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Abstract. In compressed sensing, a measurement matrix 

having low coherence with a specified sparse dictionary 

has been shown to be advantageous over a Gaussian ran-

dom matrix in terms of reconstruction performance. In this 

paper the problem of efficiently designing the measurement 

matrix is addressed. The measurement matrix is designed 

by iteratively minimizing the difference between the Gram 

matrix of the sensing matrix and a target Gram matrix. 

A new target Gram matrix is designed by applying singular 

value decomposition to the sensing matrix and utilizing 

entry shrinking in the Gram matrix, leading to lower 

mutual coherence indicators. An improved Nesterov accel-

erated gradient algorithm is derived to update the meas-

urement matrix, which can improve the convergence be-

havior. An efficient optimization algorithm for 

measurement matrix is proposed on the basis of alternating 

minimization. The experimental results and analysis show 

that the proposed algorithm performs well in terms of both 

computational complexity and reconstruction performance. 
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1. Introduction 

Compressed sensing (CS) [1] targets Shannon’s theo-

ry and attempts to recover the sparse signal from a small 

number of linear measurements. Consider a signal x  N, 

assuming that x has a sparse representation in a specified 

domain   N  L (N  L) as x = s where s  L is 

a sparse coefficient vector.  is also called the sparse dic-

tionary. s is called K-sparse if s0= K where s0 denotes 

the number of nonzero elements in s. Via multiplication 

with measurement matrix   M  N (M N), x is trans-

formed into compressed measurements 

  y Φx Ds .  (1) 

where D =  is called the sensing matrix. 

Recent studies have indicated that a measurement ma-

trix having low coherence with a specified sparse diction-

ary can significantly improve the reconstruction perfor-

mance. [2] considered a different mutual coherence [3], 

referred to as the t-averaged mutual coherence, which re-

flects average behavior of the sensing matrix D. The large 

off-diagonal entries of the Gram matrix G = D′D were 

“shrinked” multiplying their values by 0 1  , resulting 

in smaller μave and higher reconstruction performance than 

those of Gaussian random matrix. [4] defined the global 

mutual coherence and utilized eigenvalue averaging to 

decrease μall. [5] attempted to find the sensing matrix D 

such that the Gramm matrix is as close to the identity as 

possible. The algorithmic concepts of the K-SVD [6] were 

applied in optimizing the measurement matrix. In [7], 

a method based on the equiangular tight frame (ETF) [8] 

design was proposed to minimize the coherence between 

 and . The experimental results demonstrate that the 

optimized measurement matrix performs better than [2], [4] 

in terms of reconstruction performance. 

Motivated by [7], [9–14] take advantage of the ETF 

to design the measurement matrix. In [9], [10], a gradient-

based technique was applied to update the measurement 

matrix. In [11–13], analytical solutions of the measurement 

matrix are derived via singular value decomposition. 

An iterative method sharing the same concept as K-SVD 

was proposed in [14], which updates the measurement 

matrix row by row. The abovementioned algorithms focus 

on a single coherence metric, leading to less than satisfying 

progress in reconstruction performance. The work in [15] 

aims to reduce multiple coherence metrics simultaneously. 

The experimental results verify the effectiveness of the 

proposed algorithm in terms of reconstruction 

performance. However, the eigenvalue decomposition 

employed in [15] significantly increases the computational 

complexity. In [16], an iterative optimization algorithm 

was proposed based on the RIP to reduce mutual 

coherence. The algorithm performs slightly better than [9], 

[10] in both reconstruction performance and computational 

complexity. 
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Notably, the existing algorithm in [15] improves the 

reconstruction performance at the cost of computational 

complexity. To address this problem, an efficient optimiza-

tion algorithm for the measurement matrix is proposed in 

this work. The main contributions of this study are as fol-

lows: 

 To reduce multiple coherence metrics simultaneously, 

a new target Gram matrix is designed by applying 

SVD to the sensing matrix and utilizing entry shrink-

ing in the Gram matrix without increasing complexi-

ty. 

 An improved Nesterov accelerated gradient algorithm 

is derived to update the measurement matrix. By 

properly controlling the momentum term, the im-

proved algorithm converges faster than the gradient in 

[9], [16]. 

 An iterative alternating minimization algorithm for 

the measurement matrix is proposed. The algorithm 

updates the target Gram matrix and measurement ma-

trix alternatively. The experimental results verify the 

superiority of the proposed algorithm in improving 

convergence behavior and reconstruction perfor-

mance. 

The remainder of this paper is organized as follows. 

The problem formulation is introduced in Sec. 2. The pro-

posed methods are presented in Sec. 3, where the approach 

for designing the target Gram matrix and the improved 

Nesterov accelerated gradient algorithm are described in 

detail. The procedure of the proposed algorithm can also be 

found in Sec. 3. Extensive experiments are carried out to 

verify the effectiveness of the proposed algorithm in 

Sec. 4, and finally, Section 5 concludes the paper. 

2. Preliminaries and Problem 

Formulation 

As mentioned above, a successful CS requires the 

measurement matrix  and sparse dictionary  to be inco-

herent. Good measures of coherence between  and  (or, 

equivalently, columns of the sensing matrix D) can be 

obtained by referring to the definitions of maximal mutual 

coherence, t-averaged mutual coherence and global mutual 

coherence.  

Rewrite D = [d1, d2,…,dL] M  L where di  M rep-

resents the ith column of D and where di2= 1. Denote gij 

as the entry located in the ith row and jth column in 

G = D′D. Clearly, gij =d′idj denotes the coherence between 

di and dj. Here, we quote these definitions as those pre-

sented by Elad [2], and Zhao [4]. 

Definition 1. For a matrix D, the maximal mutual coher-

ence μmax is defined as the largest absolute and normalized 

inner product between different columns in D, which can 

be described as 

 
max

2 2

max max
i j

ij
i j i j

i j

g
 

  
  

  

d d

d d
.  (2) 

Definition 2. For a matrix D, the t-averaged mutual co-

herence μave is defined as the average of all absolute and 

normalized inner products between different columns in D 

that are above t, which can be described as 

 

 

 
ave

ij ij

i j

ij

i j

g t g

g t














   (3) 

where  ijg t  is an indicator function. 

Definition 3. For a matrix D, the global mutual coherence 

μall is defined as the sum of squares of all off-diagonal 

entries in the Gram matrix of D, denoted as 

 2

all ij

i j

g


 . (4) 

The above indicators measure coherence in different 

ways. Generally, the lower the values of these indicators 

are, the better the reconstruction performance. Therefore, 

existing measurement matrix optimization algorithms at-

tempt to reduce these indicators to improve performance. 

As mentioned in the previous section, the progress in re-

construction performance resulting from reducing a single 

indicator is significantly less than that of reducing multiple 

indicators simultaneously. Inspired by this, we consider 

reducing μmax, μave, and μall simultaneously in this work. 

According to the above definitions, μmax, μave and μall 

are related to the off-diagonal entries of G. To reduce these 

indicators, an intuitive way is to assign minor values to gij 

and then solve G ΨΦΦΨ . Notably, a change in gij re-

sults in G being full rank in general, i.e., Rank(G) = L, 

where Rank() returns the rank of the matrix. However, 

Rank( ) M L   ΨΦΦΨ , indicating that the closed-form 

solution of  is unachievable. Furthermore, gij cannot be 

arbitrarily lowered since 
max max ij

i j
g


  is bounded by [8] 

 
 

max welch
1

L M

M L
 


 


    (5) 

where the bound is achievable only when D is an ETF. 

To address this problem, Xu et al. proposed a frame-

work for optimizing a measurement matrix in [7]. The 

main idea is to design a ‘good’ Gram matrix first and then 

find the solution  such that G = ()′ is as close as 

possible to such a designed Gram matrix. Generally, the 

designed Gram matrix is called the target Gram matrix and 

is denoted by Gt. In [7], Gt is designed as the Gram matrix 

of a set of relaxed ETFs, i.e., 

    t welch: , , 1,max , .L L

i j
i i i j 



     G Z Z Z Z Z

The optimal measurement matrix is investigated by solving: 
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t t

2

t t
F

min , minf
 

 
G G

Φ G ΦΨ ΦΨ G   (6) 

The minimization problem can be solved by alternat-

ing projection, which iteratively minimizes (6) to find the 

optimal . The idea is to update Gt and  alternatively and 

repeat this process for several iterations. Under this frame-

work, designing Gt and updating  have been considered 

in many works. A shrinkage method has been used for the 

Gram matrix G to design Gt in [9–15], whereas [15] differs 

from the others in that the former employed eigenvalue 

decomposition. With respect to updating , [9], [10] ap-

plied gradient-based methods, and [11–15] used matrix 

decomposition, such as eigenvalue decomposition (ED) 

and QR decomposition. Notably, [15] employed eigenvalue 

decomposition to design Gt and update  in the proposed 

JOAM algorithm, resulting in high complexity. The JOAM 

is introduced in Tab. 1. 

Patel and Vaish [16] proposed a different framework 

for optimizing a measurement matrix based on restricted 

isometric property (RIP) [17], which can be described as 

 
2

t F
min ΦΨ D   (7) 

where       t : , , svd , , 1M L i i    D E U S V E S . The 

authors used singular value decomposition (SVD) to design 

 

Input: The dictionary matrix 
N LΨ ， the number of iterations Iter . 

Output: Sparse measurement matrix Φ . 

Initialization: Initialize M NΦ  to a random matrix, number of 

iterations 0k  , mutual coherence threshold 0 , threshold  . 

While q Iter  and    ave ave1t t      do 

1. Update 1q q  . 

2. Calculate D ΦΨ  and normalize the columns of D . 

3. Calculate G D D  and Apply ED to G  as G VHV . 

4. Set the positive eigenvalues in H  as L M  to obtain Ĥ  and further 

obtain t
ˆ G VHV . 

While maxk I  and max 0   do 

5.         Update 1k k  . 

6.         Apply entry shrinking to tG  as follows 

 

   

  

0

0

t t

t

t

, , , ,

, 1,

sign , , otherwise

i j i j i j

i j i j

i j





  


 



G G

G

G

 

7.        Apply ED to tG  as t
G UΛU  where the eigenvalues in Λ  

are arranged in descending order. 

8.        Keep only the M  largest positive eigenvalues in Λ  to obtain 

Λ̂ , and further obtain t
ˆ G UΛU . 

end while 

9. Calculate the sensing matrix 

1

2ˆ D Λ U  

end while 

Return the measurement matrix according to D ΦΨ  

Tab. 1. JOAM algorithm. 

a ‘good’ sensing matrix Dt and employed the gradient 

descent method to update . The minimization problem 

shown in (7) is simpler than that shown in (6) because the 

former does not involve the operation of the Gram matrix. 

However, the proposed algorithm presented in [16] is far 

inferior to JOAM in terms of reconstruction performance. 

The reason behind this is that the off-diagonal entries of 

the Gram matrix G directly reflect the mutual coherence of 

D, and those entries can be reduced when (6) is efficiently 

solved with a good target Gram matrix Gt. 

According to these observations, we consider design-

ing a new measurement matrix optimization algorithm, 

which can yield comparable reconstruction performance to 

that of JOAM with much lower complexity. 

3. Preliminaries and Problem 

Formulation 

In this section, we target solving the minimization 

problem shown in (6) on the basis of alternating minimiza-

tion. As to be seen, a new target Gram matrix is designed 

first, and then an improved Nesterov accelerated gradient 

algorithm is derived to update the measurement matrix. 

Based on the above, we propose an efficient measurement 

matrix optimization algorithm. 

3.1 Designing Gt 

We attempt to find the nearest solution of G by solv-

ing (6). In should be noted that the cost function 

f(, Gt) > 0 holds for most cases since Rank(G)  Rank(Gt). 

When the minimization problem is efficiently solved, i.e., 

f(, Gt) is small enough, gij will be as close as possible to 

gtij
, where gtij

 denotes the entry located in the ith row and 

jth column in Gt. Therefore, Gt plays an important role in 

reducing the mutual coherence metrics. In the following, 

we design a new target Gram matrix, that can reduce μmax, 

μave, and μall simultaneously. 

Starting with a given  and a specified dictionary , 

we normalize the columns of D = . Assume that the 

SVD of D can be written as D = USV′, where U  M  M 

and V  L  L are unitary matrices, and S =[  0]  M  L 

with  = diag(1, 2,…,M). i denotes the nonzero singu-

lar values of D. According to Definition 3, we have 

 2 2 2

all

, 1 1

.
L L

ij ij ii

i j i j i

g g g
  

         (8) 

In (8), 2

, 1

L

ii

i j

g L


  since 1iig  . 2

, 1

L

ij

i j

g


  represents the 

square of the Frobenius norm of G. With simple calcula-

tion, we have that 

 
 

 
22 2 22 2

F F F
, 1 1

aL M

ij i

i j i
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      G VS SV S S  (9) 
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where quality (a) follows from unitary invariance. Thus, 

(8) can be rewritten as 

  
2

2

all

1

.
M

i

i

L 


      (10) 

Recall that a lower μall can yield a better CS result, 

and minimizing μall is highly important. In (10), μall reaches 

the minimum when  
2

2

1

M

i

i




  takes the minimum value. 

Note that i
2 represents the eigenvalue of G and 

2

1 1

M L

i ii

i i

g L
 

   . Then, it follows from the Cauchy-

Schwarz inequality that  
2

2

1

M

i

i




  reaches the minimum only 

if 1
2= 2

2= …= M
2= L/M. 

Based on the above analysis, a new target Gram ma-

trix that focuses on reducing μall is formulated as follows 

 t
ˆ ˆ G VS SV   (11) 

where ˆ ˆ 
 

S Σ 0  with ˆ diag ,

M

L M L M L M
 
 
 
 

Σ .  

Notably, the sum of squares of all entries in Gt 

reaches the minimum under the assumption that the sum of 

its diagonal entries is equal to L. However, the sum of 

squares of all diagonal entries in Gt may not take the fixed 

value L since diagonal entries have changed with Ŝ. This 

implies that the sum of squares of all off-diagonal entries in 

Gt may not achieve the minimum. Considering that the off-

diagonal elements are much greater in number than the 

diagonal elements are, the sum of squares of all off-

diagonal entries of Gt will fluctuate around the minimum 

value L2/M – L. 

Recall that our goal is to reduce μmax, μave, and μall 

simultaneously. In the following, we utilize a shrinkage 

method to decrease the large absolute value entries of Gt 

shown in (11). In [2], large absolute off-diagonal entries 

are “shrinked” multiplying their values by 0 < γ < 1. Com-

pared with the original measurement matrix, the optimized 

measurement matrix has obvious advantages in both reduc-

ing μave and the reconstruction error. In [7], a more efficient 

shrinkage method was proposed based on ETF. The off-

diagonal entries whose absolute value is greater than μwelch 

are forcibly assigned the value ±μwelch. As a result, the 

absolute value of off-diagonal entries is upper bounded by 

μwelch, and μmax sharply decreases compared with that in [2]. 

In [9], [11], the authors considered different upper limits 

for the off-diagonal entries of the target Gram matrix. Alt-

hough different upper limits yield different CS results, 

μwelch is empirically a suitable choice in terms of recon-

struction performance. 

Based on the above analysis, we shrink the off-

diagonal entries of the target Gram matrix shown in (11) 

via the shrinkage method proposed in [7], which can be 

described as follows 

 

 

welch

welch

t t

t

t

, ,

1,

sign , otherwise

ij ij

ij

ij

g g i j

g i j

g





  



 




  (12) 

where sign() denotes the sign function. 

By utilizing the shrinking operation for Gt, the off-

diagonal entries with large absolute values will be inten-

sively constrained, therefore the average of all absolute off-

diagonal entries above t will decrease significantly. Since 

the off-diagonal entries with absolute values below μwelch 

remain unchanged, and these entries make up the majority 

of all off-diagonal entries, there is a certain similarity be-

tween the matrices before and after entry shrinking, which 

means that Gt obtained from (12) maintains the ability to 

reduce μall. 

According to the above analysis, the target Gram ma-

trix obtained from (11–12), can reduce μmax, μave, and μall 

simultaneously. In addition, we perform SVD on the sens-

ing matrix D instead of performing ED on its Gram matrix, 

resulting in lower computational load. In the following 

subsection, we keep Gt fixed and update  to minimize (6). 

3.2 Updating Φ  

The steepest descent is widely used in measurement 

matrix optimization. Recent works [18], [19] have shown 

that gradient-based algorithms can solve the minimization 

problem shown in (6). However, the gradient descent 

methods used in [8, 9, 16] require a large number of itera-

tions to reach convergence, resulting in a great computa-

tional load. To address this problem, we propose an im-

proved NAG algorithm to update the measurement matrix. 

We simplify cost function    
2

t t
F

,f  Φ G ΦΨ ΦΨ G as 

f (). With simple calculations, the gradient of f () with 

respect to  can be described as 

     t4 4f     Φ ΦΨ ΦΨ ΦΨΨ ΦΨGΨ .  (13) 

The full update equation in the steepest descent algo-

rithm is written as 

  1k k kf   Φ Φ Φ    (14) 

where k is the iteration index and where  is the step size. 

Unlike the steepest descent, NAG [20] adds a momentum 

term and looks ahead the approximate future position. The 

full update equations of NAG are formulated as 

  1 + ,k k k kf     V V Φ V   (15) 

 1 1k k k  Φ Φ V   (16) 

where γ is the momentum parameter and is set to approxi-

mately 0.9. The momentum term increases updates for 

dimensions whose gradients point in the same direction. 
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Computing k kΦ V  provides an approximation of the next 

position of the parameters. 

Theoretically, the value of the cost function decreases 

with the increasing iteration index provided that the step 

size is appropriate. In most existing methods, the step size 

is set as a fixed value for convenience. However, this 

approach may lead to an increase in the value of the cost 

function, which means that f (k) > f (k – 1) may occur at 

a specified iteration index. 

Assume that f () is smooth at k. We consider 

approximating f (k – 1) and f (k + 1) with a Taylor series 

approximation. Notably, higher-order terms of the Taylor 

series cause greater computational load but contribute less 

to the approximation. Here, we use a truncated Taylor 

series to approximate the cost function, which can be de-

scribed as 

    
 

 
 1 1vec ,

vec

k

k k k k

k

f
f f 

 
   

  

Φ
Φ Φ Φ Φ

Φ
  (17) 

    
 

 
 1 1vec

vec

k

k k k k

k

f
f f 

 
   

  

Φ
Φ Φ Φ Φ

Φ
   (18) 

where vec() denotes the vectorization function. 

If f (k) > f (k – 1) holds, then it follows from (17) 

that 

 
 

 
 1vec 0

vec

k

k k

k

f


 
  

  

Φ
Φ Φ

Φ
   (19) 

holds approximately. According to (16), we have  

Vk = k – 1– k and then (19) can be rewritten as 
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vec

k

k

k

f  
 

  

Φ
V

Φ
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Following (15) and (16), we can rewrite (18) as 
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Φ

Φ
Φ V

Φ

(21) 

which, together with (20), implies that the momentum term 

Vk may lead to an increase in the value of the cost function 

f (k + 1). Such an increase is unexpected in solving the 

minimization problem since more iterations are needed to 

reach convergence. 

However, this increase can be transformed into a de-

crease through multiplication of the momentum term by 

an adaptive factor , which can be formulated as 

  1 +k k k k kf      V V Φ V   (22) 

where the value of k is taken as 

 
   

   
1

1

1

1

k k

k

k k

f f

f f






 
 

 

Φ Φ

Φ Φ
  (23) 

If f (k)  f (k – 1) holds, then k is set to –1 to pre-

vent the value of the cost function from increasing. Moreo-

ver, Vk + 1 is no longer the past time step since the momen-

tum term γVk is forced to change its direction, which 

implies that Vk + 1 may cause oscillation in the (k + 2)th 

iteration. Therefore, after the (k + 1)th iteration, we reset 

Vk + 1 as follows: 

  1k k kf    V Φ V    (24) 

where the changed momentum term –γVk is removed. As 

a result, this improved NAG can immediately correct its 

course and converge faster than NAG. 

Based on alternating minimization, the proposed algo-

rithm is summarized in Tab. 2. The proposed algorithm is 

an iterative method. The main complexity is located in 

steps 2, 3, 4, 9 and 11. In those steps, the flops required are 

O(MNL + ML), O(ML2), O(ML2), O(MNL + 2M2L + ML2) 

and O(ML + ML2). Since M  N L, the complexity of  

our proposed algorithm is approximately equal to 

O(Iter  Imax  ML2). The complexities of JOAM and the meth- 
 

Input: The dictionary matrix 
N LΨ ， the number of iterations Iter , 

maxI , the step size  , the momentum parameter  . 

Output: measurement matrix Φ . 

Initialization: Initialize 0

M NΦ  to a random matrix, number of 

iterations 0k q  , adaptive factor 0 1 1   , momentum term 0 0V . 

While q Iter  do 

1. Update 1q q  . 

2. Calculate D ΦΨ  and normalize the columns of D . 

3. Apply SVD to D  as D USV , and set the positive singular values 

in S  as L M  to obtain Ŝ . 

4. Calculate the target Gram matrix t
ˆ ˆ G VS SV . 

5. Apply entry shrinking to tG  as follows 

 

   

  

welch

welch

t t

t

t

, , , ,

, 1,

sign , , otherwise

i j i j i j

i j i j

i j





  


 



G G

G

G

 

While maxk I  do 

6.       Update 1k k  . 

7.       If 3k  , go to step 9. Otherwise, go to step 10. 

8.       If    2 1k kf f Φ Φ , update 1 1k    , else update 1 1k   . 

9.       Calculate the momentum term 

 1 1 1 1+k k k k kf        V V Φ V .  

10.       Update the measurement matrix 1k k k Φ Φ V . 

11.       Calculate the cost function value  kf Φ .  

12.       If    2 1k kf f Φ Φ , update  1 1k k kf    V Φ V . 

end while 

end while 

return kΦ  

Tab. 2. The proposed algorithm. 
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od introduced in [16] are approximately equal to 

O(Iter  Imax  L3) and O(Iter  Imax  MNL), respectively. 

Clearly, the complexity of our algorithm is much less than 

that of JOAM and slightly greater than that of [16]. 

4. The Simulation Experiments 

In this section, we conduct several experiments to ex-

amine the performance of the proposed algorithm. The 

proposed algorithm is compared with the methods present-

ed in [9], [15], and [16], which is denoted as Abolghasemi, 

JOAM, and Patel, respectively. The Gaussian random 

measurement matrix is denoted as Gaussian. In Abol-

ghasemi, Patel and the proposed algorithm, the step size is 

set to 0.01. The iteration numbers are set as Iter = 100 and 

Imax = 50. In the definition of μave, t is set to μwelch. In the 

following experiments (except Subsection 4.3.2), an N  L 

matrix with normally distributed elements is used as the 

dictionary matrix , where N = L = 120. 

4.1 Comparing the Coherence Metrices 

In this subsection, experiments are carried out to 

verify the effectiveness of the proposed algorithm in 

reducing mutual coherence. 

Figure 1 presents the frequency histogram of gij (i  j) 

falling into different intervals. The Gaussian and Patel 

distributions have long tails, with maximal values exceed-

ing 0.6 and 0.48, respectively. A longer tail implies higher 

μmax and μave. Moreover, the distributions of Abolghasemi, 

JOAM, and the proposed algorithm are relatively concen-

trated in the interval (0.1, 0.2), indicating lower μmax and 

μave. In the following, we conduct several experiments by 

varying M from 20 to 50. The results averaged from 500 

independent experiments are recorded in Tab. 3–5. 

Table 3 shows that JOAM performs the best in reduc-

ing μmax, followed by the proposed algorithm, Abolghasemi, 

 

Fig. 1. Histogram of the absolute off-diagonal values of G 

while M = 40. 
 

M Gaussian Abolghasemi JOAM Patel Propose μwelch 

20 0.7770 0.5837 0.3427 0.7189 0.3620 0.2050 

25 0.7251 0.4978 0.2804 0.6528 0.2972 0.1787 

30 0.6926 0.4355 0.2332 0.5945 0.2507 0.1588 

35 0.6595 0.3884 0.1995 0.5474 0.2154 0.1429 

40 0.6328 0.3487 0.1734 0.5012 0.1891 0.1296 

45 0.6116 0.3197 0.1526 0.4630 0.1681 0.1183 

50 0.5933 0.2928 0.1356 0.4285 0.1511 0.1086 

Tab. 3. μmax  by different algorithms versus M.  
 

M Gaussian Abolghasemi JOAM Patel Propose μwelch  

20 0.3332 0.3135 0.2377 0.3110 0.2441 0.2050 

25 0.2980 0.2739 0.2031 0.2719 0.2089 0.1787 

30 0.2718 0.2445 0.1773 0.2421 0.1830 0.1588 

35 0.2512 0.2211 0.1573 0.2181 0.1628 0.1429 

40 0.2348 0.2020 0.1412 0.1982 0.1465 0.1296 

45 0.2199 0.1860 0.1276 0.1811 0.1329 0.1183 

50 0.2085 0.1723 0.1160 0.1661 0.1213 0.1086 

Tab. 4. μave by different algorithms versus M.  
 

M Gaussian Abolghasemi JOAM Patel Propose L2/M – L 

20 816.83 757.07 613.97 608.83 600.33 600 

25 677.10 593.65 467.17 462.92 456.32 456 

30 583.46 484.74 370.06 365.54 360.30 360 

35 517.12 405.29 300.59 296.03 291.73 291.43 

40 470.24 345.03 248.39 243.81 240.29 240 

45 426.71 298.81 207.67 203.24 200.28 200 

50 398.67 261.20 174.93 170.69 168.27 168 

Tab. 5. μall by different algorithms versus M.  

Patel, and Gaussian. Moreover, the values listed below the 

proposed algorithm are close to those listed by JOAM and 

significantly lower than those listed by Abolghasemi and 

Patel. Similar results can be observed by inspecting Tab. 4. 

Table 5 shows that the proposed algorithm performs 

the best in reducing μall, followed by Patel, JOAM, Abol-

ghasemi, and Gaussian. The values listed below the pro-

posed algorithm are very close to the minimal values listed 

in the last column, which coincides with our theoretical 

analysis presented in Sec. 3.1. In summary, the proposed 

algorithm is advantageous over the other algorithms in 

reducing μave, μmax and μall simultaneously. 

4.2 Comparing the Convergence 

In this subsection, we conduct an experiment to com-

pare the convergence of the improved NAG algorithm with 

that of NAG algorithm and the gradient-based algorithm 

used in [9, 10, 16], which is referred to as the Gradient. 

Based on the same framework shown in Tab. 2, we utilize 

the above three algorithms to update the measurement matrix 

and record the cost function values at different iterations. 

Figure 2 illustrates cost function value f (k,Gtk
) as 

a function of iteration. Overall, all the lines show a down- 
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Fig. 2. The change tendency of cost function value with 

iteration numbers while M = 40. 

ward trend as the number of iterations increases, which 

implies that the above three algorithms converge. The 

NAG and the improved NAG increase at the sixth iteration. 

However, NAG continues increasing until the eighth itera-

tion whereas the improved NAG immediately decreases at 

the next iteration. Moreover, the improved NAG leads to 

a smaller steady state f (k,Gtk
) and faster convergence. 

In the proposed algorithm, we repeat steps 6–12 until 

a fixed number of iterations is reached. It should be noted 

that the stopping criteria can be utilized. For example, we 

may continue the algorithm until the cost function value for 

two successive iterations does not change significantly or 

until reaching to a desired value. Then, the proposed algo-

rithm can considerably reduce the duration of the optimiza-

tion run and reduce the computational load. 

4.3 Comparing the Reconstruction 

Performance 

4.3.1 Comparison of One-dimensional Signals 

In this subsection, we conduct several experiments to 

verify the superiority of the proposed algorithm over the 

existing algorithms in terms of reconstruction performance. 

The original one-dimensional signal has a sparse 

representation as x = s where s  L is K-sparse, and 

each nonzero entry of s is randomly positioned. The length 

of s is set as L = 120. The orthogonal matching pursuit 

(OMP) [21] algorithm is employed in reconstruction. Let 

 = se – s2/s2 denote the reconstruction error, where se 

is the reconstructed signal of s. A reconstruction is 

considered successful if   10–6 holds. Psuc denotes the 

percentage of successful reconstructions. Each experiment 

is performed for 500 random sparse ensembles. 

Case 1: Comparison of Psuc in the noiseless case. 

In this case, we conduct two separate experiments, 

first by fixing K = 8 and varying the compression ratio 

(CR) from 16.7% (M = 20) to 41.7% (M = 50) and second 

by fixing M/N = 33.3% (M = 40) and varying K from 4 to 20. 

 

Fig. 3. The change tendency of Psuc with CR while K = 12. 

 

Fig. 4. The change tendency of Psuc with K while CR = 33.3%. 

The results of the first experiment are shown in 

Fig. 3. We observe that Psuc increases with increasing CR. 

The achieved Psuc when using the proposed algorithm is 

comparable to those when using JOAM, and significantly 

higher than those when using Abolghasemi and Patel. Sim-

ilar superiority can be found by inspecting Fig. 4, where 

the change tendency of Psuc with K is depicted. 

Case 2: Comparison of    in the noisy case. 

In the noisy case, the linear model can be written as 

y = x + v where v is the additive Gaussian noise. In this 

experiment, the parameters are M = 40 and K = 8. Since 

successful reconstruction is usually unachievable in the 

presence of noise, we utilize the reconstruction error to 

evaluate the performance. The change in  with varying 

SNR is depicted in Fig. 5. As seen, the proposed algorithm 

leads to a comparable  to JOAM and performs much 

better than Abolghasemi and Patel in terms of reconstruc-

tion accuracy.  

Figures 6 and 7 show  as function of M and K, re-

spectively. From Fig. 3 and Fig. 6, we observe that the 

proposed algorithm performs better than Abolghasemi and 

Patel in both noisy and noise-free cases. This shows that 

the proposed algorithm is robust in noisy cases. 
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Fig. 5. The change tendency of  with SNR (dB) while 

CR = 25% and K = 10. 

 

Fig. 6. The change tendency of  with CR while K = 12 and 

SNR = 20 dB. 

 

Fig. 7. The change tendency of  with K while CR = 33.3% and 

SNR = 20 dB. 

4.3.2 Comparison of Two-dimensional Signals 

In this subsection, two-dimensional natural images of 

size 256 × 256 are used as input signals. A wavelet basis of 

size 256 × 256 is considered the sparse dictionary. The 

OMP algorithm is employed in reconstruction. Figure 8 

displays the visual result of Lena when using the proposed 

algorithm. 

   

(a) original image (b) M/N = 30% (b) M/N = 40% 

   

(b) M/N = 50% (b) M/N = 60% (b) M/N = 70% 

Fig. 8. Lena and its reconstructed images at different 

compression ratio using the proposed algorithm. 
 

Image CR Gaussian Abolghasemi JOAM Patel Propose 

Lena 

0.5 25.83 26.75 27.24 26.89 27.14 

0.7 30.87 31.61 32.25 31.78 32.21 

0.9 37.26 38.41 38.71 38.45 38.68 

Boat 

0.5 23.52 24.09 24.48 24.13 24.42 

0.7 28.03 28.85 29.29 28.94 29.23 

0.9 35.09 36.75 37.34 36.81 37.25 

Tab. 6. PSNR (dB) for Lena and Boat. 

Gaussian, Abolghasemi, JOAM, and Patel are used 

for comparison with the proposed algorithm. The recon-

struction performance is evaluated in terms of the peak 

signal-to-noise ratio (PSNR) given by [22]. A larger PSNR 

means better signal reconstruction performance. The re-

sults of PSNR are shown in Tab. 6. 

As shown in Tab. 6, the optimized measurement ma-

trices yield better performance than the Gaussian random 

matrix does. The proposed algorithm has comparable per-

formance in terms of PSNR with JOAM. The PSNRs of the 

proposed algorithm are better than those of Patel for the 

tested images. It is interesting to observe that the difference 

of PSNR values of the optimization algorithms is not great. 

The reason is that the images are not strictly sparse in the 

wavelet basis, and high value of sparsity leads to a de-

crease in reconstruction accuracy. 

5. Conclusions 

In this paper, we propose an efficient optimization al-

gorithm for the measurement matrix. A new target Gram 

matrix is designed to reduce multiple mutual coherence 

indicators simultaneously. Moreover, an improved NAG 

algorithm for updating the measurement matrix is derived 

to accelerate convergence. The experimental results show 

that the proposed algorithm performs as well as JOAM 

[15] in terms of reconstruction performance but with sig-
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nificantly lower complexity. In addition, at the cost of 

slightly higher complexity, the proposed algorithm is far 

more advantageous than the existing method [16] in recon-

struction. 
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