 

were included. We saved the segmentation masks as sepa-

rate images, applying nearest-neighbor interpolation to 

maintain discrete labels. This approach ensures consistency 

across different MRI scans, preserving the integrity of tumor 

structures for accurate segmentation. In conclusion, all data 

that had been pre-processed was stored in .h5 format, which 

supports compression and is cost-effective in terms of both 

storage capacity and access time.  

2.2 Architecture Overview  

The proposed framework, as shown in Fig. 1, is struc-

tured into three interconnected modules, including dataset 

preparation, diffusion model training, and 3D CNN training. 

The dataset preparation module generates synthetic data by 

applying artifact-simulation techniques to clean MRI images 

and organizes them into paired datasets for training. The dif-

fuse model is trained to transform artifact-affected images 

into artifact-free images, ensuring high-quality, artifact-free 

inputs for the segmentation model. Finally, the 3D CNN 

training module utilizes the artifact-free images to train a ro-

bust segmentation model capable of accurate brain tumor 

segmentation. Each module is described in detail in the fol-

lowing subsections.  

2.3 Dataset Preparation Module  

It can be seen in Fig. 1(a) that the dataset preparation 

module systematically generates a paired dataset of clean 

 

Fig. 1. Proposed architecture including (a) Dataset preparation, 

(b) Diffuse model training and (c) 3D CNN training. 

and artifact-affected images, as visualized in Fig. 2. This 

paired dataset serves as the foundation for training the diffu-

sion model. As the first step, clean MRI data from the BraTS 

dataset is fetched, which is denoted as a tensor 
C H W D

cI R     where C signifies the number of modalities, 

and H, W, D are the dimensions of the image in space. The 

clean MRI data is utilized to create-artifact affected images. 

In order to introduce realistic imaging artifacts, clean MRI 

images undergo a variety of transformations in a certain or-

der. Displacement applies random linear shifts along each of 

the spatial axes and is given by 

  d c   , ,      ( , , )yI x y z I x x y z z    (3) 

where Ic is the clean MRI scan, Id is the displaced image, and 

Δx, Δy ,Δz are random displacements sampled within a pre-

defined range. In our pipeline, displacement shifts are ran-

domly sampled between −5 and +5 voxels along each of the 

x, y, and z axes, ensuring realistically translational artifacts 

in multiple directions. Rotation is then applied to introduce 

angular displacements along the x, y, and z axes. The rotated 

image, denoted by Ir, is given by  

       r z   z  y   y  x  x  dI R R R I     



  (4) 

where Rx, Ry, Rz are rotation operators along the x, y, and z 

axes, and θx, θy, θz are random angles sampled from maxi-

mum angle. In this study, the rotation angle is to θ= /18 

radians or 10 degrees. Warping is then applied to mimic 

complex nonlinear deformations. The warped image de-

noted by Iw is given as 

 

      
w 

x  y   zr 

,  , 

, , , , , , , , 

I x y z

x w x y z y w x y z z w x y zI



  
 (5) 

where wx, wy, wz are random spatial displacements sampled 

from a normal distribution. In this implementation, warping 

is applied along all three axes, including x, y, and z, using 

sinusoidal functions to introduce structured distortions, 

given by 
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  z 5sin .
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These displacements introduce nonlinear distortions in 

the spatial coordinates, creating realistic artifact effects. 

Gaussian noise is added to the warped image to simulate sto-

chastic imaging artifacts; the noisy image is given by  

  n w        0, I I N    (9) 

where In is the noisy image, and N (0, σ) represents Gaussian 

noise with a mean of zero and a standard deviation of 

σ = 0.005. A periodic ghosting artifact is introduced by set-

ting every 16th slice in the image to zero, creating a struc-

tured signal dropout, as follows 

  g n g,    : :16 0.I I I   (10) 

This simulates periodic intensity dropouts, often ob-

served in MRI due to sequence timing irregularities. Addi-

tionally, motion artifacts are simulated in the K-space do-

main. The Fourier transform of the noisy image is perturbed 

by a motion scaling factor, and the inverse transform is ap-

plied to produce the motion-affected image, given by 

  1

m n     ( )I F F I M  (11) 

where Im is the motion-affected image,  represents ele-

ment-wise multiplication in the frequency domain, F and  

F–1 denote the Fourier and inverse Fourier transforms, re-

spectively, and M is a motion-modulating factor sampled 

from a uniform distribution in the range [0.98, 1.02]. This 

step models artifacts resulting from patient motion during 

scanning, including blurring and ghosting effects.  

The final artifact-affected image, Ia, is generated by 

combining these transformations. For every clean MRI im-

age Ic, an artifact-affected counterpart Ia is created, forming 

a paired dataset and these pairs denoted as Dp are given by 

     p  c a
1

,..., .
N

i i

i
D I I


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This paired dataset is quite important in aiding the dif-

fusion model by transforming artifact-affected inputs into 

high-quality, artifact-free outputs. Figure 2 illustrates the 

paired dataset, which encompasses all modalities such as 

T1ce, T1, T2f, and T2w, and displays the corrupted images 

alongside their cleaned versions. 

2.4 Diffuse Model Training Module  

As shown in Fig. 1, the diffusion model training mod-

ule employs the paired dataset created during the dataset 

preparation process and aims to learn the mapping between 

artifact-affected MRI images and artifact-free images. This 

paired dataset, Dp, consists of clean MRI images Ic and their 

 

Fig. 2.  Visualization of paired dataset, including artifact-

affected and artifact-free images across all modalities. 

corresponding artifact-affected counterparts Ia. The diffu-

sion model is designed to learn a mapping function fθ, pa-

rameterized by θ, given by 

    a   cf I I   (13) 

where fθ is defined as the factor having a minimum incon-

sistency between the predicted artifact free output and the 

actual clean image.  

In this study, we selected mean squared error (MSE) as 

the reconstruction loss function and structural similarity in-

dex (SSIM) as the perceptual loss to ensure both pixel-wise 

accuracy and perceptual quality. MSE is widely used in im-

age restoration as it minimizes pixel-wise differences be-

tween predictions and ground truth images [31]. However, 

MSE alone often fails to capture structural distortions, which 

can be problematic in medical image reconstruction. As dis-

cussed by Wang and Bovik [32], MSE does not always align 

with perceptual image quality, necessitating SSIM for better 

structural fidelity in artifact removal tasks. 

To address this, we incorporate SSIM, which evaluates 

structural similarity based on luminance, contrast, and tex-

ture, aligning more closely with human perception. Zhao et 

al. [33] analyzed various loss functions for image restora-

tion, showing that perceptual losses like SSIM enhance both 

pixel-wise accuracy and structural fidelity. The combination 

of MSE and SSIM balances low-level fidelity with high-

level perceptual coherence, making it well-suited for MRI 

artifact correction. The combined loss function, denoted as 

L(θ), is given by 

 
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  
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where λ governs the trade-off between the two terms. Once 

the training is done, the diffuse model is used for artifact-

free image generation, where it predicts clean MRI images, 

denoted by Ip, from artifact-affected inputs Ia, as given by 

 
 p a .I f I

  (15) 

This aspect guarantees the integrity and clarity of the 

produced images, and makes them additionally useful for the 

segmentation stage of the model. This module is critical in  
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Fig. 3.  Detailed workflow of the 3D CNN training module.

the proposed framework as it effectively bridges the gap be-

tween noisy, artifact-affected data and clean MRI images. 

2.5 3D CNN Training Module  

The 3D CNN training module, as shown in Fig. 1 and 

elaborated in Fig. 3, follows an improved encoder-decoder 

structure designed for precise brain tumor segmentation. It 

processes artifact-free MRI images generated by the diffu-

sion model along with their corresponding ground truth seg-

mentation masks. The architecture integrates an Attention 

Block (A), represented as a single unit in the figure, which 

consists of two types of attention mechanisms including SE 

with Spatial Attention and Axial Attention. SE-Spatial At-

tention enhances feature selection and localization by refin-

ing important regions, while Axial Attention captures long-

range dependencies in volumetric MRI data, further 

strengthening feature representation. 

As illustrated in Fig. 3, the encoder-decoder structure 

refines segmentation masks in the decoder after processing 

3D MRI volumes in the encoder. During this process, spatial 

dimensions are progressively reduced while feature depth 

increases, optimizing feature extraction. The SE-Spatial At-

tention blocks reinforce both channel-wise feature im-

portance and spatial relevance, dynamically recalibrating 

features while selectively enhancing crucial regions during 

upsampling. Axial Attention improves feature extraction by 

capturing complex tumor structures and dependencies 

across volumetric data. Additionally, skip connections trans-

fer low-level spatial information from the encoder to the de-

coder, allowing for precise reconstruction of segmentation 

masks. This enhanced 3D CNN design, with its integrated 

SE, Spatial, and Axial Attention mechanisms, significantly 

improves segmentation performance, enabling accurate pre-

dictions of tumorous subregions such as ET, TC, and WT in 

volumetric MRI scans. The combination of these mecha-

nisms not only enhances feature representation but also im-

proves boundary precision, reducing segmentation errors. 

Moreover, the optimized architecture maintains a balance 

between accuracy and computational efficiency. 

3. Experimental Results and Analysis 

This section presents the experimental setup, covering 

the computational environment, datasets used, evaluation 

criteria, and results for both quantitative and qualitative as-

sessment of the proposed framework. 

3.1 Computing Environment 

In this study, the experiments were conducted on an In-

tel Core i9-14900K high-end desktop processor with 24 

cores running at a frequency of 6.0 GHz, Nvidia GeForce 

RTX 4090 GPU, 1 TB SSD and 48 GB RAM. The software 

range includes Python 3.9, CUDA 11.8, and PyTorch 2.0.0. 

3.2 Dataset and Experimental Settings 

In this study, the BraTS 2024 [34] dataset was used to 

train and test the model, containing 2251 training cases pro-

vided as MRI scans across multiple modalities. MRI modal-

ities refer to different imaging sequences that capture vari-

ous tissue contrasts by adjusting scanning parameters such 

as repetition time (TR) and echo time (TE). These modalities 

help in differentiating soft tissues, fluids, and abnormal 

growths, making them essential for accurate brain tumor 

segmentation. The dataset includes four key MRI modali-

ties: T1-weighted (T1), which provides detailed anatomical 

structure; post-contrast T1-weighted (T1Gd), which en-

hances visualization of active tumor regions due to contrast 

agent uptake; T2-weighted (T2), which highlights edema 

and fluid-filled regions; and T2-FLAIR (Fluid-Attenuated 

Inversion Recovery), which suppresses cerebrospinal fluid 

(CSF) signals to better distinguish abnormal tissues, as 

shown in Fig. 4. 
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Fig. 4.  Multi-modal MRI and expert-labeled tumor image from 

BraTS 2024. 

Due to the unavailability of the BraTS 2024 official 

validation/test data, the experiments were validated using 

the five-fold cross-validation method, splitting the data in 

a 4:1 ratio of training to validation sets, ensuring robust eval-

uation of the proposed methodology. The MRI scans are pro-

vided in NIfTI format (. nii.gz) and sourced from multiple 

institutions using varied imaging protocols, ensuring diver-

sity in scanner types and acquisition settings, which en-

hances the model’s generalizability. 

As seen in Fig. 4, all imaging datasets have been man-

ually annotated by one to four raters, following the same an-

notation protocol, with approvals from experienced neuro-

radiologists. Annotations include the GD-enhancing tumor 

(ET, label 3), the peritumoral edematous/invaded tissue 

(ED, label 2), and the necrotic tumor core (NCR, label 1), as 

described in the latest BraTS paper. The ground truth data 

were created after pre-processing, including co-registration 

to a common anatomical template, interpolation to a uniform 

resolution (1 mm³), and skull stripping. 

The diffusion model was trained using a patch-based 

Transformer architecture with an input size of 

128 × 128 × 128 voxels, where each patch was 8 × 8 × 8 

voxels. The Vision Transformer (ViT) model consisted of 

six transformer layers, each with eight attention heads, a hid-

den dimension of 512, and a multi-layer perceptron (MLP) 

dimension of 1024. The diffusion model employed 1000 

timesteps with a linear beta scheduling strategy, where beta 

values were initialized from 1e–4 to 0.02. To ensure stable 

training and evaluation, we used a fixed 80% training and 

20% validation split instead of cross-validation. This ap-

proach was chosen due to the high computational cost of 

training diffusion models, which makes repeated training 

over multiple folds impractical. The fixed split allowed for 

efficient training while maintaining a sufficient validation 

set to assess model performance. 

The training process ran for 400 epochs with a batch 

size of 4. The Adam optimizer was used with a learning rate 

of 1e–4. The loss function incorporated a combination MSE 

for reconstruction accuracy and SSIM for perceptual quality, 

with an SSIM window size of 11. To ensure stability during 

training, noise was sampled using a normal distribution, and 

feature maps were projected using 3D convolution layers. 

The trained model generates artifact-free MRI images while 

preserving essential anatomical structures. 

These artifact-free images generated by our proposed 

model were used to train a 3D CNN for brain tumor segmen-

tation. The model was trained using a combination of cross-

entropy and Dice loss with equal weighting to balance pixel-

wise accuracy and segmentation consistency. The training 

process employed a five-fold cross-validation method, split-

ting the dataset in a 4:1 ratio for training and validation to 

ensure a robust evaluation. The model was trained for 400 

epochs with an initial learning rate of 0.0001, optimized us-

ing Adam, and incorporated automatic mixed precision 

(AMP) for efficient computation. The batch size was set to 

2, and early stopping was used to prevent overfitting. To fur-

ther enhance training stability, gradient scaling with a dy-

namic loss scaler was applied. Model performance was as-

sessed using the ET, TC, and WT Dice scores, which 

demonstrated its effectiveness in accurately segmenting the 

restored artifact-free dataset. 

3.3 Evaluation Metrics 

We evaluate the diffusion model's artifact correction 

and the 3D CNN's segmentation performance to ensure 

quantitative integrity in our framework analysis.   

3.3.1 Artifact Correction Metrics 

This subsection evaluates the diffuse model’s ability to 

generate high-quality artifact-free images using metrics that 

assess image quality and structural preservation. 

(1) Mean Squared Error (MSE) 

Mean squared error (MSE) is used to measure the 

pixel-wise discrepancy between the generated artifact-free 

images and the ground truth clean images. It is defined as  

    
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N 
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where If represents the artifact-free images generated by the 

diffuse model, Ic denotes the ground truth clean images, and 

N is the total number of samples. 

(2) Structural Similarity Index Measure (SSIM)  

Regarding the previously issued observations, the 

structural similarity index measure (SSIM) quantifies the 

visual closeness of the artifact-free images to the original 

image, emphasizing structural features rather than just pixel 

values. It is defined as 
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where x and y are the two images being compared, Mx and 

My are the mean intensities of x and y, Varx and Vary are the 

variances of x and y, Covxy is the covariance between x and 

y, and C1 and C2 are small constants to stabilize the compu-

tation. SSIM values range from 0 to 1, where 1 indicates per-

fect structural similarity.  

(3) Noise Level  

The noise level is assessed using the variance of the 

intensity differences between If and Ic. It reflects the degree 

of residual noise in the corrected images. It is defined as  

  f cNoiseLevel Var I I    (18) 

where Var(If – Ic) computes the variance of the intensity 

differences.  
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(4) Sharpness 

Sharpness is a crucial aspect in the field of medical im-

aging. It focuses on the retention of edge structures in the 

generated images, which is critical for maintaining anatom-

ical structures in medical imaging. It is measured using the 

variance of the Laplacian, defined as 

   f
Sharpness Var L I   (19) 

where L(If) represents the Laplacian of the image If, calcu-

lated as the sum of second-order differences across the spa-

tial dimensions. 

(5) Contrast-to-Noise Ratio (CNR)  

Contrast-to-noise ratio (CNR) measures the contrast 

between regions of interest, such as tumor boundaries and 

the background, relative to the noise in the image. It is de-

fined as 

 ROI b

b

   
CNR

M M




  (20) 

where MROI is the mean intensity of the region of interest, Mb 

is the mean intensity of the background, and σb is the stand-

ard deviation of the background.   

(6) Peak Signal-to-Noise Ratio (PSNR) 

Peak signal-to-noise ratio (PSNR) evaluates the overall 

similarity between the generated artifact-free images and the 

ground truth by comparing the ratio of signal power to noise 

power. It is defined as  

  
10PSNR 20log

MSE

L 
  

 
  (21) 

where L is the dynamic range of the pixel intensities. 

3.3.2 Segmentation Metrics 

To evaluate the segmentation performance of the pro-

posed model, we consider the WT, TC, and ET regions, 

where WT encompasses TC, and TC encloses ET. The eval-

uation metrics include the Dice coefficient, Jaccard index, 

sensitivity, specificity, and the 95th percentile of the 

Hausdorff distance (HD95). Among these, the Dice coeffi-

cient is most significant as it measures overlap, while the 

Jaccard index quantifies the ratio of intersection to total area, 

making it particularly useful when only partial overlap ex-

ists. HD95 assesses boundary accuracy by determining the 

maximum surface distance between the predicted and 

ground truth regions. Sensitivity measures the proportion of 

correctly identified true positives, whereas specificity indi-

cates the proportion of actual negatives correctly classified, 

reducing false positives. The mathematical definitions of 

these metrics are as follows: 

 
2

Dice ,
P T

P T





  (22) 

 Jaccard ,
P T

P T


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
  (23) 
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Specificity ,
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  (25) 

      sup inf sup infHD95 max, ,, ,a Ab B b Ba AA B d da b a b   
  (26) 

where A and B represent the surfaces of T as the ground truth 

and P as the predicted segmentation, respectively, a and b 

are points on these surfaces, and d (a, b) computes the 

Euclidean distance between them.  

3.4 Comparative Results 

3.4.1 Artifact Correction Results 

Table 1 provides a comprehensive evaluation of sharp-

ness, PSNR, MSE, SSIM, CNR, noise level, and other key 

metrics for assessing the performance of both artifact-af-

fected and artifact-free images. Additionally, Table 2 pre-

sents a detailed comparison of our proposed method with 

state-of-the-art techniques, including DAE, SwinMR, and 

RestormerGAN, all tested on the artifact-free dataset gener-

ated by our pipeline. 

As shown in Tab. 1, the proposed artifact correction 

framework significantly enhances imaging metrics, improv-

ing overall image quality. The sharpness of artifact-free im-

ages increases from an average of 0.003 to 0.006, leading to 

clearer and more detailed reconstructions. Similarly, the 

PSNR improves from 27.4 dB to 32.5 dB, indicating re-

duced reconstruction errors and higher image fidelity. The 

SSIM increases from an average of 0.77 to 0.93, demonstrat-

ing improved structural preservation and enhanced visual 

clarity. The CNR also improves from a near-negligible 

0.0001 to 0.006, highlighting better differentiation in critical 

areas, such as tumor boundaries. Additionally, the frame-

work ensures stable artifact suppression across various test 

cases, maintaining consistency in image quality. Notably, 

the noise level remains unchanged, confirming the frame-

work’s ability to remove artifacts without introducing addi-

tional noise. 

The effectiveness of the proposed method in correcting 

motion artifacts is demonstrated by the PSNR and SSIM val-

ues as shown in Tab. 2. The degraded images exhibit poor 

quality, with a PSNR of 26.4 dB and an SSIM of 0.764, in-

dicating significant structural distortions. Among existing 

methods, SwinMR achieves the highest SSIM of 0.913, 

while RestormerGAN attains a PSNR of 30.4 dB. 

It can be seen from Tab. 2 that our transformer-based 

diffusion model surpasses existing methods, achieving 

a PSNR of 32.5 dB and an SSIM of 0.925. The superior per-

formance is attributed to the model’s ability to capture long-

range dependencies and progressively refine structural de-

tails during artifact suppression. Unlike conventional mod-

els, the transformer architecture enhances motion artifact 

correction by leveraging patch-based attention and iterative  
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Metric Artifact-Affected Artifact-Free 

Avg Max Avg Max 

Sharpness 0.003181 0.004450 0.006798 0.009891 

PSNR (dB) 27.37939 31.16382 32.50965 35.61952 

MSE 0.002173 0.008520 0.002106 0.008001 

SSIM 0.773865 0.813834 0.925679 0.984184 

CNR 0.000128 0.004096 0.006268 0.093660 

Noise Level 0.011526 0.028101 0.011631 0.027616 

Tab. 1.  Comprehensive metrics for artifact-affected and artifact-free images.

 

Fig. 5.  Comparison of motion artifact correction results across models using pair dataset. 

 

Method PSNR (dB) SSIM 

Degraded Images 26.379 0.764 

DAE [27] 28.325 0.875 

SwinMR [28] 31.603 0.913 

RestormerGAN [29] 30.423 0.892 

Proposed  32.509 0.925 

Tab. 2. Comparative results of artifact correction on synthetic 

and clean MRI image pairs. 

denoising, ensuring high-fidelity image reconstruction. Fig-

ure 5 visually compares the motion artifact correction results 

across models using the synthetic and clean pair dataset, fur-

ther demonstrating the effectiveness of our approach. 

In Fig. 5, the outputs from different models that were 

artifact corrected and trained on the dataset containing syn-

thesized and clean MRI image pairs are presented. The input 

images contain artifacts and have been windowed for clarity. 

Each image corner displays the PSNR and SSIM values of 

the respective image, providing a quantitative measure of re-

construction quality. Additionally, the difference images 

have been supersized up to three times for enhanced visibil-

ity. The figure showcases the results from Input, DAE, 

SwinMR, RestormerGAN, the proposed model, and the 

Ground Truth. Artifact-free images generated by the pro-

posed model are shown in Fig. 6. 

It can be seen from Fig. 6 that artifact-corrected images 

generated by the proposed model effectively demonstrate its 

capability in restoring high-quality MRI images. Each im-

age's PSNR and SSIM values are annotated in the top-left 

corner, providing both visual and numerical assessments of 

the reconstruction fidelity. These results further highlight the 

model's ability to mitigate artifacts and enhance image clar-

ity, reinforcing its effectiveness in MRI restoration. 



174 M. RAHMAN, W. WANG, J. WANG, ET AL., ARTIFACT AWARE DEEP LEARNING WITH DIFFUSE MODEL FOR MRI BRAIN … 

  

 

Fig. 6.  Visualization of artifact-free images generated by the proposed model for representative cases. 
 

Model Variant Encoder-

Decoder 

SE 

Layers 

Attention 

Blocks 

Skip 

Connections 

Mean Dice (%) Mean Jaccard (%) 

ET TC WT ET TC WT 

Baseline ✓ - - - 76.24 79.32 84.12 75.12 78.20 82.23 

SE Layers ✓ ✓ - - 78.51 82.43 86.33 76.32 82.05 83.22 

Attention Blocks ✓ - ✓ - 78.26 81.21 86.34 78.00 79.03 84.21 

Skip Connections ✓ ✓ ✓ - 81.65 84.02 87.45 79.23 83.33 85.15 

Proposed ✓ ✓ ✓ ✓ 84.23 89.20 91.85 83.45 88.34 89.05 

Tab. 3.  Ablation experiment results on artifact-free dataset from proposed pipeline. 
 

Model Variant GFLOPs (G) Parameters (M) Inference Time (s) 

Baseline 3D CNN 1251.535 43.189 0.00576 

SE+3D CNN 1251.892 43.410 0.01040 

SE+3D CNN+Spatial Attention 1252.606 43.413 0.01302 

SE + 3D CNN + Spatial Attention+ Axial attention 1337.057 51.29 0.13511 

Tab. 4.  Computational complexity analysis of the proposed pipeline. 

3.4.2 Ablation Study 

The ablation study, presented in Tab. 3 evaluates the 

impact of key components in our model, including SE lay-

ers, attention blocks, and skip connections, on segmentation 

accuracy. Conducted using five-fold cross-validation on the 

dataset generated through our pipeline, this analysis quanti-

fies the contribution of each component to improving the 

Mean Dice and Mean Jaccard scores across ET, TC, and WT 

regions.  

It can be seen from Tab. 3 that the baseline model 

achieves the lowest segmentation performance, highlighting 

the need for advanced architectural enhancements. The base-

line struggles to delineate tumor regions, particularly in ET 

and TC, due to limited feature extraction capabilities. Add-

ing SE layers improves feature recalibration, enhancing 

channel-wise attention and increasing Mean Dice scores, 

particularly for WT segmentation. The incorporation of at-

tention blocks, consisting of spatial attention and axial atten-

tion, enhances feature representation by capturing both local 

and long-range dependencies within volumetric MRI data. 

This refinement improves tumor boundary delineation, re-

ducing segmentation errors. Additionally, integrating skip 

connections further boosts accuracy by maintaining spatial 

consistency, improving gradient flow, and preventing fea-

ture loss. The proposed model, integrating SE layers, atten-

tion mechanisms, and skip connections, achieves the highest 

Mean Dice and Mean Jaccard scores across ET, TC, and 
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WT, demonstrating the effectiveness of this unified frame-

work. In addition, the computational complexity of the pro-

posed pipeline is shown in Tab. 4. 

We can see from Tab. 4 that architectural enhance-

ments impact GFLOPs, parameter count, and inference time, 

reflecting the computational complexity of the proposed 3D 

CNN pipeline. The baseline 3D CNN model has the lowest 

computational cost with 1251.535 GFLOPs and 43.189 mil-

lion parameters but suffers from limited feature extraction, 

leading to suboptimal segmentation. Adding SE layers 

slightly increases complexity to 1251.892 GFLOPs and 

43.410 million parameters while improving Mean Dice 

scores, particularly for WT segmentation. Spatial attention 

further refines local feature selection and tumor boundary 

delineation, enhancing segmentation while increasing 

GFLOPs to 1252.606. Despite minimal computational over-

head, it helps preserve fine structural details. Integrating ax-

ial attention incurs the highest computational cost, increas-

ing GFLOPs to 1337.057 and parameters to 51.29 million, 

due to its ability to capture both local and long-range de-

pendencies, significantly improving feature representation 

and segmentation accuracy. The combination of SE layers, 

spatial attention, and axial attention strikes a balance be-

tween computational efficiency and segmentation accuracy, 

enhancing spatial awareness and ensuring accurate tumor re-

gion delineation without excessive overhead.  

3.4.3 Segmentation Results 

The proposed model's performance was evaluated us-

ing five-fold cross-validation, achieving superior results on 

the artifact-free dataset with higher Dice scores and lower 

HD95 values, as shown in Tab. 5. For baseline comparison, 

segmentation results on the BraTS 2024 dataset are shown 

in Tab. 6.  

From Tab. 5, it can be observed that the proposed 

model delivers superior segmentation performance on the 

artifact-free dataset generated by our trained diffusion 

model. Specifically, it achieves a high Mean Dice score of 

84.23% for ET and 91.85% for WT, surpassing Attention U-

Net and V-Net, while performing comparably to TransBTS. 

Additionally, the proposed model attains the highest mean 

Sensitivity, with 86.75% for ET and 94.16% for WT, along 

with a mean Specificity of 99.86% for ET. In terms of 

boundary delineation, it achieves the lowest mean HD95 

values, measured at 3.47 mm for TC and 3.51 mm for WT, 

demonstrating its effectiveness in accurate tumor boundary 

segmentation. 

To ensure a fair comparison, all models, including the 

baseline and state-of-the-art methods, were retrained on the 

same artifact-free dataset generated by our trained diffusion 

model. This ensures that any performance differences arise 

from architectural variations rather than disparities in train-

ing data. Additionally, all methods underwent the same eval-

uation protocol, using five-fold cross-validation to ensure 

robust and unbiased performance assessment. These results 

highlight the robustness and effectiveness of the proposed 

approach compared to existing baselines. Unlike other 

frameworks that treat artifact correction and segmentation as 

separate tasks, often leading to suboptimal performance, our 

approach integrates both within a unified pipeline. Training 

the segmentation model on high-quality, artifact-free images 

from our diffusion model mitigates challenges of artifact-af-

fected segmentation, improving structural integrity and pre-

dictive accuracy. 

Furthermore, integrating spatial attention, axial atten-

tion, and SE layers within the 3D CNN enhances feature ex-

traction, improving structural consistency and boundary pre-

cision in tumor segmentation. Combining artifact correction 

and segmentation within a single framework enables the 

model to handle complex imaging scenarios more effec-

tively, ensuring accurate and reliable outcomes. 

Table 6 presents the qualitative analysis of segmenta-

tion performance, demonstrating the superiority of the pro-

posed model over state-of-the-art methods on the BraTS 

2024 dataset. The model achieves a Dice score of 84.23% 

for ET and 91.85% for WT, surpassing Attention U-Net, 3D 

U-Net, V-Net, and TransBTS. It also maintains high sensi-

tivity and specificity, ensuring reliable segmentation. Addi-

tionally, the model achieves the lowest HD95 values, includ-

ing 10.61 mm for ET and 3.47 mm for TC, indicating 

superior boundary delineation and precise tumor region 

identification. 
 

Model Mean Dice (%) Mean Sensitivity (%) Mean Specificity (%) Mean HD95 (mm) 

ET TC WT ET TC WT ET TC WT ET TC WT 

AttU-Net [20] 80.12 82.42 88.68 82.26 86.76 90.35 98.65 98.95 99.11 17.71 7.46 5.56 

3D U-Net [35] 82.82 87.67 90.06 83.13 87.54 95.07 99.57 98.49 99.74 9.74 6.68 8.26 

TransBTS [36] 81.26 88.13 91.25 83.78 92.53 94.02 99.84 99.43 99.58 12.39 6.53 9.56 

V-Net [37] 79.24 83.15 88.26 81.27 84.67 91.21 99.32 97.54 97.21 11.09 9.83 10.1 

Proposed 84.23 89.20 91.85 86.75 93.75 94.16 99.86 99.72 99.91 10.61 3.47 3.51 

Tab. 5.  Quantitative comparison of segmentation results across models on the artifact-free dataset. 
 

Model Mean Dice (%) Mean Sensitivity (%) Mean Specificity (%) Mean HD95 (mm) 

ET TC WT ET TC WT ET TC WT ET TC WT 

AttU-Net 78.22 82.46 87.13 80.26 84.43 91.22 97.65 97.12 98.11 12.16 6.77 7.43 

3D U-Net 81.52 85.13 88.95 82.86 88.35 93.17 99.89 98.78 98.25 10.43 7.28 9.01 

TransBTS 81.07 86.55 89.23 83.24 91.62 94.16 99.90 99.70 99.92 13.67 8.23 9.92 

V-Net 79.23 81.16 87.66 80.52 86.77 92.32 99.32 97.54 97.21 12.64 9.87 11.05 

Proposed 82.44 87.15 90.02 86.85 92.65 93.76 99.93 99.85 99.90 10.85 5.64 6.32 

Tab. 6.  Quantitative comparison of segmentation results across models on the BraTS 2024 dataset. 
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Fig. 7. 2D visual comparison of segmentation results across models on the artifact-free dataset generated by the proposed pipeline. Overlay 

colors: Red for WT, Green for TC, and Blue for ET (color figure available online). 

 

Fig. 8.  3D visual comparison of segmentation results across models on the artifact-free dataset generated by the proposed pipeline. Overlay 

colors: Red for WT, Green for TC, and Blue for ET (color figure available online).

The comparison between Tab. 5 and 6 shows that the 

proposed model achieves superior segmentation on the arti-

fact-free dataset, validating the effectiveness of the unified 

framework. By integrating artifact correction and segmenta-

tion, the model enhances accuracy and robustness, overcom-

ing the limitations of conventional models affected by imag-

ing artifacts. This is further illustrated in Fig. 7 and Fig. 8, 

which provide 2D and 3D visual comparisons of segmenta-

tion results across models on the artifact-free dataset gener-

ated by the proposed pipeline. 

Analysis of Fig. 7 and Fig. 8 shows that the second 

row, third-column image from Attention U-Net and the fifth 

column image from V-Net exhibit slight mispredictions, 

while other models demonstrate minor over or under seg-

mentation, impacting tumor boundary precision. In Fig. 7, 

the 2D visual comparison highlights segmentation inconsist-

encies, where some models struggle with accurate tumor de-

lineation. Figure 8 further illustrates these variations 

through 3D visualization, with Attention U-Net showing 

over-segmentation and TransBTS exhibiting slight overesti-

mation. These differences stem from variations in model 

sensitivity to intensity, structural boundaries, and fine-

grained tumor features. The proposed model, integrating ar-

tifact correction and attention-based feature extraction, 

achieves more consistent segmentation, effectively preserv-

ing structural integrity while enhancing accuracy and robust-

ness. 

4. Conclusion 

This study introduces an artifact-aware deep learning 

framework for MRI brain tumor segmentation, integrating 

a diffusion-based artifact correction model with an advanced 

3D CNN segmentation network. The proposed framework 

effectively enhances image quality and segmentation accu-

racy, as demonstrated by its superior performance compared 

to state-of-the-art methods such as SwinMR and Restormer-

GAN. The model achieves a PSNR of 32.509 dB and 

an SSIM of 0.925, demonstrating its ability to restore high-

quality, artifact-free MRI images. Additionally, the segmen-

tation model consistently outperforms established baselines, 
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achieving Mean Dice scores of 84.23% for ET, 89.20% for 

TC, and 91.85% for WT, while also obtaining lower HD95 

values of 10.61 mm for ET, 3.47 mm for TC, and 3.51 mm 

for WT, indicating superior boundary accuracy. 

Although the proposed framework significantly im-

proves segmentation quality, it comes with computational 

complexity trade-offs. Incorporating SE layers, spatial atten-

tion, and axial attention increases GFLOPs and inference 

time, which may limit real-time clinical deployment. Future 

research will focus on optimizing computational efficiency 

through lightweight transformer architectures and model 

compression. Expanding the framework to other modalities, 

such as CT and ultrasound, will further validate its effective-

ness. Additionally, integrating adaptive learning strategies 

will enhance model generalization, ensuring broader ap-

plicability in automated medical image analysis. 
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