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Abstract. Due to challenges such as the small size of tar-

gets, complex backgrounds, limited feature extraction capa-

bilities, and frequent false positives and false negatives, tra-

ditional detection algorithms often perform poorly in small 

object detection tasks. To address these challenges, this pa-

per proposes an enhanced small object detection algorithm, 

SOD-YOLO, based on YOLOv8s. First, the S_C2f_CAFM 

module is integrated into the feature extraction network, en-

abling the effective capture of fine-grained local features 

and broad contextual information, while simultaneously re-

ducing model parameters and computational complexity. 

Second, in the feature fusion stage, the redesigned bidirec-

tional feature pyramid network employs a spatial context 

awareness module to extract key features, adding a top-

down path to optimize feature fusion and enhance discrimi-

native information. In the Neck section, the D_C2f_MSPA 

module is introduced, which, while being lightweight, accu-

rately models channel dependencies in feature maps, effec-

tively reducing both false positives and false negatives for 

small objects. Finally, the inclusion of Normalized Wasser-

stein Distance (NWD) further improves detection accuracy 

and reduces the model’s sensitivity to small positional devi-

ations in small objects. Experimental results on the 

DOTAv1.0, VisDrone2019, and TT100K datasets confirm 

that SOD-YOLO achieves excellent performance, demon-

strating the effectiveness of the modifications made to the 

original YOLOv8 model. 
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1. Introduction 

Object detection is a critical task in the field of com-

puter vision, with its primary objective for the automatic 

identification and localization of specific objects within im-

ages or videos. With the rapid advancements in computer 

vision technologies and the widespread adoption of deep 

learning algorithms, object detection has been widely used 

in areas such as face recognition, identity authentication sys-

tems, and autonomous driving [1], [2]. Although deep learn-

ing-based approaches have achieved remarkable progress in 

detecting medium and large-sized objects, small object de-

tection remains a challenging and exploratory area. This dif-

ficulty arises from several inherent characteristics of small 

objects, including their limited size, low resolution, insuffi-

cient contextual information, and disproportionate scale rel-

ative to the background and so on. These factors contribute 

to challenges such as inaccurate localization and an in-

creased prevalence of false positives and false negatives. 

In the domain of object detection, small object detec-

tion algorithms can be broadly categorized into traditional 

methods and deep learning-based approaches. However, tra-

ditional object detection algorithms [3], [4] face significant 

limitations, including restricted feature representation capa-

bilities, insufficient contextual information, and high com-

putational complexity and so on. These drawbacks make de-

tecting small objects inadequate in complex scenarios. Deep 

learning-based algorithms, on the other hand, can be classi-

fied into two-stage and one-stage methods, respectively. 

Two-stage algorithms include R-CNN [5], Fast R-CNN [6], 

and Faster R-CNN [7], which are known for their high accu-

racy but often exhibit increased computational costs. In con-

trast, one-stage algorithms, such as YOLOv1 [8], YOLOv2 

[9], YOLOv3 [10], YOLOv4 [11], YOLOv5 [12], YOLOv7 

[13], YOLOv8 [14], SSD [15], YOLOv9 [16], YOLOv10 

[17], and YOLOv11 are characterized by lower computa-

tional complexity and higher real-time performance, which 

are more widely adopted in practical applications. 

The first-generation YOLOv1 algorithm, while faster 

than the SSD algorithm, performs poorly in detecting objects 

at close range and very small objects. YOLOv2 introduced 

a new direction by incorporating an anchor mechanism that 

is more suitable for small object detection. YOLOv3 further 

advanced YOLOv2 by adopting a pyramid network structure 

for multi-scale fusion, which significantly improved small 

object detection. YOLOv4 retained the header from 

YOLOv3 and introduced several additional improvements, 

maintaining YOLOv3's high accuracy in small object detec-

tion while enhancing detection performance for objects of 

varying sizes. YOLOv5 built upon YOLOv4, incorporating 
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the Generalized Intersection over Union (GIoU) loss func-

tion and optimizers such as Adam, which increased both ac-

curacy and speed in detecting densely occluded objects. Fol-

lowing this, YOLOv6 and YOLOv7 were released, bringing 

improvements in network architecture and training strate-

gies. YOLOv8, released by Ultralytics in 2013, introduced 

a new architecture with updated convolutional layers and de-

tection heads, achieving significant improvements in both 

speed and accuracy compared to its predecessors, making it 

suitable for real-time object detection. The release of 

YOLOv9 marked a major advancement in the YOLO series. 

Building on YOLOv8, YOLOv9 introduced a dynamic re-

ceptive field mechanism and adaptive feature fusion mod-

ules, enabling the network to capture multi-scale infor-

mation more efficiently, excelling in small object detection 

and complex scenarios. YOLOv10 advanced further by in-

corporating a Generative Adversarial Network (GAN) to 

generate high-quality pseudo-samples, thereby enhancing 

the model's generalization ability. It also used gradient spar-

sity regularization during optimization, improving the effi-

ciency and stability of training. YOLOv11, released shortly 

afterward, elevated the YOLO framework to new heights by 

integrating global feature enhancement modules and large-

scale mixed training strategies, enabling unified adaptation 

to various object shapes, sizes, and complexities, while sig-

nificantly improving detection accuracy and robustness. 

Despite the substantial progress made in terms of accu-

racy, scene adaptability, and detection performance with 

YOLOv9 to YOLOv11, these models still exhibit some no-

table drawbacks compared to YOLOv8. First, the complex-

ity of the models has increased significantly, leading to 

higher hardware costs for both training and deployment, 

which makes them less suitable for resource-constrained en-

vironments. Secondly, due to the introduction of complex 

mechanisms, such as dynamic receptive fields and adaptive 

feature fusion, the real-time performance of the network dur-

ing inference has slightly declined compared to YOLOv8, 

making it difficult to meet extreme real-time requirements. 

Additionally, these improvements have led to a higher pa-

rameter count and increased training difficulty, placing 

greater demands on the quality and diversity of training data. 

This, in turn, may negatively impact the generalization abil-

ity of the models on smaller datasets. These limitations hin-

der the widespread applicability of these models in specific 

scenarios. As a result, this paper proposes a new network 

architecture based on YOLOv8. 

In recent years, researchers have proposed various en-

hancements to small object detection algorithms. For in-

stance, Gong et al. [18] refined the feature fusion strategy in 

the Feature Pyramid Network (FPN), thereby improving de-

tection accuracy and optimizing the transfer information be-

tween shallow and deep network layers. However, this ap-

proach still struggles with the detection of extremely small 

objects. Bai et al. [19] incorporated a multitask Generative 

Adversarial Network (GAN) into the detection framework, 

achieving a synergy between object detection and data aug-

mentation. By leveraging GAN to enhance small object fea-

ture representation, detection performance was significantly 

improved. But the complexity of GAN training and the high 

computational resources require present notable challenges. 

In another study, for small object detection in drone im-

agery, Hong et al. [20] introduced an adaptive scale selection 

pyramid network, which can effectively address resolution 

variations in high-altitude images. Nevertheless, its applica-

bility is limited to specific scenarios and lacks generaliza-

tion. Wang et al. [21] proposed an improved method based 

on DIOU-NMS, which optimizes the non-maximum sup-

pression (NMS) mechanism and significantly enhances the 

detection accuracy of dense small objects in aerial images. 

Chen et al. [22] proposed a defect detection method based 

on DCAM-YOLOv5, which improves feature extraction ca-

pabilities by introducing a deep channel attention module 

(DCAM), thereby significantly increasing the accuracy of 

tunnel lining defect detection. However, both methods have 

certain drawbacks. First, the increased model complexity 

leads to higher computational overhead during both training 

and inference, limiting their applicability in resource-con-

strained environments. Second, while these methods per-

form well in specific scenarios, their generalization and 

adaptability are relatively limited. When applied to different 

scenarios, they may require further parameter tuning or re-

training. Additionally, both methods rely heavily on high-

quality labeled data, and their performance may degrade 

when such data is insufficient. Yao et al. [23] developed HP-

YOLOv8, which integrates a C2f-D-Mixer module and a Bi-

Level Routing Attention-based FPN (BGFPN) to improve 

the fusion of local and global information. This design en-

hances the detection of small objects in complex back-

grounds. Additionally, after that the proposed Shape Mean 

Perpendicular Distance Intersection over Union (SMPDIoU) 

loss function facilitates more accurate bounding box locali-

zation for small objects. However, the increased model com-

plexity introduces higher computational demands. Ge Zheng 

et al. [24] proposed an Anchor-Free design combining a De-

coupled Head architecture with efficient training techniques 

such as Mosaic data augmentation and SimOTA label as-

signment. This approach mitigates accuracy loss caused by 

the anchor mechanism in small object detection, simplifies 

the training and inference processes, and improves detection 

efficiency. However, the performance of the Anchor-Free 

mechanism in highly complex backgrounds requires further 

optimization. Yin et al. [25] proposed a novel framework 

specifically designed to address small object detection in 

marine environments using one-dimensional time-series sig-

nals. This approach utilizes an enhanced convolutional neu-

ral network (CNN), integrating temporal information and 

spatial feature fusion to improve detection accuracy for 

small objects. Additionally, a feature enhancement mecha-

nism is introduced to optimize the model's capability in rec-

ognizing small objects. However, the method has several 

limitations. First, the model’s generalization ability is lim-

ited under complex sea conditions, with detection accuracy 

likely to decrease in extreme weather or noisy signal envi-

ronments. Second, the network’s complexity and high com-

putational resource demands during training can lead to per-

formance bottlenecks in real-time detection. Moreover, the 

model’s performance is heavily dependent on high-quality, 
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accurately labeled data, and detection accuracy significantly 

deteriorates when data availability is insufficient. In short, 

although these methods above have achieved substantial 

progress, some limitations still persist, including trade-offs 

between model complexity and accuracy, increase parame-

ter sizes and frequent leak detection. 

Therefore, to address the aforementioned challenges, 

an improved algorithm is proposed in this paper, SOD-

YOLO, based on YOLOv8s. The primary contributions of 

this work are as follows: 

(1) Feature Extraction Stage 

The S_C2f_CAFM module is designed to reduce 

model parameters and computational complexity while ef-

fectively extracting fine-grained local features and extensive 

contextual information. This can significantly enhance the 

detection performance for small objects. Meanwhile, to bet-

ter adapt to the scales of small objects, here the Spatial Pyr-

amid Pooling Fast (SPPF) module is improved, and the Con-

text Aggregation method [26] is introduced to further 

enhance the model's capability for understanding and repre-

senting object features, respectively. 

(2) Feature Fusion Stage 

To enhance feature representation and effectively re-

duce the missed and false detection rates for small objects, 

a bidirectional feature pyramid network is developed, incor-

porating a spatial context-aware module to extract key fea-

tures from shallow networks. A top-down pathway is added 

to optimize feature fusion, resulting in the generation of 

more discriminative information, a novel small-object detec-

tion layer is introduced to fully integrate shallow and deep 

feature information, and a D_C2f_MSPA module is de-

signed for the Neck component, modeling the dependencies 

between feature map channels with high precision while 

maintaining a lightweight architecture, respectively. Fur-

thermore, a lightweight upsampling module, Dysample [27], 

is adopted to eliminate reliance on high-resolution guiding 

features. 

(3) Loss Function 

To reduce the model's sensitivity to slight positional 

deviations of small objects, thereby to improve its detection 

accuracy, Normalized Wasserstein Distance (NWD) [28] is 

introduced to replace the Complete Intersection over Union 

(CIoU) [29] as the bounding box similarity measurement. 

Compared to the methods mentioned above, the model 

proposed in this paper has lower complexity, reduced com-

putational overhead during both training and inference, and 

does not rely on increasing the number of parameters to im-

prove accuracy. Additionally, the model requires less strin-

gent training data quality and diversity while demonstrating 

stronger generalization and adaptability. These advantages 

will be validated in the experimental section. 

The remainder of this paper is organized as follows: 

Section 2 provides a detailed description of the proposed al-

gorithm, Section 3 outlines the datasets and experimental 

setup, Section 4 presents an evaluation of the method's per-

formance, Finally, in Sec. 5, our research findings and out-

line future important directions for studies are concluded. 

2. Methodology 

2.1 Fundamental YOLO v8 Model 

YOLOv8, a target detection algorithm offers signifi-

cant advancements in detection accuracy and speed com-

pared to earlier YOLO models, of which network structure, 

depicted in Fig. 1, comprises three primary components of 

the backbone, neck, and the detection head. 

The backbone utilizes a modified CSPDarknet53, 

where the input features undergo five down-sampling 

operations to generate feature layers at five different scales 

(P1–P5). The original Cross Stage Partial (CSP) module is 

replaced by the C2f (Cross Stage Partial Network Fusion) 

module, which improves the information flow through gra-

dient splitting while maintaining a lightweight design. Ad-

ditionally, the CBS module composed of the convolution, 

batch normalization, and the SiLU activation function per-

forms these operations sequentially to produce the final out-

put. The backbone also incorporates the SPPF module, 

which pools the input features into fixed-size feature maps 

to enhance the feature representation. 

The neck employs a PAN-FPN [30] structure, which 

integrates the Path Aggregation Network (PAN) into the tra-

ditional FPN [31] to address FPN's limitations in capturing 

localization information. PAN [32] enhances the feature rep-

resentation through bottom-up high-order feature fusion, ef-

fectively combining the shallow positional information with 

deep semantic information to improve the feature diversity 

and integrity. 

The detection head adopts a decoupled structure with 

two independent branches dedicated to predicting target cat-

egories and location information. Each branch is optimized 

with specific loss functions: Binary Cross Entropy Loss 

(BCE Loss) for classification and Distribution Focal Loss 

(DFL) [33] combined with CIoU for bounding box regres-

sion. This architecture not only improves the detection accu-

racy but also accelerates the model convergence. 

 

Fig. 1. Structure of YOLOv8. 
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2.2 Overview of SOD-YOLO 

Although YOLOv8 surpasses other mainstream algo-

rithms in small object detection accuracy, it still faces chal-

lenges such as recognition difficulties, inaccurate localiza-

tion, and occurrences of false negatives and false positives. 

To address these limitations, an enhanced small object de-

tection algorithm is proposed, termed SOD-YOLO (as 

shown in Fig. 2), in which the specific improvements are in-

troduced compared to the original YOLOv8 and are summa-

rized in Fig. 3. 

First, the SPD-Conv [34] (Space-to-Depth Convolu-

tion) and CAFM [35] (Convolution and Attention Fusion 

Module) are incorporated into the backbone feature extrac-

tion network, creating the SPD_CAFM Block. And this 

block forms the newly designed S_C2f_CAFM module 

combined with the C2f module, which significantly reduces 

the model's parameter count and floating-point operations 

while enhancing the extraction of local features and global 

contextual information. In the original YOLOv8 backbone, 

the repeated application of the C2f module in the P4 and P6 

layers often results in feature degradation. To deal with this, 

the CAFM module is employed to improve the fine-grained 

feature representation and reduce the repetitive use of the 

C2f module, achieving more efficient feature extraction. Ad-  

 

Fig. 2. Structure of SOD-YOLO. 

ditionally, a Context Aggregation Module is also introduced 

to enhance the model's ability to understand and represent 

target features at the base of the backbone network. Thus, 

the SPPF module is improved to better accommodate the 

scales of small objects, correspondingly. 

 

Fig. 3. Comparison of YOLOv8 and SOD-YOLO. 
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Next, the Bidirectional FPN (BiFPN) is redesigned. 

Compared to the pyramid network in the original YOLOv8, 

the redesigned BiFPN incorporates DCNv4 [36] (Deforma-

ble Convolution v4) and MSPA [37] (Multi-scale Spatial 

Pyramid Attention) mechanisms in the neck, forming the 

new D_C2f_MSPA module. This module not only reduces 

computational complexity but also accurately models de-

pendencies between the feature map channels, thereby en-

hancing the feature representation and effectively mitigating 

false negative and false positive rates for small objects. To 

further improve the feature integration, fusion paths are in-

troduced for the P4 and P6 layers in the feature pyramid net-

work back end. Meanwhile, to optimize performance, the 

Spatial Context-Aware Module (SCAM) [38] is integrated, 

which guides the learning of pixel relationships in both spa-

tial and channel dimensions, facilitating cross-channel and 

spatial context interactions. Because this redesigned feature 

pyramid network generates features more efficiently, the 

number of feature maps produced by the C2f module can be 

reduced, maintaining performance and controlling the mod-

el's parameter count. 

Finally, an additional detection head is specifically de-

signed for very small objects, used to cover very small, 

small, medium, and large objects. Thus, the SOD-YOLO's 

detection range is expanded. Furthermore, a new bounding 

box similarity metric, NWD, is proposed and a regression 

loss function is designed based on this metric to enhance 

bounding box localization accuracy. The structure and prin-

ciples of each module are detailed in the following sections. 

2.3 S_C2f_CAFM Module 

To address the challenges of small object feature loss 

and insufficient scale-capturing capability, the construction 

of an SPD_CAFM Block is proposed that combines SPD-

Conv and CAFM with the C2f module to form the novel 

S_C2f_CAFM module. This module effectively reduces the 

number of parameters and floating-point operations while 

extracting fine-grained local features and capturing broader 

contextual information, thereby enhancing the model's per-

formance in small object detection tasks. 

In object detection, the CNN serves as the foundational 

technology. However, when the resolution of detection im-

ages is low or the objects are small, network performance 

often deteriorates for the stride and pooling layers in CNN 

repeatedly down sampling feature maps. In deeper network 

structures, this leads to the loss of fine-grained information, 

compromising the network's ability to learn effective fea-

tures. To address this issue, here the traditional stride and 

pooling layers are replaced with the SPD-Conv module. 

The process of the SPD-Conv module is illustrated in 

Fig. 4. Figure 4(a) represents the input feature map with 

dimensions S × S × C₁. After the slicing operation in 

Fig. 4(b), the input is divided into four sub-maps, shown in 

Fig. 4(c), each with dimensions (S/2) × (S/2) × C₁. The SPD 

layer then concatenates all sub-maps along the channel 

dimension to produce a feature map with dimensions 

scale² × C₁, as shown in Fig. 4(d). Finally, a convolutional 

 

Fig. 4. Structure of SPD-Conv with scale = 2. 

 

Fig. 5. CAFM structure. 

layer (Conv) with a stride of 1 and an output channel count 

of C₂ is applied, transforming the feature map into the output 

map with dimensions (S/2) × (S/2) × C₂, as depicted in 

Fig. 4(e). 

The CAFM enhances the model's capability to 

integrate inter-channel information and capture fine-grained 

features by combining local features extracted through 

convolution operations with global features and long-range 

dependencies obtained via an attention mechanism. The 

structure of CAFM is depicted in Fig. 5. 

It is seen from Fig. 5 that the CAFM module comprises 

two local and global branches. A 1 × 1 convolution is ini-

tially applied to adjust the channel dimensions, improving 

the inter-channel interactions and facilitating information in-

tegration in a local branch. And a channel shuffling opera-

tion is then performed to further integrate the channel infor-

mation. This operation divides the input tensor into multiple 

groups along the channel dimension. Each group undergoes 

depthwise separable convolution, and the outputs are con-

catenated along the channel dimension to generate the final 

output features. Finally, a 3 × 3 × 3 convolution is applied to 

extract enriched local features. 

But for the global branch, the branch begins with 

a 1 × 1 convolution and a 3 × 3 depthwise convolution to 

generate queries (Q), keys (K), and values (V), respectively, 

producing three tensors with dimensions H × W × C. Where 

the tensor Q is reshaped into Q ∈ RHW × C, and K is reshaped 

into K ∈ RC × HW. A matrix multiplication operation is then 

performed to compute Q × K, followed by the application of 

the Softmax function to generate an attention map 

A ∈  RC × C. This design significantly reduces the com-

putational complexity compared to traditional methods that  
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Fig. 6. Structure of SPD_CAFM block. 

compute a large-scale attention map A ∈ RHW × HW, making 

the approach more efficient. 

By integrating the outputs from both branches, the 

CAFM module effectively balances local and global feature 

extraction, enhancing the model's overall feature representa-

tion and improving its performance in small object detection 

tasks. Then the SPD_CAFM Block, constructed using 

SPDConv and CAFM, replaces the Bottleneck structure in 

C2f and is illustrated in Fig. 6. 

It is seen from Fig. 6 that the process begins with the 

input passing through SPDConv for initial convolution, fol-

lowed by the CBS module. This expands the number of out-

put channels to twice the original, ensuring feature diversity. 

The CBS module consists of a 1×1 convolution, normaliza-

tion, and activation functions. Here the 1×1 convolution is 

used to adjust the channel dimensions, to perform both up-

scaling and downscaling operations. Subsequently, the 

channels are reduced by another 1×1 convolution to main-

tain consistency with the input. Next, the CAFM attention 

module is incorporated to integrate inter-channel infor-

mation, capture global features and long-range dependen-

cies, obtain multi-scale feature representations, and enhance 

contextual information for small objects. Finally, the convo-

lutional results are concatenated with the unprocessed input 

channels using a concat operation, effectively reducing re-

dundant information. 

The S_C2f_CAFM employs the SPD_CAFM Block as 

its Bottleneck structure. Initially, the CBS module expands 

the output channels to 2c. A Split operation then divides the 

channels into two parts, which are processed by n 

SPD_CAFM Blocks in sequence. This design reduces the 

number of parameters and computational cost while enrich-

ing the gradient flow structure. Afterward, the n concate-

nated SPD_CAFM Blocks are merged with the split channel 

feature maps, producing an output feature map with 

(n + 2) × c channels. Finally, the CBS module adjusts the 

total channel count to C2. An example structure of 

S_C2f_CAFM with n = 3 is shown in Fig. 7. 

2.4 SPPF_E Module 

Inspired by YOLOv9, to enhance the fusion of shallow 

and deep information, mitigate the loss of fine-grained fea-

tures caused by multiple convolutions, and improve the net-

work's attention and perception capabilities for small object 

regions, the SPPF_E structure is introduced, which com-

bines the efficient layer aggregation strategy of ELAN [39] 

with the SPPF module. Here the ELAN employs an efficient 

layer aggregation mechanism that not only enhances the net-

work's feature representation capabilities but also achieves 

a significant balance between the network complexity and 

computational efficiency. The structure of SPPF_E is illus-

trated in Fig. 8. 

It is seen from Fig. 8 that the input feature map firstly 

undergoes basic feature extraction and preprocessing 

through the CBS block, generating high-level features. Sub-

sequently, the input feature map is processed using pooling 

kernels of varying sizes to capture target features across 

multiple spatial scales. This operation improves the model's 

ability to perceive small and large targets effectively. The 

features extracted from these different pooling paths are then 

fused through layer-by-layer stacking or concatenation, 

enabling the model to capture rich information from diverse 

spatial scales and further enhancing its feature rep-

resentation capabilities. 

In all, compared to the original SPPF structure, the 

SPPF_E structure provides several key advantages. Firstly, 

it effectively mitigates gradient vanishing, ensuring stable 

updates in deep networks during training. Furthermore, 

through parameter simplification and optimized layer de-

sign, high model performance is maintained while signifi-

cantly reducing computational overhead. 

2.5 D_C2f_MSPA Module 

To address key challenges in small object detection, 

including low resolution, scale variation, positional instabil-

ity, background interference, blurred boundaries, and occlu-

sion and so on, the DCNv4 and MSPA attention mechanism 

 

Fig. 7. Structure of S_C2f_CAFM.
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Fig. 8. Structural comparison of SPPF_E and SPPF. 

is integrated into the neck of the network, and a novel 

D_C2f_MSPA module is proposed. This module preserves 

the lightweight characteristics of the network while effec-

tively modeling dependencies between feature map chan-

nels, which enhances the feature representation, reduces the 

missed and false detection of small objects, and improves 

the overall detection performance. 

Since traditional convolutional operations mainly rely 

on fixed-size kernels, which can only capture specific re-

gions and are limited in their ability to model irregular ob-

ject deformations, this reduces the model's capacity to 

effectively represent complex geometries. Deformable 

Convolutional Networks (DCN) address this issue by intro-

ducing adjustable kernels that allow spatial offsets during 

operations. These kernels can be dynamically adapted to 

varying scales and positions of small objects, thereby im-

proving the model's ability to capture features and handle 

complex geometric deformations (see Fig. 9). Herein some 

traditional convolutions are replaced in the C2f structure 

with the latest deformable convolution, DCNv4, to improve 

the extraction of small object features. This substitution en-

hances the model's robustness and ensures better alignment 

with the target dimensions. 

The MSPA attention mechanism (see Fig. 10) is com-

posed of three core components: the HPC module, the SPR 

module, and the Softmax operation. The HPC module ex-

tracts fine-grained, multi-scale spatial information through 

hierarchical residual connections; the SPR module com-

bines structural regularization with structural information 

via an adaptive combination mechanism enabling the learn- 

 

Fig. 9. Structure of DCN. 

 

Fig. 10. MSPA attention mechanism structure diagram. 

 

Fig. 11. HPC module structure. 
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Fig. 12. SPR module structure. 

ing of channel attention weights and facilitating cross-

dimensional interactions; and the Softmax operation 

recalibrates the channel attention weights to establish long-

range dependencies. 

The structure of the HPC module is illustrated in 

Fig. 11. Here, the term Split represents uniform segmenta-

tion along the channel dimension, Conv refers to a 3×3 

standard convolution layer followed by batch normaliza-

tion, and Concat denotes channel-wise feature concatena-

tion. Figure 12 depicts the schematic of the SPR module, 

which consists of two primary components: the spatial pyr-

amid aggregation block and the channel interaction block. 

The former employs two layers of pyramid-shaped adaptive 

average pooling at different scales to combine structural 

regularization and structural information within the atten-

tion pathway. The latter generates attention maps from the 

outputs of the spatial pyramid aggregation block. Here, 

AAP refers to adaptive average pooling, Up-sampling uses 

nearest-neighbor interpolation, and PWConv represents 

pointwise convolution. 

The D_M_BottleNeck structure is illustrated in 

Fig. 13. In this structure, the lower branch initially applies 

two DCNv4 convolutions. These convolutions enhance the 

model's flexibility in addressing object deformations, pose 

variations, and complex backgrounds, and thus, also im-

proving its ability to capture the shapes and structures of 

small objects. Subsequently, features from the upper and 

lower branches are concatenated along the channel dimen-

sion to ensure channel consistency. Finally, the MSPA at-

tention mechanism is applied to refine the model's focus on 

critical regions, thereby enhancing image understanding 

and processing performance. 

The newly designed D_C2f_MSPA module is de-

picted in Fig. 14. The traditional BottleNeck structure in 

C2f is substituted with the D_M_BottleNeck structure in 

this module, which enriches the gradient flow and improves 

the diversity of network learning by integrating the feature 

information from different stages. By incorporating DCNv4 

 

Fig. 13. Structure of D_M_BottleNeck. 

and the MSPA attention mechanism, the network achieves 

a significant reduction in parameters while effectively pre-

serving feature information. This design can minimize false 

positives and missed detection, enabling the network to 

adapt more effectively to diverse small-object detection sce-

narios. 

2.6 SCAM-Bidirectional Feature Pyramid 

Network 

Multi-scale feature fusion plays a critical role in en-

hancing the performance and robustness of object detection 

networks. Although YOLOv8 introduces secondary fusion 

through the PAN-FPN structure to optimize feature integra-

tion, its bidirectional fusion design is still relatively simplis-

tic, and repeated convolutions can lead to the degradation of 

semantic details for small objects. 

Therefore, to address these limitations and improve the 

model's object detection capabilities, a novel bidirectional 

feature pyramid network (BiFPN) is proposed that incorpo-

rates a Spatial Context-Aware Module (SCAM), as illus-

trated in Fig. 15. The SCAM leverages global average pool-

ing (GAP) and global max pooling (GMP) to guide the 

learning of pixel relationships between spatial and channel 

dimensions. This mechanism supports contextual feature in-

teraction across both spatial and channel dimensions. Fur-

thermore, the addition of a top-down pathway allows high-

level semantic feature information to flow back into the net-

work, guiding subsequent modules in feature fusion and 

generating more discriminative features. In the feature fu-

sion phase, it is more effective to model the global relation-

ship between small targets and their backgrounds than that 

in the backbone phase. Using the global context information 

to represent the relationship between pixels across spatial 

dimensions cannot only suppress the irrelevant background 

noise, but also enhance the distinction between the objects 

and the background. In order to further optimize the fusion, 

connections are added between the first and last nodes of 

the intermediate feature layers to ensure more comprehen-

sive information integration. 

Inspired by GCNet [40] and SCP [41], SCAM is de-

signed with three branches. The first branch integrates 

global information through GAP and GMP, enabling the 

capture of rich contextual information. The second branch 

applies a 1×1 convolution to produce the linear transfor-
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mation of the feature map, referred to as "value" in Fig. 15. 

And the third branch also employs a 1×1 convolution to 

simplify the transformations of "queries" and "keys," collec-

tively referred to as "QK" in Fig. 15. The outputs from the 

first and third branches are multiplied with the second 

branch to generate two representations of cross-channel 

contextual information and spatial contextual information, 

which are then fused using the broadcast Hadamard prod-

uct, producing the final output of SCAM. 

3. Experiments 

3.1 Datasets Introduction 

To ensure the reliability and validity of the 

experimental data, three representative public datasets are 

selected as DOTAv1.0, VisDrone2019, and TT100K. 

The details of these datasets are as follows: 

(1) DOTAv1.0 Dataset [42]: This dataset contains 

2,806 images, with 188,282 labeled objects distributed 

across 15 categories. In this experiment, 1,414 images were 

used for training, 458 for validation, and 937 for testing. 

(2) VisDrone2019 Dataset [43]: Collected and re-

leased by the Machine Learning and Data Mining Lab at 

Tianjin University, this dataset includes 8,629 images. In 

this study, 6,471 images were used for training, 548 for val-

idation, and 1,610 for testing. 

(3) TT100K Dataset [44]: This dataset covers road 

traffic signs in a variety of complex environments and 

weather conditions. These signs are small in size, making 

them challenging to detect. The TT100K dataset contains 

26,349 images across 221 traffic sign categories, with anno-

tations available for 128 categories. The training and testing 

sets used in this experiment consisted of 6,107 and 3,073 

images, respectively. To reduce the impact of sample im-

balances, we analyzed the distribution of signs across cate-

gories and selected 45 categories with more than 100 sam-

ples. These traffic signs were categorized into three types: 

warning signs, prohibition signs, and mandatory signs. 

In the experimental design, DOTAv1.0 is chosen as 

the primary datasets for detailed comparative and ablation 

experiments. To further evaluate the model's generalization 

and applicability, additional experiments are conducted on 

the VisDrone2019 and TT100K datasets. 

 

Fig. 14. Structure of D_C2f_MSPA. 

 

Fig. 15. SCAM- Bidirectional feature pyramid network diagram. 
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3.2 Experimental Environment 

The experimental environment is based on the Ubuntu 

20.04 operating system. The hardware configuration in-

cludes an Intel(R) Xeon(R) Platinum 8358P CPU @ 

2.60 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 

3090 GPU with 24 GB of memory. Among the commonly 

used deep learning frameworks, the PyTorch framework is 

chosen for its efficiency in training and testing datasets. De-

tailed experimental environment parameters are provided in 

Tab. 1. 

For training, the input image size is set to 640 × 640 

pixels, with a total of 300 epochs. A batch size of 16 is used, 

and the Stochastic Gradient Descent (SGD) optimizer is em-

ployed to accelerate the model convergence. The rest of the 

parameter settings are the same as YOLOv8 by default. De-

tailed training parameters are listed in Tab. 2. 

The model evaluation metrics includes precision (P), 

recall (R), mean average precision (mAP) parameters, and 

frames per second (FPS). 

4. Experimental Results 

4.1 Overall Performance of SOD-YOLO 

YOLOv8 and SOD-YOLO are first trained on the 

DOTAv1.0 datasets. Appendix A presents the results of 

both methods on the DOTAv1.0 test set. Compared to the 
 

Component Name/Value 

Operating system Ubuntu 20.04 

CPU 
Intel(R) Xeon(R) Platinum 8358P 

CPU @ 2.60GHz 

GPU NVIDIA GeForce RTX3090 

Video memory 24GB 

Training acceleration CUDA 11.8 

Programming language Python 3.8 

Deep learning framework for 

training 
PyTorch 2.0.0 

Tab. 1. Experimental environmental parameters. 

 

Component Name/Value 

Input image size 640×640 pixels 

Epoch 300 

Training batch size 16 

Initial learning rate 0.01 

Final learning rate 0.1 

Momentum 0.937 

Weight_decay 0.0005 

Optimizer SGD 

Tab. 2. Experimental parameters of network training. 

original YOLOv8, SOD-YOLO achieves average improve-

ments of 2.5% in P, 7.9% in R, and 7.7% in mAP, respec-

tively, demonstrating superior performance. Notably, for 

the helicopter category, the mAP of the original YOLOv8 is 

17.9%, while SOD-YOLO is 48.3%, an increase of 30.4%. 

To further validate the robustness of SOD-YOLO and 

its performance differences compared to the original 

YOLOv8, additional comparative experiments are con-

ducted on the TT100K and VisDrone2019 datasets. As 

shown in Appendix B, SOD-YOLO also performs excep-

tionally on the TT100K datasets, achieving improvements 

of 5.8% in P, 4.8% in R, and 6.7% in mAP over the original 

YOLOv8. Specifically, for the p12 category, YOLOv8 

achieves an mAP of 61.2%, while SOD-YOLO reaches 

84.4%, making an improvement of 23.2%. 

Finally, experiments conduct on the VisDrone2019 

datasets. It is demonstrated in Appendix C that SOD-YOLO 

surpasses YOLOv8 with gains of 10.8%, 9.6%, and 11.9% 

in P, R, and mAP, respectively. These comparisons further 

show that the SOD-YOLO exhibits superior performance in 

small object detection and significantly outperforms the 

original YOLOv8 in both precision and accuracy. 

4.2 Ablation Experiment 

To validate the effectiveness of the improved SOD-

YOLO algorithm for small object detection, the YOLOv8 

baseline network is defined as A. Subsequently, the mod-

ules of S_C2f_CAFM, SPPF_E, D_C2f_MSPA, SCAM-

BiFPN, and NWD are incrementally added, resulting in net-

works labeled as B, C, D, E, and F, respectively. Ablation 

experiments are conducted on the DOTAv1.0 datasets to 

evaluate the performance contribution of each module, with 

results presented in Tab. 3. 

It is seen that embedding the S_C2f_CAFM module 

into the backbone increases the mAP from 61.3% to 63.9%. 

Additionally, replacing multiple reused C2f modules with 

a single S_C2f_CAFM module can reduce the parameter 

count by 3.58%. The introduction of the SPPF_E structure 

slightly reduces the parameter count, surprisingly, while it 

is further decreased by 2.73% through adding 

D_C2f_MSPA due to the efficiency of DCNv4 convolution, 

with the mAP increasing by 3.41%. Replacing the original 

PAN-FPN with the proposed SCAM-BiFPN raises the mAP 

from 66.7% to 68.2%, while reducing the number of feature 

maps generated by the C2f module further lowers the pa-

rameter count. Finally, incorporating the proposed NWD 

improves the mAP to 69.3%. 

Overall, despite a 31.1% increase in network depth 

leading to a slight decrease in FPS, SOD-YOLO improves 

the mAP by 7.7% and reduces the parameter count by 

13.9%. These results demonstrate that the SOD-YOLO sig-

nificantly enhances its performance compared to the origi-

nal YOLOv8. Furthermore, its lightweight design makes it 

highly suitable for deployment on the devices with limited 

hardware resources. 
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Model P/% R/% mAP@0.5/% Layers Param/×105 FPS 

YOLOv8(A) 74.3 59 61.6 225 32.69 93.9 

A+B 74.9 62.1 63.9 240 31.52 82.4 

A+B+C 75.4 62.8 64.5 245 31.09 73.6 

A+B+C+D 75.9 64.1 66.7 263 30.24 60.7 

A+B+C+D+E 76.2 65.3 68.2 295 28.16 59.3 

A+B+C+D+E+F 76.8 66.9 69.3 295 28.16 59.3 

Tab. 3. Results of ablation experiment on DOTA-V1.0 datasets. 
 

Model P/% R/% mAP@0.5/% Param/×105 FPS 

SSD 82.8 23.8 38.1 100.2 30 

Faster R-CNN 47.6 56 49 42.5 31.7 

FR-O [45] - - 54.1 - - 

YOLOv5 76.6 53.3 56.9 20 80.1 

YOLOv7 66.1 59.5 59.8 35.4 83.5 

YOLOv11n 67.1 56.3 57 25.85 158.6 

YOLOv8 74.3 59 61.6 32.7 93.9 

YOLOv10m 73.4 59.8 61.9 164.7 101.2 

DCN-YOLO [46] - - 63.4 - - 

ICN [47] - - 68.2 - - 

YOLOv9 74.9 66.3 69.1 605.3 50.8 

SOD-YOLO 76.8 66.9 69.3 28.16 59.3 

Tab. 4. Comparison of different models in experiments. 

The precision-recall (P-R) curve provides an intuitive 

representation of model performance, as shown in Fig. 16. 

It is seen from the figure that the P-R curve area for SOD-

YOLO is significantly larger than that of YOLOv8. This in-

dicates that SOD-YOLO consistently achieves higher pre-

cision across various recall rates. Therefore, SOD-YOLO 

exhibits superior small object detection capabilities com-

pared to YOLOv8. 

 

Fig. 16. Precision–recall curves on DOTA-V1.0 datasets. 

4.3 Comparison Experiment 

4.3.1 Comparison of Loss Functions 

To evaluate the performance of NWD, it is compared 

against CIOU (used in YOLOv8) and other commonly em-

ployed IOU methods, including Distance Intersection over 

Union (DIOU) and Generalized Intersection over Union 

(GIOU). Using YOLOv8 as the base model, the quantitative 

comparison results on the DOTAv1.0 datasets are presented 

in Fig. 17. 

As shown in Fig. 17, the loss values for all functions 

decrease and eventually converge as the number of epochs 

increases. However, the NWD demonstrates faster conver-

gence and achieves lower loss values compared to the other 

functions among them. Consequently, the proposed im-

proved network with NWD as the bounding box loss func-

tion can significantly enhance the small object detection 

performance. 

4.3.2 Comparison with Other Detection Models 

To validate the superiority of the SOD-YOLO algo-

rithm, we conducted comparative experiments on the 

DOTAv1.0 dataset using identical experimental setups and 

training parameters, comparing SOD-YOLO with other 

leading small object detection models. 
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As shown in Tab. 4, although the FPS of SOD-YOLO 

is slightly lower than that of YOLOv8, YOLOv7, and 

YOLOv5, it still outperforms other algorithms in terms of 

detection speed. The parameter count of SOD-YOLO is 

28.16M, which is significantly lower than that of other mod-

els with high mAP. In contrast, YOLOv9, which achieves 

a similar mAP to SOD-YOLO, has a parameter count of 

605M. This demonstrates that SOD-YOLO achieves high 

detection accuracy with lower computational costs. 

Furthermore, SOD-YOLO exhibits notable ad-

vantages in the mAP@0.5 metric. Specifically, SOD-

YOLO improves mAP@0.5 by 31.2% compared to the least 

effective model, SSD, and surpasses YOLOv10 and 

YOLOv11 by 7.4% and 12.3%, respectively. These results 

confirm that the improved algorithm enhances the feature 

extraction capability for small objects of varying sizes and 

in complex backgrounds, leading to significantly improved 

detection accuracy while reducing false positives and 

missed detections to some extent. 

4.4 Visualization Analysis 

The confusion matrices for the YOLOv8 and SOD-

YOLO models on the DOTAv1.0 dataset are shown in 

Fig. 18. Compared to YOLOv8, the SOD-YOLO model 

demonstrates a notable improvement in classification accu-

racy. Specifically, the "bridge" category saw the largest ac-

curacy increase, by 28%, while the "ground track field" and 

"storage tank" categories improved by 25% and 10%, re-

spectively. In the SOD-YOLO confusion matrix, the 

"plane" category achieved the highest classification accu-

racy, reaching 91%, while the "roundabout" category had 

the lowest accuracy, at 37%. This suggests that the model 

prioritizes different categories to varying degrees. 

In YOLOv8, the confusion rate between the "basket-

ball court" and "tennis court" categories is 0.06, indicating 

that YOLOv8 has a 6% chance of misidentifying a "basket-

ball court" as a "tennis court." Similarly, the confusion rate 

between "basketball court" and "soccer ball field" is 0.04, 

meaning there is a 4% chance of misclassifying a "basket-

ball court" as a "soccer ball field." In contrast, the SOD-

YOLO model significantly reduces these issues, with con-

fusion rates decreasing by 0.04 and 0.03, respectively. This 

 

Fig. 17. Comparison of different loss functions on DOTA-V1.0 

datasets. 

demonstrates that the optimized model not only improves 

classification accuracy but also substantially mitigates the 

misdetection of small objects. 

Grad-CAM [48] is a visualization technique used to 

identify the regions of feature maps in deep neural networks 

that contribute the most to prediction outcomes. By localiz-

ing specific image regions, it enhances the interpretability 

and visual comprehensibility of the prediction process for 

YOLOv8 (a) and SOD-YOLO (b). As shown in Fig. 19, the 

Grad-CAM visualization results reveal that the improved 

model (SOD-YOLO) focuses more accurately on target re-

gions compared to the original YOLOv8, which often em-

phasizes background regions. This demonstrates that the 

improved model more effectively captures target features in 

images, and thus enhances the accuracy and overall perfor-

mance. 

To visually illustrate detection performance, Figure 20 

showcases the detection results of SOD-YOLO and 

YOLOv8 on the DOTAv1.0, TT100K, and VisDrone2019 

datasets, respectively. The results show that YOLOv8 ex-

hibits varying degrees of missed detection and false posi-

tives, while SOD-YOLO effectively mitigates these issues. 

Notably, in scenarios with significant overlap among multi-

ple target objects, SOD-YOLO provides more accurate 

bounding box predictions. These findings further validate 

the proposed improvements, demonstrating their ability to 

enhance the original model's performance and thus, signifi-

cantly increase the accuracy of small object detection. 

5. Conclusions and Future Work 

A novel small object detection algorithm, SOD-

YOLO, is proposed based on YOLOv8s framework. First, 

the C2f module in the feature extraction and fusion net-

works is redesigned, which effectively reduce the model's 

parameter count and floating-point computations and thus 

enhance its performance in small object detection tasks. 

Second, a new bidirectional feature pyramid network is de-

veloped to generate more distinctive features. Finally, the 

NWD bounding box loss function is introduced to further 

improve detection accuracy. 

Extensive tests are conducted on DOTAv1.0, 

TT100K, and VisDrone2019 datasets. It demonstrated that 

SOD-YOLO achieved mAP improvements of 7.7%, 6.7%, 

and 11.9% over original YOLOv8, while reducing the pa-

rameter count by 13.9%. Additionally, SOD-YOLO exhib-

ited superior performance in mAP, parameter efficiency, 

and FPS compared to other classical detection networks. 

Overall, the improved SOD-YOLO significantly ad-

dresses challenges in small object detection, such as small 

target sizes, insufficient feature extraction capabilities, and 

complex backgrounds, resulting in more accurate and robust 

detection outcomes. 

Experimental results demonstrate that small objects 

are more susceptible to aggregation and occlusion. Con-

sequently, enhancing the algorithm's detection performance 
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Fig. 18. (a) Confusion matrix diagram of YOLOv8. 

 

Fig. 18. (b) Confusion matrix diagram of SOD-YOLO. 
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Fig. 19.  Grad-CAM visualization results: (a) YOLOv8, (b) SOD-YOLO. 
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(b) 
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(b) 
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(a) 

    
(b) 

Fig. 20.  Detection results: (a) YOLOv8, (b) SOD-YOLO. 

for occluded objects is of critical practical significance and 

will be a key area of focus in future research. The proposed 

model has the potential to be applied to other detection tasks 

through approaches such as transfer learning, thereby im-

proving its generalization capability. While the algorithm 

developed in this study enhances detection accuracy for 

small objects, it is associated with relatively high parameter 

and computational overhead. To address this, future work 

can explore optimization techniques, such as knowledge 

distillation and model pruning, to make the model more 

lightweight and computationally efficient. 
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Appendix A: Experimental Results on the DOTAv1.0 Datasets 
 

Model class SV LV PL ST SH HA GTF SBF TC SP BD RA BC BR HC Avg 

YOLOv8 P/% 61.3 79.9 90.3 91.7 90.9 80.9 62.2 70.2 92.4 61.6 89.2 73 62.5 72.9 35.2 74.3 

YOLOv8 R/% 68.1 81.6 85.1 53 83.2 77.3 41.7 45.3 87.8 74.7 68.7 36.9 31.2 33.1 16.6 59 

YOLOv8 mAP/% 66.5 85.2 88.6 62.2 87.8 78 38.2 50.9 91.4 66.6 75.7 38.1 36.8 40.5 17.9 61.6 

SOD-YOLO P/% 63.1 83.3 91.3 93.3 92 80 65.9 69.2 94.8 58.6 85.9 79.5 71.6 66.6 57.4 76.8 

SOD-YOLO R/% 73 84.1 89.5 61.1 86.9 79.6 57.1 53.8 88.9 79.1 75.8 32.3 52.3 45.4 44.4 66.9 

SOD-YOLO mAP/% 69.2 86.9 92.6 73.2 90.4 82.6 62.5 55.4 93.1 65.6 76.4 42.9 52 48 48.3 69.3 

Performance of YOLOv8 and SOD-YOLO on DOTAv1.0: small vehicle (SV), large vehicle (LV), plane (PL), storage tank (ST), ship (SH), harbor (HA), 

ground track field (GTF), soccer ball field (SBF), tennis court (TC),swimming pool (SP), baseball diamond (BD), roundabout (RA), basketball court (BC), 

bridge (BR), and helicopter (HC). 

Appendix B: Experimental Results on the TT100K Datasets 
 

Model class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

YOLOv8 P/% 74.2 68.9 87.7 83.7 69 86.7 86.3 76.7 85.5 95.1 80.8 77 83.1 90 96.8 73.4 

YOLOv8 R/% 79.2 57.9 78.5 81.2 69.8 80.3 77.3 79.4 76.2 72.4 84.1 66.7 76.8 70 77.1 74.3 

YOLOv8 mAP/% 81.2 60.3 87.6 85.2 72.4 89.8 85.2 84.6 84.8 84.6 90.6 72.4 86.4 77.7 90.5 77.2 

SOD-YOLO P/% 88.7 79 98 96.3 75.3 95.7 92.1 80.4 97.8 93.7 88.8 79.8 95.5 100 98.3 85.2 

SOD-YOLO R/% 81.9 56.2 89.8 94.1 76 81.4 77.8 84.9 82.4 100 75.3 86.7 78.8 72.2 79.6 68.4 

SOD-YOLO mAP/% 88.8 67.1 91.8 96.5 77.8 96.8 89.2 88.7 88.6 99.5 85.4 87.3 89.4 94.3 93.9 75.5 

Model class 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

YOLOv8 P/% 71.5 98.1 81 52.4 88.2 78.1 61.3 92.8 93.1 83.3 85.3 85.3 61.1 65.4 77.8 88.4 

YOLOv8 R/% 52.8 76.7 68.2 48.9 80.7 62.4 54.9 78.3 62.8 78 72 81.1 42.4 66.7 65.9 78.4 
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YOLOv8 mAP/% 61.2 92 79.4 53.5 90.9 72.5 59.5 89.5 77.2 86.6 80.5 91.7 50.2 67 76.5 86.7 

SOD-YOLO P/% 80.9 85.7 85.6 68.9 93 72.9 92.7 94.9 77.7 86.3 95.1 94.4 79.5 62 88.1 92.7 

SOD-YOLO R/% 77.8 92.3 71.3 75 84.1 71.6 65.2 78.5 70.6 80.6 78 83.8 50 60 73.3 90.2 

SOD-YOLO mAP/% 84.4 90.6 84.3 69.4 95.1 78.9 76.9 92.7 83.1 92.1 88.7 94.6 60.3 75.7 82.9 94.4 

Model class 33 34 35 36 37 38 39 40 41 42 43 44 45 Avg   

YOLOv8 P/% 91.9 78 73.7 95.5 86.5 88.2 77 91.6 75.5 75 92.4 100 74.4 81.7   

YOLOv8 R/% 79.7 58.3 58.5 91.3 79.8 85.1 81.4 82.1 61.8 69.2 80.6 81.9 60.3 72   

YOLOv8 mAP/% 87.1 69.4 69.1 96.8 89.1 92.1 81.5 93.5 70.8 72.4 89.7 91 71.6 80   

SOD-YOLO P/% 83.2 88.4 84.9 91.2 90.8 95.8 83.7 93.7 88.6 60.8 95 100 85.5 87.5   

SOD-YOLO R/% 84.4 58.6 57.1 87.5 81.1 79.9 82.9 64.3 71.4 72.7 84.8 81 63.2 76.8   

SOD-YOLO mAP/% 91 79.8 75 95.7 94.4 93.1 93 91.2 82.8 79.2 93.2 98.5 78.6 86.7   

Performance of YOLOv8 and SOD-YOLO on TT100K (1:pl80, 2:p6, 3:p5, 4:pm55, 5:pl60, 6:ip, 7:p11, 8:i2r, 9:p23, 10:pg, 11:il80, 12:ph4, 13:i4, 14:pl70, 

15:pne:, 16:ph4.5, 17:p12, 18:p3, 19:pl5, 20:w13, 21:i4l, 22:pl30, 23:p10, 24:pn, 25:w55, 26:p26, 27:p13, 28:pr40, 29:pl20, 30:pm30, 31:pl40, 32:i2, 

33:pl120, 34:w32, 35:ph5, 36:il60, 37:w57, 38:pl100, 39:w59, 40:il100, 41:p19, 42:pm20, 43:i5, 44:p27, 45:pl50). 

Appendix C: Experimental Results on the VisDrone2019 Datasets 
 

Model class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg 

YOLOv8 P/% 47.7 38.7 29.4 65.5 41 41.6 23.3 24.6 49.7 41.9 40.3 

YOLOv8 R/% 29.9 16.9 11.6 59 28.6 29.7 27.7 23.7 41.8 27.8 29.7 

YOLOv8 mAP/% 30.9 17.5 10.4 61.3 27.8 27.6 17 15.5 40 25 27.3 

SOD-YOLO P/% 58.4 49 43 74.5 48.9 58.2 31.8 27.8 67.9 51.9 51.1 

SOD-YOLO R/% 39.1 22 19.5 67 41.4 40.9 36.4 36.9 53.1 36.6 39.3 

SOD-YOLO mAP/% 42.7 23.4 21.8 71.5 41.8 44.7 26.3 24.9 57.7 37.6 39.2 

Performance of YOLOv8 and SOD-YOLO onVisDrone2019 (C1: pedestrian, C2: people, C3: bicycle, C4: car, C5: van, C6: trunk, C7: tricycle, C8: awning-

tricycle, C9: bus, C10: motor). 


