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Abstract. The increasing deployment of IoT devices across 

sectors such as agriculture, transportation, and infrastruc-

ture has intensified the need for connectivity in remote and 

non-terrestrial regions. Non-terrestrial networks (NTNs), 

which include maritime and space platforms, face unique 

challenges for IoT connectivity, including mobility and 

weather conditions, which are critical for maintaining 

quality of service (QoS), especially in disaster management 

scenarios. The dynamic nature of NTNs makes static re-

source allocation insufficient, necessitating adaptive strat-

egies to address varying demands and environmental con-

ditions during disaster management. In this paper, we 

propose an adaptive resource optimization approach for 

disaster-resilient IoT connectivity in non-terrestrial envi-

ronments using deep reinforcement learning. Initially, we 

design the chaotic plum tree (CPT) algorithm for cluster-

ing IoT nodes to maximize the number of satisfactory con-

nections, ensuring all nodes meet sustainability require-

ments in terms of delay and QoS. Additionally, unmanned 

aerial vehicles (UAVs) are used to provide optimal cover-

age for IoT nodes in disaster areas, with coverage optimi-

zation achieved through the non-linear smooth optimiza-

tion (NLSO) algorithm. Furthermore, we develop the multi-

variable double deep reinforcement learning (MVD-DRL) 

framework for resource management, which addresses 

congestion and transmission power of IoT nodes to en-

hance network performance by maximize successful con-

nections. Simulation results demonstrate that our MVD-

DRL approach reduces the average end-to-end delay by 

50.24% compared to existing approaches. It also achieves 

a throughput improvement of 13.01%, an energy consump-

tion efficiency of 68.71%, and an efficiency in the number 

of successful connections of 17.51% compared to current 

approaches. 
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1. Introduction 

The upcoming sixth-generation (6G) communication 

technologies are poised to deliver high-speed connectivity 

worldwide, boasting ultra-high data rates, minimal latency, 

and robust information security [1]. Integrated terrestrial 

and non-terrestrial networks combine ground-based infra-

structures like fiber-optic cables and cell towers with satel-

lite and drone systems, ensuring seamless and reliable 

connectivity [2]. This fusion enhances data transmission 

efficiency by using both terrestrial and non-terrestrial tech-

nologies for optimized performance [3], [4]. Non-terrestrial 

networks (NTN) have gained significance due to technique 

advancements and incorporation into 3GPP standards [5]. 

However, with the rising demand for machine-type com-

munication, including internet of things (IoT) and ma-

chine-type communication (mMTC) strategies, wireless 

cellular services now cater to broader range of applications 

beyond traditional smartphone users [6]. Unmanned auton-

omous intelligent systems (UAISs) like self-driving auto-

mobiles, multi-robot schemes, unmanned aerial vehicles 

(UAVs), and unmanned vehicles require ubiquitous wire-

less [7], [8]. With optimal solution, airborne communica-

tions [9], [10] are key component of the 6G and revolution-

ize wireless connectivity, especially in disaster relief 

efforts. During major calamities like earthquakes and 

floods, traditional terrestrial networks frequently prove 

insufficient, mostly because of infrastructure damage, in-

creased communication demand overload and physical 

impediments [11–14]. In non-terrestrial environments, 

ensuring disaster-resilient IoT connectivity is complex task 

due to stringent quality of service (QoS) requirements such 

as energy efficiency, low latency, and reliability, alongside 

the challenges of managing resource optimization for dis-

aster relief efforts [15]. However, machine learning (ML) 

[16], particularly deep reinforcement learning (DRL) [17], 

[18], has emerged as a critical enabler for managing disas-

ter relief operations in real-time, especially in highly com-

plex scenarios. DRL adapts to changing environmental 

conditions and QoS demands by learning optimal decision-

making policies through continuous interaction with the 
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environment [19]. In disaster relief contexts, DRL plays 

a pivotal role in optimizing IoT connectivity by enabling 

adaptive resource allocation, dynamic network configura-

tion, fault tolerance, and resilience [20]. 

1.1 Related Works 

The failure mode and effect analysis (FMEA) model 

using multi-objective optimization by ratio analysis 

(MULTIMOORA) approach is utilized to systematically 

assess and prioritize potential failure modes in industrial 

systems, enhancing decision-making for risk mitigation 

[21]. For dependable data-driven real-time industrial IoT 

application, AI-driven network and processing framework 

(AIDA) is employed [22]. The MEC server is developed 

using a digital twin (DT)-enabled multi-access edge com-

puting architecture, which facilitates real-time monitoring 

and optimization of edge computing resources to improve 

system performance [23].  

Block chain-based encoded IoT data is the foundation 

of the privacy-preserving support vector machine (PP-

SVM) [24], [25], enabling secure data sharing while ad-

dressing real-world constraints and idealized assumptions 

through enhanced privacy mechanisms. Spatial spectrum 

reuse limits are widely followed while carefully allocating 

bandwidth to individual links according to their particular 

demands using linear programming framework [26]. The 

multi-agent dueling double deep Q network (MA3DQN) 

with centralized training and distributed execution employ-

ing centralized training and distributed execution, offers 

scalable and effective learning-based solutions for complex 

multi-agent environments [27].  

Reconfigurable intelligent surfaces (RIS) on UAVs 

are incorporated into paradigm for hybrid optical/RF-based 

HAP-enabled ISATRNs [28] to optimize access in densely 

populated locations. For scenarios involving high user 

mobility, an adaptive 5G New Radio (5G-NR) solution is 

proposed, enabling seamless connectivity for User Equip-

ment (UE) in dynamic environments [29]. The front-loaded 

DM-RS-based channel estimation method can maximize 

spectral efficiency up to 5.05 bps/Hz under 64-QAM and 

enhance link reliability [30]. Table 1 summarizes the key 

aspects of the benchmarked works and highlights the iden-

tified research gaps. 

1.2 Problem Description 

The rapid proliferation of IoT devices across sectors 

such as agriculture, transportation, and infrastructure has 

significantly increased the demand for reliable connectivi-

ty, particularly in remote and non-terrestrial environments 

[31–40]. Traditional terrestrial networks often fail to deliv-

er uninterrupted coverage in these regions due to structural 

limitations and geographical constraints. Non-terrestrial 

networks (NTNs), including maritime, aerial, and space-

based platforms, have emerged as promising alternatives to 

address this challenge. However, NTNs present unique 

difficulties such as platform mobility (e.g., satellites and 

UAVs), dynamic environmental conditions, and limited 

energy resources, all of which hinder network reliability 

and the ability to meet Quality of Service (QoS) require-

ments—especially in critical disaster response scenarios. 

Conventional static or convex optimization methods are 

inadequate in addressing the dynamic and multi-

dimensional nature of resource allocation in such environ-

ments. Therefore, there is a need for intelligent and adap-

tive optimization strategies that can dynamically manage 

IoT clustering, energy efficiency, transmission power, and 

network congestion to ensure robust and resilient connec-

tivity. In response to this, the present study formulates the 

problem as a multi-objective resource optimization task 
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 Aboshosha et al. 

2023 

Data-driven predictive 

maintenance relying 

Fuzzy and artificial 

neural network 

They achieved 78% 

detection rate of faults in 

their design. 

Difficult to cover maximum coverage range 

which limits the QoS 

Alnakhli  

2024 

Holistic AI-driven 

networking 

Support vector 

machine (SVM) 

The network utilization is 

improved as 89% 

The complex network model affects the 

performance of in-resource management 

Birabwa et al. 

2023 

NOMA-enabled 

industrial IoT network 
Digital twin and DRL 

They optimize offloading 

and resource allocation 

Failed to achieve optimal data forwarding 

process which limits the QoS requirements 

Chahed et al. 

2023 

Privacy preserving 

framework 

Grasshopper–Black 

Hole Optimization 

Ensure the security issues by 

strong key generation 

Falling into local minimum of objective 

function particularly in complex problems 

Jeremiah et al. 

2024 

Privacy preserved data 

sharing 
Blockchain and SVM 

Maximizes the data security 

in the complex environment 

Random function generation is maximum 

problem of blockchain model 

R
ev

ie
w

 o
n

 6
G

 N
T

N
 

Kumar et al. 

2023 

Optimal spectrum 

efficiency 

Non-linear matrix 

function 

Reduces delay tolerant 

traffic close to 100% 

The matrix function is complex which 

creates the redundancy problem 

Li et al.  

2023 

User association and 

resource allocation 

Multi-agent dueling 

double deep Q 

network 

Maintains handoff 

probability of zero 

Long propagation delay because of long 

training process of DDQN 

Pandey et al. 

2023 

Optimized UAV 

trajectory 

LSTM-DDQN 

framework 

It provides high scalability 

and optimal runtime 

LSTM model is limited by control value 

selection, still this problem is not solved 

Pawase & Chang 

[29] 

DM-RS based channel 

estimation 

DM-RS symbol 

pattern, TDL channel 

model 

Achieves the maximum 

spectral efficiency 

5.05 bps/Hz 

Non-modified design is not suitable for 

dynamical environment because of mobility 

Yin et al.  

[30] 

Dynamic routing and 

resource allocation 

Cross-segment 

optimization 

Solve the multi objective 

optimization problem. 

Dynamical channel estimation model limits 

the reduction in number of successful 

connections 

Tab. 1.  Research gap summary from existing works on industrial IoT and 6G NTN. 



RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 245 

 

in disaster-resilient IoT-enabled NTNs. The proposed solu-

tion integrates a CPT algorithm for optimal clustering of 

IoT nodes to meet delay and QoS constraints, a Non-Linear 

Smooth Optimization (NLSO) algorithm for energy-

efficient UAV-based coverage, and a Multi-Variable Dou-

ble Deep Reinforcement Learning (MVD-DRL) framework 

for adaptive resource allocation. This approach ensures 

seamless IoT communication in dynamic and challenging 

environments, significantly improving network perfor-

mance, energy efficiency, and the reliability of connections 

during disaster scenarios. 

1.3 Research Contributions 

To effectively address the IoT connectivity challenges 

in non-terrestrial network (NTN) environments, the pro-

posed methodology adopts an adaptive resource optimiza-

tion framework based on deep reinforcement learning 

(DRL). The approach holistically integrates three intercon-

nected components to enhance network performance in 

disaster-resilient scenarios.  

1. Firstly, the CPT algorithm is employed for clustering 

IoT nodes, aiming to maximize the number of satis-

factory connections while ensuring sustainability in 

terms of delay and quality of service (QoS). This 

clustering mechanism enables efficient grouping of 

nodes, reducing communication overhead and im-

proving connectivity.  

2. Secondly, unmanned aerial vehicles (UAVs) are stra-

tegically deployed to ensure optimal coverage for IoT 

nodes in disaster-affected regions. The Non-Linear 

Smooth Optimization (NLSO) algorithm is utilized to 

optimize UAV positioning, ensuring reliable commu-

nication support in dynamic and challenging envi-

ronments.  

3. A multi-variable double deep reinforcement learning 

(MVD-DRL) framework is developed for resource 

management. By dynamically adjusting resource allo-

cation based on network conditions, the MVD-DRL 

model effectively mitigates congestion, controls 

transmission power, and maximizes the number of 

successful connections. This integrated methodology 

ensures seamless, energy-efficient, and resilient IoT 

communication in NTN environments, especially dur-

ing disaster recovery operations. 

The remaining sections of the paper are organized as 

follows. The methodology of the proposed work is ex-

plained in Sec. 2 with the cluster formation using CPT 

algorithm in Sec. 2.2, UAV deployment optimization using 

NLSO algorithm in Sec. 2.3 and resource management 

using MVD-DRL model in Sec. 2.4. In Sec. 3, the simula-

tion setup and their scenarios are explained. The results 

and comparative analysis are given in Sec. 4. Finally, the 

paper concludes in Sec. 5. 

2. Materials and Methods 

2.1 System Model of the Proposed Approach 

The rapid proliferation of IoT devices across various 

sectors underscores the urgent need for reliable connectivi-

ty, especially in remote and non-terrestrial environments. 

These regions, characterized by unique challenges such as 

mobility, weather variability, and infrastructure limitations, 

often struggle to maintain QoS, particularly during disaster 

scenarios. Traditional static resource allocation methods 

fall short in addressing the dynamic and unpredictable 

nature of Non-Terrestrial Networks (NTNs). This research 

is motivated by the pressing requirement to develop adap-

tive resource optimization strategies that can effectively 

manage IoT connectivity in disaster-resilient applications. 

By leveraging advanced techniques such as deep rein-

forcement learning and novel algorithms like the CPT and 

non-linear smooth optimization (NLSO), this study aims to 

enhance network performance, improve connection relia-

bility, and optimize resource allocation to ensure robust 

communication in critical situations.  

Figure 1 shows the network model for disaster-

resilient NTN with IoT sensor nodes, using clustering, 

optimal channel state information (CSI) and resource man-

agement. In this model, the NTN supports IoT nodes dis-

persed throughout the disaster area in an uplink scenario, 

involving UAVs and monitoring IoT nodes as users. NTN 

comprises two types of components: aerial base stations 

(ABS), which provide links and mobile edge computing for 

the nodes, and high altitude platform stations (HAPS), 

which relay messages between ABSs in the disaster area 

and external entities. Let Z = {1,...,z,...,Z} denote the set of 

IoT nodes where Z shows the total number of nodes. Fur-

thermore, X = {1,...,x,...,X}is considered as the set of ABSs 

where X represents the total number of ABSs and denotes 

HAPS. In particular, the total operating time is 100 s, 

which is divided into 2000 slots. The time slot is represent-

ed by t, and its length is 50 ms, denoted by ζ. It is notewor-

thy that ζ is the length of the time slot, and δ is the length 

of the traveling part. For CSI gathering, IoT nodes send 

known pilot signals to UAVs, which use these signals to 

estimate the channel response and calculate CSI. IoT nodes 

collect the environmental information, request connection 

to the ABS, and send their data. In the proposed approach, 

we collect information from IoT and UAV nodes. Utilizing 

the data from IoT sensor nodes, the CPT is used for clus-

tering to maximize satisfactory connections. UAVs are 

deployed to provide optimal coverage for IoT nodes in 

disaster areas, optimized using the NLSO algorithm.  

2.2 Cluster Formation 

Cluster formation involves organizing IoT networks 

into groups called clusters, each managed by a leader. To 
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Fig. 1.  The conceptual framework of the proposed work. 

create these clusters, the CPT algorithm is used, which 

helps find the best connections between IoT nodes. This 

algorithm ensures that all nodes operate within the required 

time frame and meet the expected quality of service. Since 

the CPT algorithm uses chaos-based principles, it can thor-

oughly explore all possible clustering options, increasing 

the chances of finding the most efficient arrangement. 

The CPT algorithm is an innovative clustering tech-

nique inspired by the natural growth patterns and charac-

teristics of plum trees, which effectively structures IoT 

networks into clusters with designated leaders. By using 

chaotic dynamics, the CPT algorithm enhances the cluster-

ing process, making it particularly suitable for complex and 

dynamic environments like the Internet of Things (IoT). 

The incorporation of chaotic systems allows for the genera-

tion of pseudo-random sequences, enabling a thorough 

exploration of potential clustering configurations. The 

iterative nature of CPT facilitates dynamic cluster for-

mation, where IoT nodes are grouped based on specific 

criteria such as proximity or connectivity. Each iteration 

refines the clusters, accommodating the addition or remov-

al of nodes in the network. Furthermore, each cluster fea-

tures a leader node responsible for coordinating activities 

within the cluster, optimizing resource management, data 

aggregation, and communication among nodes, thereby 

enhancing overall network efficiency. The CPT algorithm 

is also designed to ensure that all clustered IoT nodes meet 

specific sustainability time frames and QoS requirements, 

which is crucial for maintaining consistent performance 

and longevity in IoT applications. The CPT algorithm is 

a chaotic process used to optimize flower positions by 

selecting random integers between the maximum and min-

imum solutions. It identifies the globally optimal plum 

location. Each flower, B, is initialized in a C-dimensional 

search space, with values randomly selected within the 

given solution range [XrMin, XrMax]. 
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where B plums are primed with the price of flower:  
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The fitness value of each IoT sensor node is com-

puted using the objective function (OF), and the global best 

IoT node Xh
iter–1 is updated based on the best fitness value 

at its location. The top-ranked IoT node location is further 

refined based on the best fitness value, fh
iter–1, while the 



RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 247 

 

second-best fitness value guides the update of another 

optimal location. A random value R is selected from the 

range [0, 1]. If R is greater than or equal to the fitness se-

lection (FS) threshold, the position of the IoT node is up-

dated as follows: 

   1 1 1

h h 1 2Ripe unRipe2 2iter iter iter iter

h hf f R RX f X f       (3) 

where R1 and R2 represent a random number within [0, 1], 

and XRipe and XunRipe show the ripe and the unripe position, 

similarly. The chaotic rule is based on deviation 2 and 

mean as follows: 

 

   

   
 

1
Ripe

2 1
Ripe

1

1, if Of Of

OX OX
, otherwise

Of

iter

h

iter

h

iter

h

XX

X X

EX









 


 





  (4) 

where E acts as a safeguard to prevent division by zero. 

OX(⋅) represents the optimization function that evaluates 

the signal strength of the IoT node, while Of(⋅) denotes the 

fitness function used to assess the performance of a given 

IoT node in the network. The selected IoT node is altered 

to the [XrMin, XrMax] intermission so that when 

Fhg
iter= XrMin, then Fhg

iter> XrMin, and if Fhg
iter> XrMin, then 

Fhg
iter= XrMax, where g = 1.  

    1

1

, if Of Of

, otherwise

iter iter iter
iter h h h
h iter

h

f f f
X

X





 
 


  (5) 

The global best IoT node Xh
iter value is updated based 

on the location of the IoT node with the best fitness value, 

according to the objective function. Finally, return the 

value: 

 
All 1 2 3S S S S      (6) 

where S1 denotes to the optimal best location for the IoT 

nodes and the HAPS. This represents the delay of IoT in 

the data center (C) in relation to the energy efficiency of 

the NTN network. The objective function is determined by 

the regular visit (h) of the IoT nodes and is represented as 

follows:  

  
1

1

1

MinF
h h

b

l l

h

cl






    (7) 

where T signifies the sequence of protuberances. CPT 

algorithm in cluster formation leverages chaotic maps to 

ensure efficient clustering of IoT nodes in NTNs, thereby 

enhancing overall network performance and resilience, 

especially in disaster-prone areas. The working process of 

cluster formation using CPT is given in Algorithm 1. 
 

 

Input    : Amount of IoT nodes, maximum iteration and threshold 

                condition 

Output : Cluster formation 

1. Begin 

2. Initialize the step sizes of the population 

3. 
Define C-dimensional search space with values ranges within  

[XrMin, XrMax] 

4. For L = 1, 2,3, ….,b – 1 do 

5.  Calculate the plum’s fitness and update the fitness Xh
iter 

6 
 

 

To compute the optimal position of flower:  

   1 1 1
Min MaxRandom ,iter iter iter iter

h h h h
f f Xr Xr X f
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Define optimal location of flower using chaotic map:  

  1 21 0,
iter iter

h hf X B 
    

8.  Fix the search region of plum tree: 
All 1 2 3S S S S    

7. 
 

 

Compute the optimal fitness for maximum search range:  

 All 1 3

1

b
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8.  

Define maximum power consumption of IoT nodes: 

 
1

1

1

MinF
h h

b

l l

h

cl





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9. End for 

11. Return  

Algorithm 1.  Cluster formation using CPT. 

2.3 Optimizing CSI Estimation 

Channel state information (CSI) estimation is critical 

aspect of wireless communication systems, providing de-

tailed insights into the properties of the communication 

channel, such as channel gain, phase shift, delay spread, 

and Doppler shift. Accurate CSI estimation is essential 

because it allows the system to adapt to changing channel 

conditions. The non-linear smooth optimization (NLSO) 

algorithm is used to optimize CSI estimation of disaster-

resilient IoT connectivity. It determines the optimal posi-

tions for UAVs to provide maximum coverage for IoT 

nodes within a disaster area. IoT nodes send known pilot 

signals to UAVs, which use these signals to estimate the 

channel response and compute the CSI. NLSO operates by 

formulating the optimization problem in terms of a smooth 

objective function that captures the essential characteristics 

of the communication system. This function typically rep-

resents metrics such as signal-to-noise ratio (SNR), 

throughput, or coverage area, and it is designed to be dif-

ferentiable, utilize gradient-based optimization techniques. 

A key advantage of the NLSO algorithm is its ability to 

handle non-linear constraints, which are often present in 

real-world scenarios. For instance, in the optimization of 

unmanned aerial vehicles (UAVs) for disaster-resilient IoT 

connectivity, the algorithm can account for factors such as 

altitude limits, battery life, and the need for line-of-sight 

communication between UAVs and IoT nodes. This flexi-

bility enables the algorithm to provide a robust solution 

that is both practical and effective. In NLSO algorithm, the 

initial fitness describes the jK
B instead of multiplying the 

direction by a positive definite matrix  

     T1
Min ;

2

o

KK K
F F  c N cp p c   (8) 

where NK is a confident certain matrix. Let NK be construc-

tive definite and assume NKc be the explanation of Prob-

lem. The objective function     T1
;

2

o

KK
F   c N cp cc  is 
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strictly convex. An exclusive minimized c* is computed as 

follows:  

       T ** *:; ;
o o

KK K
F F F    cpp c p c . (9) 

Now, the maximal optimal fitness  1;
o B

K K K
F p N j  is 

computed as follows:  

 
 

   
TT 11 1Max;

K

o BB B B
K KK K K K K K

F
F


  


   

p
N jp N j N j j   (10) 

where pK is sufficient for the fitness function Fo(p), 

utilizing an efficient one-way quadratic sampling function. 

     
1,...,

Maxo

g
g x

F y


p p    (11) 

Then, we compute the multi-objective sampling function as 

follows:  

         
TT 1

.
2

g g g gg g gy F     q p q p q p qj Ip   (12) 

We assume that the sample structure of F contains the 

maximum number of features, i.e., the number of features p 

is unknown and must be estimated through a trial-and-error 

process: 

       

 

1,...,
Max , 1,...,

.

o
gg g g

g x
F y g x

D


     



p qj Ip p

p

 (13) 

Follow the major rule F(p)  Fo(p) and the objective 

function is stated as follows:  

 
 

   
  

T

T T T

Max;

Max
o

o

t F p

hh h
tt F

F

Max







   
D pp

c tp c

p qc t c t c j I

  (14) 

In the real case, D(p) is the convex hull of a given set 

of generator vectors Vg, g = 1, ..., x. Let pK be the current 

iteration of the algorithm. The region of maximal objective 

function is computed by the unit vector (ch = ±Eh). 

    
 ;

K h h k o

h K h

h

F F
t F





 
 

p c p
p c . (15) 

For h = 1, update the objective function as follows: 

    T; , for some 1,2,...,
h

o

K h h g hF g x p c c V . (16) 

Using the normative function of th, we solve the opti-

mization problem (17) where R denotes the total number of 

reference directions considered in the optimization:  

   
1

2
T

ˆ ˆ 1,...,
1

ˆMin Min
x

R

h g h
g x

h

t





V V

c V .  (17) 

The initial set of x temporal generators is saved. Each 

pair (ch
T, th) is assigned to a generator that provides a better 

approximation th. F(pK) is the direction estimate can be 

calculated by solving the problem of where is the approxi-

mation conv(V̂1,…,V̂x). Algorithm 2 describes the process 

of optimizing CSI estimation using NLSO.  

 

Input    : Initial positions, mobility constraints and energy  
                consumption 

Output : Optimizes CSI estimation  

1. Begin 

2. Initialize the step sizes of the population  

3. Define minimal fitness level with channel model: 

    T1
Min ;

2

o

KK K
F F  c N cp p c  

4. Fix the threshold level with conditional model: 

  **0 ;
o

KK
F N cp c  

5. Compute optimal fitness function of Fo and update: 

 
 

   
TT 11 1Max;

K

o BB B B
K KK K K K K K

F p
F


  


    N jp N j N j j

 

6 Find the quadratic sampling function: 

    
1,...,

Maxo

g
g x

F y


p p  

7. If unit vector = (ch = ±Eh): 

8. Define the predetermined directions for failure as: 

   
 ;

K h h k o

h K h

h

F F
t F





 
 

p c p
p c  

7. Else, estimate the best guess of the th’s values, and solve: 

8. 

  
1

2
T

ˆ ˆ 1,...,
1

ˆMin Min
x

R

h g h
g x

h

t





V V

c V  

9. End if 

10. Find and return the best output value 

11. End 

Algorithm 2. Optimizes CSI estimation using NLSO. 

2.4 Resource Management  

Resource management is used for ensuring efficient 

and reliable communication, especially in NTNs during 

disaster scenarios. Effective resource management involves 

the strategic allocation and optimization of network re-

sources is bandwidth, power levels, and transmission chan-

nels to maintain optimal network performance and meet 

QoS requirements. The multi-variable double deep rein-

forcement learning (MVD-DRL) model is used to address 

these complex challenges. In this context, the DRL frame-

work involves an agent, which is the learning model used 

for making decisions regarding resource allocation, and the 

environment, which includes the IoT network, UAVs, 

ABSs, and HAPSs. Within the MVD-DRL framework, the 

agent represents the learning model that interacts with the 

environment to make resource allocation decisions. The 

environment encompasses all elements of the NTN, includ-

ing IoT nodes and communication platforms like UAVs 

and ABSs. The agent receives observations about the cur-

rent state of the network and takes actions that impact re-

source allocation. The feedback from the environment, in 

terms of rewards or penalties based on the performance of 

its actions, guides the agent’s learning process. During the 

training phase, the MVD-DRL model explores various 

resource allocation strategies, receiving rewards based on 

their outcomes (Reward_1, Reward_2 … Reward_N). The 

resource management problem is solved using the Q-

network function in the MVD-DRL model. 
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Fig. 2.  Structure of MVD-DRL model for resource manage-

ment in NTN during disaster scenarios. 

As shown in Fig. 2, the target function of the MVD-

DRL model is computed as follows: 

     yy
s

yy

DDQN

y sAWAWE  ;,maxarg, 111
  (18) 

where Ey+1 is the reward for the next state (State-1, State-2, 

… State-N), y is the current W network's parameters, and t 

is the discount factor γ. The objective of the specialist is to 

track down an ideal technique to optimize the fitness.  
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The H-index framework Omm is used, where Hy event 

represents the situation in which state u cannot transition to 

state h. The value is shown in the case where the transition 

from state u to h is possible.  
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In the MVD-DRL model, we utilize the boundaries of 

brain organization, the ongoing W, the organizational 

structure, and the objective W network boundaries. We also 

use the ε-technique to select an action. 

We apply the threshold condition to define the 

objective rule, which operates with a likelihood ε over 

a period, and claim is achieved with 

 min
min

1 step
,1

total step



  

 
 

  (21) 

as it diminishes throughout the training. The W network 

boundaries are updated by randomly drawing small batches 

of samples from the memory pool. The agent then uses 

DNN gradient descent with backpropagation to update the 

actions of the Q-network's current parameters (Action-1, 

Action-2, …, Action-N). 

 
 

if is terminal

( ,max ; ) otherwise,
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e a
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


 

 

  (22) 

where th denotes the current state's reward. The next state is 

denoted by θ–, and the current DNN parameters are repre-

sented by W. The loss function is defined as the mean 

squared error (MSE) of the disparity between the present 

network value W, and the objective is to minimize it. 

     , ;MSE .DDQN
y yu y

A SK T W      (23) 

The specialist updates the boundaries of the target 

network W after a predetermined number of steps. Once 

the model completes all its training phases, the agent enters 

the end state. 

 
     

 

1

1
ˆ , ,max, , , ,

, ,

y

y y
y y y y

y y

E

AWA S A SW W

A SW


   







 
 

  
 
 
 

 

    (24) 

where α is the learning rate. The immediate reward 

Reward(a,s) obtained by taking action a is negative if the 

transition of swarm h to state s does not lead to a subtle 

host. The instantaneous return is used in the event that the 

state corresponding to s′ is a sensitive host. 

   init vulReward Reward Cost,a s    (25)  

 
Int vulReward Score Valueg      (26)  

where RewardInt represents the predefined scores related to 

vulnerability exploitation and reputation acceleration in the 

exchange grid. The variable h denotes all hosts targeted by 

the specialist, and Costvul signifies the activity cost. Algo-

rithm 3 describes the working process of resource man-

agement using the MVD-DRL model. 

3. The Simulation Environment 

The proposed approach is implemented on a network 

simulator (NS3), with the DRL model coded in Python 

language. The Network Simulator 3 (NS-3) plays a vital role 

 

 



250 F. JERIBI, R. J. MARTIN, ADAPTIVE RESOURCE OPTIMIZATION FOR IOT-ENABLED DISASTER-RESILIENT NTN USING DRL 

Input    : Congestion levels, CSI, transmission power and 

                bandwidth  

Output : Learning parameter set (Rewards) 

1 Get mark system topology material. 

2 Set the host worth (importance). 

3 Apply MVD-DRL to build the boot tree. 

4 
Perform exploration of chart trails using a complexity-first 

procedure. 

5 

Establish the transfer matrix: 
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 
 
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6 Initialize the neural networks. 

7 For each episode = 1 to max_episode do: 

8     For t = 1 to T do 

9 

Use ε-greedy to select action a’ based on the w-value: 

min
min

1 step
,1

total step



  

 
 

 

10 
Perform action a’, observe next state s', reward r, and whether 

episode is done. 

11 Add reward function. 

12 Update current state s = s’ 

13 if |D| >batch-size then Construct target w-value: 

14 
 

if is terminal

( ,max ; ) otherwise,

h

h

h

e a
t

e W a a 



 

 

 

15 

Perform ancestry step using loss function: 

    , ;MSE .DDQN
y yu y

A SK T W     

16 

Every N steps, update θ using random module for rank 

computation: 
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17 End for (T loop) 

18 End for (episode loop) 

19 End 

Algorithm 3.  Resource management using MVD-DRL model. 

in IoT-based research by enabling realistic modeling of 

large-scale, heterogeneous networks. It supports a wide 

range of IoT-relevant protocols such as 6LoWPAN, RPL, 

and CoAP, and allows for detailed evaluation of perfor-

mance metrics including latency, throughput, energy con-

sumption, and reliability. NS-3 facilitates the simulation of 

dynamic environments and mobility patterns, making it 

ideal for applications like smart cities, healthcare monitor-

ing, and vehicular IoT. Additionally, NS-3’s open-source 

nature and integration with machine learning frameworks 

like ns3-gym allow for adaptive and intelligent protocol 

development, ensuring reproducibility and validation of 

experimental results in a controlled simulation environ-

ment. 

The NS-3, though primarily written in C++, supports 

Python bindings for scripting and experiment control, mak-

ing it suitable for flexible and large-scale IoT simulations. 

To efficiently implement our methodology using Python, 

an ideal hardware setup includes a high-performance pro-

cessor such as an Intel Core i7 or AMD Ryzen 7, which 

ensures fast execution of simulation events. At least 16 GB 

of RAM is recommended to handle memory-intensive 

simulations involving numerous IoT nodes and protocol 

stacks. Solid-state drives (SSD) with a minimum of 

100 GB free space are preferred for faster read/write access 

to logs and simulation data. While a GPU is not required 

for standard NS-3 operations, an NVIDIA GPU with 

CUDA support becomes beneficial when integrating ma-

chine learning models through frameworks like ns3-gym. 

Additionally, using a Python version between 3.6 and 3.10 

within a virtual environment is recommended for managing 

dependencies and ensuring compatibility with NS-3 

modules. 

The results of the proposed MVD-DRL approach are 

compared with existing state-of-the-art (SOTA) methods, 

including the greedy radiant model (GRM), distributed soft 

actor-critic (DSAC), multi-agent deep deterministic policy 

gradient (MADDPG), and multi-agent recurrent determin-

istic policy gradient (MARDPG) [41]. We consider three 

scenarios to demonstrate the effectiveness of our MVD-

DRL approach. In the first scenario, we validate the per-

formance of different DRL models by varying the amount 

of subcarriers, IoT nodes, and end-to-end (E2E) delay. In 

the second scenario, we conduct a comparative analysis 

with respect to the objective function. Finally, we assess 

the fairness of the proposed and existing approaches in 

relation to the amount of UAVs.  

Table 2 shows that the network covers 2000 meters 

by 2000 meters. This complicates the setting up of IoT 

devices and UAVs, which are needed to simulate real-

world crises. Three ABS-UAVs have been launched to 

provide critical communication links and processing capac-

ity to IoT sensor nodes in the disaster zone. A scenario can 

feature 10, 20, 30, 40, or 50 sensors however the number 

varies every simulation. In addition, the models consider 5, 

10, 15, 20, and 25 120 kHz subcarriers to assess the sys-

tem's ability to handle varying data traffic and efficiency of 

the spectrum. Each IoT node requires 0.0004 CPU cycles 

per second, representing the processing power needed for 

data computation  and  transmission  tasks. The  packet arrival 
 

Description Value 

Network Size 2000 m  2000 m 

Amount of ABS-UAV 3 

Amount of IoT sensors 50, 100, 150, 200 and 250 

Amount of subcarriers 5, 10, 15, 20 and 25 

Bandwidth of subcarriers 120 kHz 

Computational resource 0.0004 CPU cycle/sec. 

Packet arrival rate 30 pps 

Packet length 100 Kbits 

Minimum uplink transmission power 100 mW 

Maximum uplink transmission power 800 mW 

Path loss 0.1 to 20 dB 

E2E delay 100 ms 

Minimum and maximum flying attitude 20 to 100 m 

Maximum velocity of UAVs 4 m/s 

Simulation time 240 s 

Tab. 2.  Description of simulation environment. 

mailto:2000*2000@200%20m
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rate is set at 30 pps, simulating steady stream of data typi-

cal in IoT such as environmental monitoring or disaster 

response, with each packet having a length of 100 Kbits to 

provide a realistic data size for transmission. The minimum 

and maximum uplink transmission powers are set at 100 

and 800 mW, respectively. Path loss is modeled between 

0.1 to 20 dB, capturing range of signal degradation scenar-

ios due to obstacles, distance, and environmental factors, 

which is crucial for testing the robustness of connectivity 

solutions. An E2E delay of 100 milliseconds is considered, 

serving as a critical metric for assessing the latency per-

formance and the system's ability to meet stringent timing 

requirements of IoT applications, especially in emergency 

scenarios. The UAVs operate at altitudes ranging from 20 

to 100 meters, allowing the simulation of different opera-

tional conditions and the impact of altitude on coverage 

and connectivity. Furthermore, the UAVs move at maxi-

mum speed of 4 m/s, enabling the simulation of dynamic 

repositioning and adaptive coverage strategies in response 

to changing network conditions. The total simulation time 

is set at 240 seconds, divided into 2000 slots, with each slot 

being 50 ms long.  

Table 3 outlines the key parameters of the DRL 

model used for optimizing resource management in IoT 

connectivity within non-terrestrial environments. The 

model processes data in batches of 64 samples and is 

trained over 800,000 episodes to ensure comprehensive 

learning. A discount factor of 0.87 balances immediate and 

future rewards. The actor and critic learning rates are set at 

0.00001 and 0.00005, respectively, to maintain stable and 

controlled parameter updates. ReLU activation functions in 

the hidden layers help with efficient learning, while the 

Tanh function in the output layer ensures bounded output 

values. The parameters collectively enable the DRL model 

to optimize resource allocation effectively in dynamic and 

complex IoT scenarios. Channel modeling is crucial for 

both terrestrial and non-terrestrial networks (NTNs) as it 

helps understand signal propagation and system perfor-

mance. Accurate models account for factors like path loss, 

fading due to multipath propagation, and mobility effects, 

particularly in dynamic scenarios such as disaster manage-

ment. Various modeling techniques exist, including empir-

ical models, deterministic models based on geometric op-

tics, and stochastic models using probabilistic approaches. 

In terrestrial networks, models focus on urban environ-

ments, optimizing antenna placement to counteract shad-

owing and multipath effects. For NTNs, including satellites 
 

Description Value 

Batch size 64 

Amount of episodes 800000 

Discount factor 0.87 

Actor-learning rate 0.00001 

Critic-learning rate 0.00005 

Activation function of hidden layer ReLu 

Activation function of output layer Tanh 

Tab. 3.  Description of DRL model. 

and UAVs, channel models must consider long-distance 

signal travel and atmospheric influences. Detailed channel 

modeling enhances simulation accuracy, improving system 

design and performance evaluation, particularly in critical 

situations where reliable communication is essential. 

3.1 Real-World Applicability 

The proposed concept of adaptive resource 

optimization for IoT-enabled disaster-resilient non-

terrestrial networks (NTNs) has strong potential for real-

world deployment, particularly in critical applications such 

as post-disaster response, remote monitoring, maritime 

communication, and agricultural surveillance in under-

served regions. In practical scenarios, the integration of 

UAVs for coverage optimization and the use of deep rein-

forcement learning for dynamic resource allocation enables 

the system to adapt to fluctuating traffic loads, node fail-

ures, and environmental disruptions. However, the perfor-

mance of the proposed approach in real-world transmission 

environments may be influenced by several limiting fac-

tors. These include signal attenuation caused by atmospher-

ic conditions (e.g., rain fade or cloud cover in satellite 

links), latency due to the high mobility of UAVs or satel-

lites, limited battery life of UAVs and IoT nodes, hardware 

constraints such as low processing power or memory, and 

spectrum interference in dynamically shared environments. 

Although these limitations have been theoretically consid-

ered in our framework, their real-time impact could vary 

depending on the deployment conditions. To bridge this 

gap, our future work includes implementing the proposed 

model in a real-time testbed involving physical UAVs and 

IoT platforms, which will allow us to evaluate its robust-

ness, responsiveness, and scalability under operational 

constraints. This step will be crucial for validating the 

model’s adaptability and effectiveness in ensuring sustain-

able, QoS-compliant connectivity in real-world NTN de-

ployments. 

4. Results and Discussions  

In this section, we present the results to evaluate the 

performance of the proposed and existing resource man-

agement approaches. To validate the performance of the 

MVD-DRL approach, we use various simulation scenarios 

to jointly optimize resource management and IoT connec-

tivity. 

4.1 Comparative Analysis of DRL Models 

with Number of Successful Connection 

(NSC) 

The results in Fig. 3 illustrate a comparative analysis 

of the number of successful connections (NSC) achieved 

by different state-of-art DRL models—GRM, DSAC, 

MADDPG, MARDPG, and our MVD-DRL approach— 

across varying amounts of subcarriers. Starting with 5 sub- 
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Fig. 3.  NSC results comparison with varying amount of 

subcarriers. 

carriers, GRM achieves an NSC of 6.022, which increases 

modestly to 6.523 with 25 subcarriers, reflecting an overall 

increase of 8.33%. In contrast, DSAC demonstrates a sub-

stantial improvement, starting at 9.856 NSC and reaching 

23.685 NSC, marking a 22.312% increase. Similarly, 

MADDPG begins with NSC of 10.523 and rises to 28.578, 

resulting in an impressive 13.25% increase. MARDPG 

shows notable growth, from 13.587 NSC to 33.565, repre-

senting a 25.122% increase. The MVD-DRL model, how-

ever, stands out with its superior performance. It starts with 

an NSC of 18.245 at 5 subcarriers and reaches an NSC of 

39.859 at 25 subcarriers, resulting in remarkable 18.102% 

increase.  

The enhancement highlights the efficacy of the MVD-

DRL model in optimizing resource management and en-

hancing IoT connectivity, particularly in disaster-prone and 

non-terrestrial environments. The consistent outperfor-

mance of MVD-DRL over other models at each increment 

of subcarriers underscores its capability to handle the dy-

namic demands and optimize network performance effec-

tively.  

The results presented in Fig. 4(a) depict the NSC 

achieved by different DRL models. Starting with GRM, the 

NSC rises from 3.445 with 5 sensors to 27.334 with 25 

sensors, reflecting an enhancement of 12.321%. DSAC 

shows a similar trend, starting at 4.497 and increasing to 

28.386, which is an enhancement of about 531.24%. 

MADDPG exhibits steady growth as well, with the NSC 

improving from 5.549 to 29.438, marking an enhancement 

of 12.58%. MARDPG also performs well, increasing from 

6.601 to 30.49, which is an enhancement of 12.916%.The 

MVD-DRL model, however, shows the significant im-

provement. It starts with an NSC of 7.653 at 5 sensors and 

reaches 31.542 at 25 sensors, resulting in remarkable en-

hancement of 12.191%. The key advantage of MVD-DRL 

lies in its ability to manage resource allocation more effec-

tively in dynamic, non-terrestrial environments, optimizing 

IoT connectivity with fewer sensors but achieving higher 

5 10 15 20 25
0

10

20

30

 

 

N
S

C
 

Number of IoT sensors

 GRM

 DSAC

 MADDPG

 MARDPG

 MVD-DRL

 
(a) 

5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

 

 

N
S

C
 

E2E delay in ms

 GRM

 DSAC

 MADDPG

 MARDPG

 MVD-DRL

 
(b) 

Fig. 4.  NSC results comparison with (a) varying amount of 

IoT sensors; (b) with varying E2E delay in 

microseconds. 

overall performance. This makes MVD-DRL more reliable 

for real-world applications where efficiency and scalability 

are critical, especially in scenarios requiring robust perfor-

mance across various network sizes.  

The results in Fig. 4(b) illustrate the NSC across dif-

ferent DRL models. Starting with GRM, the NSC increases 

from 1.999 to 12.218 as the E2E delay increases from 5 to 

25 ms. This represents an impressive enhancement of 

11.36%. DSAC shows an improvement from 2.855 to 

13.074, marking an enhancement of 37.76%. MADDPG 

follows a similar trend, with the NSC rising from 3.711 to 

13.93, which translates to an increase of 27.25%. 

MARDPG exhibits an increase as well, going from 4.567 

to 14.786, reflecting an enhancement of 22.75%. The 

MVD-DRL model shows the highest performance increase, 

starting from an NSC of 5.423 at 5 ms E2E delay and 

reaching 15.642 at 25 ms E2E delay with the enhancement 

of 18.38%. While the MVD-DRL might seem lower com-

pared to other models, it is important to note that MVD-
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DRL achieves the highest absolute NSC values across all 

delay conditions, indicating its superior capability in main-

taining high connectivity under varying network delays. 

4.2 Ablation Study on the Proposed and 

Existing Approaches 

Table 4 presents the results of an ablation study con-

ducted to compare the performance of the proposed and 

existing approaches with respect to the amount of subcar-

riers. The study highlights the effectiveness of MVD-DRL 

in managing the dynamic allocation of subcarriers to opti-

mize IoT connectivity in non-terrestrial networks. MVD-

DRL consistently outperforms GRM across varying 

amounts of subcarriers in terms of NSC results. Starting 

with 5 subcarriers, MVD-DRL exhibits 13.3% enhance-

ment over GRM. This advantage persists as the amount of 

subcarriers increases, with MVD-DRL achieves enhance-

ment of 9.6%, 6%, 4% and 3.1% over 10 to 25 subcarriers, 

respectively. The model's superior scalability and efficien-

cy in resource management enable the performance gains, 

positioning MVD-DRL as robust solution for optimizing 

network performance. Starting with 5 subcarriers, GRM 

exhibits the highest computational complexity at 21.572%, 

followed by DSAC, MADDPG, and MARDPG with com-

plexities of 17.587%, 13.602%, and 9.617% respectively. 

In contrast, MVD-DRL shows the least complexity at 

5.632%, shows a decrease of 74% compared to GRM. This 

advantage persists across different amounts of subcarriers, 

with MVD-DRL consistently demonstrating lower com-

plexities ranging from 65.4% to 74% compared to GRM. 

Starting with 5 subcarriers, GRM exhibits the highest sig-

nal overhead at 18.086%, while MVD-DRL records the 

least at 9.878%, represent enhancement of 45.4% com-

pared to GRM. As the amount of subcarriers increases, 

GRM's signal overhead rises, reaches 24.194% at 25 sub-

carriers. In contrast, MVD-DRL maintains lower signal 

overheads, ranging from 9.878% to 15.986%, shows effi-

ciency in minimizing overhead across different subcarrier 

amounts. MVD-DRL model shows significant reduction in 

signal overhead compared to other models, with decreases 

ranging from 33.9% to 45.4% compared to GRM. Starting 

with 5 subcarriers, GRM exhibits the shortest convergence 

time at 17.891 seconds, followed closely by other models. 

As the amount of subcarriers increases, convergence times 

decrease for all models. The convergence times decrease 

consistently with higher network complexity, indicating 

improved efficiency in reaching convergence. 

Table 5 presents the results of an ablation study con-

ducted to compare the performance of the proposed and 

existing approaches with respect to the amount of IoT 

sensor nodes. For NSC comparison across varying amounts 

of IoT sensor nodes, MVD-DRL consistently outperforms 

other models. Starting with 50 IoT sensor nodes, MVD-

DRL achieves an NSC of 7.777, a 174.3% increase over 

GRM's NSC of 2.837. This trend continues with 100, 150, 

200, and 250 IoT sensor nodes, where MVD-DRL main-

tains its lead with NSC values of 10.381, 16.110, 23.689, 

and 30.003, respectively. Compared to GRM, MVD-DRL 

shows improvements ranging from 19.8% to 174.3%, 

shows its consistent superiority in optimizing IoT connec-

tivity across various scenarios. The computational com-

plexity analysis highlights the efficiency of the MVD-DRL 

model in resource utilization across different amounts of 

IoT sensor nodes. Starting with 50 nodes, MVD-DRL 

exhibits the lowest complexity at 5.757%, a 63.7% de-

crease compared to GRM. This trend continues with 100, 

150, 200, and 250 nodes, where MVD-DRL maintains its 

efficiency with complexities ranging from 6.67% to 8.55%, 

shows decreases from GRM ranging from 54.2% to 63.7%. 

DSAC, MADDPG, and MARDPG also shows reductions 

in complexity compared to GRM, further highlighting the 

scalability and effectiveness of MVD-DRL in managing 

computational resources across varying scenarios. The 

signal overhead analysis shows the efficiency of the MVD-

DRL model in minimizing overhead across different 

amounts of IoT sensor nodes.  

With 50 nodes, MVD-DRL shows the lowest over-

head at 10.003%, a 39.8% decrease from GRM. This trend 

continues with 100, 150, 200, and 250 nodes, where MVD-

DRL maintains its efficiency with overhead ranging from 

11.379% to 16.111%, marking decreases from GRM rang-

ing from 29.1% to 39.8%. DSAC, MADDPG, and 

MARDPG exhibit reductions in overhead compared to 

GRM shows the effectiveness of MVD-DRL in managing 

signal overhead across different scenarios. The conver-

gence time analysis shows the efficiency of the MVD-DRL 

model in reaching convergence across different amounts of 

IoT sensor nodes. With 50 nodes, MVD-DRL exhibits the 

longest convergence time at 18.648 seconds, followed by 

reductions as the amount of nodes increases, maintaining 

its position with 250 nodes at 13.649 s. DSAC, MADDPG, 

MARDPG, and GRM also show reductions in convergence 

time across scenarios. This comparative trend indicates the 

robustness of MVD-DRL in handling complex scenarios 

while maintaining convergence efficiency. 

4.3 Fairness Comparison 

We compare the fairness of the present DRL models 

for handling resources in IoT sensor nodes in connected 

sensor networks. Figure 5(a) shows how MVD-DRL im-

proves E2E delay across different IT sensor node counts. 

MVD-DRL technique reduces time by 72.8% over the 

GRM algorithm with 50 nodes. As node counts increase, 

MVD-DRL outperforms other approaches by reducing 

latency by 57.5% to 72.8%. This discovery shows that 

MVD-DRL optimizes E2E delay in many circumstances. 

Throughput across a range of IoT nodes that collect data 

shows that MVD-DRL performs better in Fig. 5(b). Begin-

ning with 50 nodes, MVD-DRL achieves throughput of 

84.756, marking a 20.6% increase compared to GRM. As 

the amount of nodes increases, MVD-DRL outperforms 

other models, with throughput improvements ranging from 

20.6% to 27.7% across different node counts. It highlights 

MVD-DRL's efficiency in enhancing throughput and its 

robustness across diverse scenarios. 
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DRL models 
Amount of subcarriers 

5 10 15 20 25 5 10 15 20 25 

 
NSCs Computational complexity (%) 

GRM 6.752 9.356 15.085 22.664 28.978 21.572 22.485 23.398 23.926 24.365 

DSAC 6.977 9.581 15.310 22.889 29.203 17.587 18.500 19.413 19.941 20.380 

MADDPG 7.202 9.806 15.535 23.114 29.428 13.602 14.515 15.428 15.956 16.395 

MARDPG 7.427 10.031 15.760 23.339 29.653 9.617 10.530 11.443 11.971 12.410 

MVD-DRL  7.652 10.256 15.985 23.564 29.878 5.632 6.545 7.458 7.986 8.425 

 Signal overhead (%) Convergence of DRL model (s) 

GRM 18.086 19.462 21.858 22.466 24.194 17.891 15.913 15.353 13.391 12.892 

DSAC 16.034 17.410 19.806 20.414 22.142 18.049 16.071 15.511 13.549 13.050 

MADDPG 13.982 15.358 17.754 18.362 20.090 18.207 16.229 15.669 13.707 13.208 

MARDPG 11.930 13.306 15.702 16.310 18.038 18.365 16.387 15.827 13.865 13.366 

MVD-DRL  9.878 11.254 13.650 14.258 15.986 18.523 16.545 15.985 14.023 13.524 

Tab. 4.  Ablation study of proposed and existing approaches with respect to amount of subcarriers. 
 

DRL models 
Amount of IoT sensor nodes 

50 100 150 200 250 50 100 150 200 250 

 
NSCs Computational complexity (%) 

GRM 2.837 5.441 11.170 18.749 25.063 15.841 16.754 17.667 18.195 18.634 

DSAC 4.072 6.676 12.405 19.984 26.298 13.320 14.233 15.146 15.674 16.113 

MADDPG 5.307 7.911 13.640 21.219 27.533 10.799 11.712 12.625 13.153 13.592 

MARDPG 6.542 9.146 14.875 22.454 28.768 8.278 9.191 10.104 10.632 11.071 

MVD-DRL  7.777 10.381 16.110 23.689 30.003 5.757 6.670 7.583 8.111 8.550 

 Signal overhead (%) Convergence of DRL model (s) 

GRM 16.611 17.987 20.383 20.991 22.719 13.312 11.334 10.774 8.812 8.313 

DSAC 14.959 16.335 18.731 19.339 21.067 13.896 11.918 11.358 9.396 8.897 

MADDPG 13.307 14.683 17.079 17.687 19.415 14.480 12.502 11.942 9.980 9.481 

MARDPG 11.655 13.031 15.427 16.035 17.763 15.064 13.086 12.526 10.564 10.065 

MVD-DRL  10.003 11.379 13.775 14.383 16.111 18.648 16.670 16.110 14.148 13.649 

Tab. 5.  Ablation study of the proposed and existing approaches with respect to amount of IoT sensor nodes. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 5.  Measure of (a) E2E delay; (b) throughput; (c) energy consumption, and (d) NSCs with varying amount of IoT sensor nodes. 
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In Fig. 5(c), the comparison of energy consumption 

across varying amounts of IoT sensor nodes underscores 

the efficiency of MVD-DRL. Beginning with 50 nodes, 

MVD-DRL demonstrates the lowest energy consumption at 

0.986, marking a reduction compared to GRM's consump-

tion of 7.594. As the amount of nodes increases, MVD-

DRL consistently outperforms other models, with energy 

consumption reductions ranging from 87% to 75.4% across 

different node counts. This highlights MVD-DRL's effec-

tiveness in minimizing energy consumption and its robust-

ness in optimizing resource utilization across diverse sce-

narios. 

Figure 5(d) illustrates the NSC comparison across 

varying IoT sensor node counts. Beginning with 50 nodes, 

MVD-DRL shows the highest NSC at 7.856, a 218.6% 

increase over GRM's 2.468. As nodes increase to 250, 

MVD-DRL maintains its lead with an NSC of 31.457, 

20.8% higher than GRM's 26.069. DSAC, MADDPG, and 

MARDPG exhibit similar trends, with enhancement rang-

ing from 13.5% to 21.0% compared to GRM. Overall, the 

comparison showcases the performance variations of DRL 

models across different node counts, with increases rang-

ing from 20.8% to 218.6% compared to GRM. 

5. Conclusion 

An adaptive resource optimization approach tailored 

for disaster-resilient IoT connectivity in non-terrestrial 

environments using deep reinforcement learning (DRL) 

techniques is presented. By employing the Chaotic Plum 

Tree (CPT) algorithm for efficient clustering of IoT nodes 

and optimizing UAV deployment through the non-linear 

smooth optimization (NLSO) algorithm, the proposed 

methodology ensures robust and sustainable network con-

nectivity while meeting stringent delay and QoS require-

ments. Central to our approach is the multi-variable double 

deep reinforcement learning (MVD-DRL) model, which 

effectively manages dynamic resource allocation, mitigates 

congestion, and optimizes transmission power to enhance 

overall network performance and access success probabil-

ity. Simulation results demonstrate that the MVD-DRL 

model achieves significant performance gains compared to 

existing approaches. Specifically, the end-to-end delay is 

reduced by 64.486%, 57.66%, 47.586%, and 31.222% 

compared to GRM, DSAC, MADDPG, and MARDPG 

models, respectively. The throughput is improved by 

20.816%, 15.612%, 10.408%, and 5.204%, while energy 

consumption is reduced by 80.619%, 75.727%, 67.531%, 

and 50.978% compared to the same models. Furthermore, 

the number of successful connections (NSCs) is increased 

by 28.013%, 21.01%, 14.006%, and 7.003%, respectively. 

The proposed work presents a promising solution for en-

hancing disaster-resilient IoT connectivity in non-terrestrial 

networks, offering substantial improvements in network 

performance, resource efficiency, and service reliability 

under challenging environments. Moreover, potential real-

world constraints such as signal attenuation due to envi-

ronmental factors, UAV flight endurance, hardware limita-

tions of IoT nodes, interference in dynamic spectrum envi-

ronments, and mobility-induced latency have also been 

considered. These practical challenges may affect the over-

all system performance in real transmission environments. 

Therefore, as part of future work, we intend to implement 

the proposed methodology in a real-time testbed using 

physical UAV and IoT platforms to validate its feasibility, 

robustness, and adaptability under realistic operating con-

ditions. 
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