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Abstract. The detection of malware represents a primary 

concern in contemporary computer security and is therefore 

imperative for the protection of systems and data integrity. 

This research presents an innovative approach to compar-

ing diverse input image formats with the objective of identi-

fying the optimal methodology for detecting specific mal-

ware-related signatures using convolutional neural 

networks (CNN), which have been specifically developed by 

the authors for this purpose. Subsequently, machine code in-

structions are generated and then converted into four dis-

tinct image format options. The four image formats, namely 

1xN fixed, 1xN scalable, NxN fixed, and NxN scalable, are 

subsequently employed for the training of the CNN. The 

study assesses the formats in question in terms of training 

time, accuracy, and computational complexity. The results 

demonstrate that the NxN scalable format exhibits the high-

est accuracy with accelerated training times in comparison 

to other formats. Furthermore, the scalable format necessi-

tates only 25% of the original pixel count for a 96% classi-

fication success rate. The utilization of the NxN scalable for-

mat for machine code instruction representation results in 

enhanced accuracy, accelerated training, and a considera-

ble reduction in pixel usage, indicating a promising avenue 

for optimizing the efficiency of malware detection. 
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1. Introduction 

Malware represents a persistent threat to networked 

systems, manifesting in a multitude of forms and necessitat-

ing the continuous evolution of detection techniques [1]. De-

spite advancements in the field of cybersecurity, the profit 

motives of cybercriminals drive the rapid proliferation of so-

phisticated and stealthy malware variants, which present 

a significant challenge to traditional detection methods [2]. 

Convolutional neural networks (CNNs) are particularly 

adept at image recognition tasks, utilizing their features for 

both the visualization and classification of malware. The ob-

jective of this study is to enhance the classification of mal-

ware signatures by selecting the most appropriate input im-

age format in an innovative manner. 

Recent studies have demonstrated the efficacy of inno-

vative approaches that leverage deep learning architectures, 

such as Convolutional Neural Networks (CNNs) and ensem-

ble learning, in combating evolving threats [3–8]. These ap-

proaches demonstrate exceptional accuracy and resilience, 

thereby underscoring the efficacy of AI methodologies in the 

context of malware detection. 

In study [3] authors employ CNN architectures for fea-

ture extraction, using ReLU dense layers, PCA, and SVD as 

feature selection techniques combined with machine learn-

ing classifiers (SVM, K-NN, RF) and ensemble methods, 

achieving significant performance improvements with PCA, 

including a test accuracy of 99.36% and demonstrated resil-

ience to polymorphic malware. 

A new approach is proposed in [4] for multi-classifica-

tion on imbalanced data sets. It addresses class imbalance 

and enhances the accurate detection of multi-class anoma-

lies. The approach outperformed XGBoost, a CNN classi-

fier, and six ensemble classifiers. 

In article [5] the authors put forth a semantic-based in-

telligent malware model for the identification of malicious 

software within the Windows system. The proposed 

BERT+ConvLSTM-AM(CNN) method demonstrated 

an accuracy of 98.81%, thereby outperforming all baseline 

models [5]. 

The deployment of autonomous systems is of critical 

importance for the security of networked systems. However, 

strategies such as centralized or distributed detection entail 

a trade-off in performance. The study demonstrated that 

a convolutional neural network (CNN) with long short-term 

memory (LSTM) achieved 95.5% accuracy in the detection 

of internet of things (IoT) malware, outperforming existing 

methods [6]. 

A DL-AMDet architecture utilizing convolutional neu-

ral network (CNN) and bidirectional long short-term 

memory (BiLSTM) autoencoders is proposed for the effi-

cient and robust detection of malware in the Android 
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operating system, even in the absence of an internet connec-

tion. The DL-AMDet architecture demonstrated a detection 

accuracy of 99.935 in terms of F-score [7]. 

Additionally, the authors of [9] present a distributed 

CNN model for malware classification, which adapts to en-

hance performance by examining supplementary file sec-

tions and scoring functions [8]. 

The aforementioned methodologies are implemented 

in conjunction with CNNs, augmented by alternative AI 

methodologies. However, none of these studies address the 

optimal input image format. In particular, our investigation 

will examine the most suitable image formats for CNN uti-

lization. 

This paper presents a comprehensive investigation of 

malware detection techniques, with a particular emphasis on 

signature-based detection utilizing convolutional neural net-

works (CNNs). We begin by providing an overview of the 

various analytical approaches employed in the field of mal-

ware research, including static, dynamic, and hybrid analy-

sis techniques. Subsequently, we examine the complexities 

of signature-based detection techniques, emphasizing the 

significance of data preprocessing and image format selec-

tion. The following sections present our methodology for 

preprocessing machine code into suitable image representa-

tions and outline the various image formats considered. We 

then establish a uniform training environment to facilitate 

fair comparison across different scenarios. Finally, we as-

sess and determine the most suitable image format for robust 

signature detection using CNNs. Through this structured ap-

proach, we aim to make a significant contribution to the ad-

vancement of malware detection methodologies. 

This approach is distinctive in its conversion of ma-

chine code instructions into visual representations and for-

mat selection, utilizing convolutional neural networks for 

malware detection, thereby providing a novel perspective on 

signature detection within the cybersecurity domain. 

2. Malware Analysis 

Malware analysis is the study of malware behavior. 

The goal of malware analysis is to understand how malware 

works and how to detect and remove it. It involves analyzing 

the suspicious binary in a secure environment to determine 

its characteristics and functions to develop better defenses to 

protect an organization’s network [9]. 

In the past, it was optional to define these two terms. 

The term "detection" refers to distinguishing whether a par-

ticular file is malicious. Analysis, on the other hand, refers 

to understanding how the malware in question works. Now-

adays, however, this dividing line is blurred. This is because 

the role of automated analysis tools such as sandboxes has 

now expanded. For manual analysis, it means understanding 

malware behavior, and for automated analysis, it can addi-

tionally mean detection [10]. 

Over the years, several malware analysis techniques 

have been proposed by various researchers to detect and 

classify malware in general. Malware analysis methods can 

be divided into static and dynamic analysis. The detection 

techniques can be characterized based on the executable fea-

tures used for detection and their classification approach [11]. 

2.1 Static Analysis 

A simple static analysis examines the ensemble with-

out examining machine instructions. However, simple static 

analysis can confirm whether a file is malicious, providing 

information about its functionality that can be used to create 

simple signatures of the malicious file [1], [12]. 

Advanced static analysis is an in-depth examination of 

the code of a potentially malicious program. The result is 

single-machine instructions that accurately describe the 

operation of the file. This approach is more time-consuming 

and complex but results in a complete file analysis [1], [12]. 

Most applications are compiled and stored in hexadec-

imal format. The compiled program loses valuable infor-

mation that an analyst could use, such as variable names, etc. 

2.2 Dynamic Analysis 

Malware often has various code obfuscation 

techniques that make static analysis extremely difficult. 

Dynamic analysis can overcome these code obfuscation 

techniques by running the malware [2]. 

Dynamic analysis, however, requires a secure environ-

ment in which we can dynamically analyze the process with-

out inadvertently falling victim to the potentially malicious 

file being examined. The principle is to monitor file system 

registry calls, network traffic, and process and thread activ-

ity [1, 12, 13]. 

2.3 Hybrid Analysis 

Hybrid analysis combines the techniques of static and 

dynamic analysis so that it takes advantage of both ap-

proaches. The software observes using static code analysis, 

checking suspicious areas of the code and then running the 

program in a virtual environment to observe its actual be-

havior. The different techniques help each other in extract-

ing artefacts [14]. 

3. Malware Detection 

A program designed to detect malicious activity is 

known as a malware detector, many times referred to as an-

tivirus software. The general function of malware detection 

can be defined as follows: 

 

 if   contains malicious code

 other cases                                          
p

Malicious p
D

Benign

 
 



  (1) 

where D(p) is a function that can verify whether an applica-

tion or program (p) is either benign or malicious. In some 
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cases, D(p) cannot correctly decide whether a program is 

malicious or harmless. This case is adjusted in (2): 

    

if ( ) contains malicious code

if ( ) is standard application

if ( ) cannot determine 

Malicious p

D Benign pp

Undecidable D p p




 



  (2) 

The undecidable state may be due to a new type of mal-

ware or simply the detector's inability to detect that type of 

malware. Therefore, we have added an undecidable state to 

the function, which covers the set of unclassifiable pro-

grams. Mostly zero-day vulnerabilities fall into this set [14]. 

3.1 Signature-Based Detection 

When malware is created, a unique sequence of bits, 

commonly known as a signature, is inadvertently inserted 

into its code, which can later be used to identify the malware 

and determine its class. This detection technique is called 

string/pattern scanning or simply matching. Signature detec-

tion can work statically, dynamically or hybrid [14], [15]. 

3.2 Heuristic-Based Detection 

Heuristic-based detection identifies or distinguishes 

between normal and abnormal system behavior and can use 

the principles of signature detection and behavior detection 

to identify and resolve known or unknown malware attack 

attempts [16]. 

The heuristic detection process consists of two steps. 

In the first step, observation of the system takes place. In this 

step, the security of each running application is guaranteed, 

and essential information is recorded, which can be verified 

and checked in the second step. In the second step, the dif-

ferences created by the running applications are actively 

monitored. These changes may reveal malware [14], [15]. 

3.3 Specification-Based Detection 

A specification-based technique monitors applications 

according to their specification and checks for normal and 

abnormal behavior. This technique is derived from the heu-

ristics-based approach. Still, the main difference is that the 

heuristics technique uses artificial intelligence and machine 

learning methods to determine malicious and benign soft-

ware. In contrast, specificity detection is based on analyzing 

the behavior described in the system specification. This 

method is a manual comparison of the normal activities of 

a particular software [14]. 

Signature-based detection is efficient at identifying 

known malware with low computing power but cannot 

detect unknown threats without pre-defined signatures. 

Heuristic-based detection can identify both known and new 

malware but requires frequent updates, consumes more 

resources, and has a high rate of false positives. 

Specification-based detection effectively identifies known 

and unknown malware with low false positives but struggles 

with high false negatives and is time-consuming to define 

 

Detection 

method 
Advantages Disadvantages 

Signature-

based detec-

tion 

- Easily detects known 

malware. 

- Uses significantly less 

computing power than 

other techniques. 

- Fails to detect unknown 

malware (for which no 

signature has been de-

fined). 

Heuristic-

based 

detection 

- Detects known and 

unknown new malware. 

- New malware character-

istics need to be updated. 

- More time and disk 

space consumption. 

- False positives is high.  

Specification-

based 

detection 

- Detects known and 

unknown new malware. 

- Low level of false 

positives. 

- Level of false negatives 

is high. 

- Ineffective in detecting 

new malware. 

- Defining specifics is 

time-consuming. 

Tab. 1. Comparison of detection methods. 

specifics. The advantages and disadvantages are 

summarised in Tab. 1. 

4. Data Sets Setup for CNN 

The research was conducted in a computational envi-

ronment powered by a DELL XPS 8930 equipped with 

an Intel Core i7-8700 CPU, 16GB DDR4 RAM, M.2 PCIe 

SSD 256GB combined with a 2000GB HDD and 

an NVIDIA GeForce GTX 1080 GPU. 

In our research, we aim to assess the effectiveness of 

different image formats, namely NxN fixed, NxN scalable, 

1xN fixed, and 1xN scalable, in identifying specific mal-

ware-related signatures. Instead of using actual malware 

samples, we generate source codes and signatures using our 

proprietary generator. Our objective is to determine which 

image format best represents the characteristic patterns of 

real malware signatures. We have discussed source code 

generation in previous work from which we will obtain nec-

essary information [17]. 

In our previous work [17], we defined what is signa-

ture, infected and plain code. A plain code is a randomly 

generated sequence of machine instructions without any in-

tentionally inserted sequence of instructions (signature). 

A signature is a randomly generated sequence of instructions 

which is then inserted into the plain code at a random posi-

tion. To verify the ability of the method using CNN to rec-

ognize any kind of text - malware signatures. This treats the 

plain code as infected and marks it according to the corre-

sponding signature it contains. The signatures and the plain 

code are randomly generated from the instruction set for the 

8086 microprocessor. Subsequently, these instructions are 

converted into an image.  

4.1 Machine Code 

The central processing unit (CPU) executes instruc-

tions (also called machine instructions). The instructions that 

the CPU executes are stored in memory as a sequence of 

bytes. During the execution of the instructions, the required 
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data (which is also stored as a sequence of bytes) is retrieved 

from memory. The CPU itself contains memory in its pro-

cessor, which is called a register memory. The registers are 

used to store the values loaded from memory during execu-

tion [9]. 

Each processor has a set of instructions that it can exe-

cute. The instructions that the CPU executes make up the 

CPU's instruction set. These machine instructions are stored 

in memory as a sequence of bytes that the CPU reads, inter-

prets, and executes. A compiler is a program that translates 

programs written in a programming language (such as C or 

C++) into machine language [3]. 

Our approach utilizes machine code instructions as the 

primary resource for generating images used in 

classification. The example code for generating source codes 

is shown in Fig. 1. 

Table 2 illustrates the manner in which an image is 

constructed from instructions, with each instance of the let-

ter i representing the RGB value of a particular machine in-

struction. 

4.2 Image Creation Process 

A program's source code is made up entirely of instruc-

tions. We convert this source code to a visual representation 

before training a convolutional neural network to recognize 

code by image. Consequently, we give each machine code 

instruction a special color from the RGB spectrum. It offers 

us more than 16 million possible options. This fully satisfies 

our needs. Instructions are created for the image one at 

a time, going from left to right from top to bottom. The 

example code is shown in Fig. 2. 

 

Fig. 1. Machine instruction generation code. 

 

Tab. 2. Image layout. 

 

Fig. 2. Image generation code. 

4.3 Image Size 

The first consideration is determining the appropriate 

image resolution. Let's explore the following options. In 

both fixed and scalable formats, missing instructions (pixels) 

are filled with a NOP operation, represented as a white pixel. 

After careful evaluation, we identified two primary ap-

proaches: maintaining a fixed image size or adjusting it. 

Each approach is further divided into 1xN and NxN formats. 

We consider the Nx1 format equivalent to the 1xN format 

The value of N is set by the user to best fit the application: 

1 x N (Fixed) - The source code image in this possibil-

ity will have a defined width and height. Let the image's res-

olution be 110. In other words, 10 instructions are con-

tained in one image. For illustration as shown in Tab. 3, two 

photos one with 10 and second with 10 visualized instruc-

tions will make up a source code file with 20 instructions. 

N- is user-defined. 

1 x N (Scalable) - This option, regardless of image 

size, transfers the whole source code to a single image file 

as shown in Tab. 4. The image is sent through a scaling filter 

to achieve the uniform input size before being fed into the 

neural network. The definition of N is the number of instruc-

tions in one source of code. 

 

Tab. 3. 1 x N fixed. 



RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 307 

 

 

Tab. 4. 1 x N scalable. 

 

Tab. 5. N x N scalable. 

 

Tab. 6. N x N fixed.  

N x N (Scalable) - The size of N is calculated so that 

all instructions fit in the image and there are the least number 

of unused fields. Thus, we calculate N as the square root of 

the total number of source code instructions rounded up to 

an integer. Thus, if we have a source code of size 20 instruc-

tions, we have calculated N to be 5. Thus, the resulting im-

age will be 5x5 as shown in Tab. 5. The image will then be 

filtered to a final unite resolution before entering the neural 

network. N is defined as square root rounded up to integer.  

N x N (Fixed) - The width and height of the source 

code picture are fixed. For illustration we decided on a size 

of 4x4 for testing. This means that a single image has 16 

pixels and can therefore include 16 instructions. Then two 

pictures containing a source code with 20 instructions will 

be generated as shown in Tab. 6. N is user-defined. 

4.4 Image Resize Tool (Interpolation) 

In order to avoid any potential loss of pixels, a tool 

from the Cv2 library in the Python environment is utilized 

for image resizing. This technique is also known as interpo-

lation. The extra pixels in the new image are computed via 

interpolation. We use the Inter Cubic method. Inter cubic 

does bicubic interpolation across a neighborhood of 4 x 4 

pixels [18]. We use interpolation, only in the scalable 

format. The fixed format is not rescaled. Python code for 

interpolation is shown in Fig. 9. 

4.5 CNN Training Setup 

Four sets of codes were developed to assist in the se-

lection of the most appropriate image format. The first set, 

designated as "clear," lacks an intended order of instructions. 

In contrast, each signature in the remaining three sets is pre-

cisely one. These sets will remain constant throughout the 

duration of the research. The complete set is presented in 

Tab. 7. 

We will select an existing convolutional neural net-

work model and adapt it to our needs. Our initial focus is on 

establishing an appropriate image format (NxN / 1xN – Scal-

able/Fixed). This involves the conversion of a program into 

machine code and subsequently into an image. Even with 

a highly optimized model, it would not perform well with  

 

Fig. 9. Python code for image interpolation. 
 

Code 

group 
Shortcut 

Number of 

instructions 

in one code 

Number of 

codes 

Signature 

length 

Clear Clear 300 1000 0 

Signature 0  S_0 300 4000 100 

Signature 1  S_1 300 4000 100 

Signature 2 S_2 300 4000 100 

Tab. 7. Complete dataset. 
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Fig. 10. Topology of the modified CNN. 

unsuitable inputs. After conducting research, we decided to 

adopt the modified ResNet50 model as our choice following 

up on previous research [17]. 

The ResNet architecture adheres to two key design ten-

ets. Initially, there are the same number of filters in each 

layer regardless of the output feature map's size. Second, 

even though the size of the feature map is cut in half, it con-

tains twice as many filters to maintain the time complexity 

of each layer [19]. 

The original Resnet50 model is modified as shown in 

Fig. 10. We duplicated first convolution and max pooling 

layers. Also before fully connected layers we inserted two 

more layers named Convolution6. In summary we added 7 

more layers. After training original and modified ResNet50 

on our data set, we consider that our modified CNN achieves 

better classification results than the original ResNet-50 ar-

chitecture. 

Tab. 8 presents the training options for training a mod-

ified CNN model. These options define the parameters and 

settings that govern the training process and influence the 

model's learning behavior. Training options are set as given 

in Tab. 8. 

Image format and option selection will undertake 

a comparative analysis of the aforementioned alternatives, 
 

Solver 

Solver: Stochastic gradient descent with 

momentum 

Initial learn rate: 0.01 

Basic 

Validation frequency: 50 

Max epochs: 30 

Minimal batch size: 128 

Shuffle: Every epoch 

Drop factor: 0.1 

Momentum: 0.9 

Training data: 80% 

Validation data: 20% 

Tab. 8. Modified CNN training options. 

with a particular focus on the selection between the NxN and 

1xN formats. In addition to accuracy, a crucial component 

that will be observed is the computational complexity re-

flected by the training time. The subsequent section will 

delve deeper into the selection between scalable and fixed 

formats, evaluating the potential drawbacks of both 

methods. 

5. Image Format and Option Selection 

The initial decision is to select one of two formats: 

NxN or 1xN. Subsequently, the selected format is then fur-

ther refined by choosing between Scalable and Fixed option. 

The decision will be based on the time spent training and 

accuracy. In the context of time consuming hypotheses, it 

can be posited that a reduction in time will result in a corre-

sponding decrease in the computational intensity of the pro-

cess. Similarly, in the context of accuracy hypotheses, it can 

be proposed that an increase in accuracy will lead to a supe-

rior outcome. 

Time consuming hypotheses are:  

 H0-NxN is less time consuming. 

([NxN fixed elapsed time + NxN scalable elapsed 

time]) < ([1xN fixed elapsed time + 1xN scalable 

elapsed time]). 

 H1-1xN is less time consuming. 

([1xN fixed elapsed time + 1xN scalable elapsed 

time]) < ([NxN fixed elapsed time + NxN scalable 

elapsed time]). 

 H2- NxN and 1xN are comparatively time consuming  

([NxN fixed elapsed time + NxN scalable elapsed 

time]) ≈ ([1xN fixed elapsed time + 1xN scalable 

elapsed time]). 

Accuracy hypotheses are:  

 H0-[Format (NxN/1xN)] Fixed option is more 

accurate. 

([Format] fixed accuracy) < ([Format] scalable 

accuracy). 

 H1-[Format] Scalable option is more accurate.  

([Format] fixed accuracy) > ([Format] scalable 

accuracy). 

 H2-[Format] Scalable and [Format] Fixed options are 

comparatively accurate.  

([Format] fixed accuracy) ≈ ([Format] scalable 

accuracy). 

We built a homogeneous computing environment for 

training. Such that, the analysis of time consumption was 

unaffected by any background processes. By homogeneous 

computing environment we mean that all experiments had 

the same hardware capacities. No other processes or appli-

cations degraded the performance of the devices on which 

the capability test was run during testing. Table 9 shows the 
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number of samples selected from the total dataset. The tested 

formats are as follows:  

NxN fixed - option can discover known signatures 

quickly and efficiently. A notable drawback is the possibility 

that, similar to the 1xN fixed, the signature may be split into 

two images during the classification of the program's source 

code. Convolutional neural network won't be able to classify 

source codes properly. 

1xN Fixed - Making an image from source code as 

a line of pixels is the simplest method. As a result, we pre-

vent splitting the potential bit sequence into a separate row 

of pixels, which can occur with NxN types. The drawback 

of this strategy against NxN is the wider image, which in-

creases processing complexity. Since the signature can be 

split into two images because of the fixed width and is there-

fore hidden, there may be an issue with the classification of 

the images. 

NxN Scalable - One of the finest possibilities looks to 

be NxN scalable. And the reason for that is that each code 

always generates a single image. This means that, unlike 

with the fixed option, there can never be a situation where 

the signature is split into many images. The drawback of re-

ducing the image resolution is that the signature loses its in-

dividuality. 

1xN Scalable - The benefit of the last choice, 1xN scal-

able as well as 1xN fixed, is that the signature is not divided 

into many lines of pixels. Another benefit of the scalable op-

tion is that it always produces a single image during classi-

fication, ensuring that the signature will remain intact.  

5.1 NxN vs 1xN format (Time Consuming 

Hypothesis) 

The modified CNN model was able to accurately clas-

sify 100% of the photos in scalable resolutions, just like it 

would in fixed resolution. All four possibilities have demon-

strated their ability to accurately recognize signatures.  

Although training the model multiple times is a key 

component of the decision-making process in the following 

section, we only chose to proceed with the NxN Fixed and 

NxN Scalable options due to their much shorter training du-

rations than the 1xN resolutions. According to Tab. 10 the 
 

Train/Validate Dataset 

Code  

Number of 

instructions in 

one code 

Number of 

codes 

Signature 

length 

Clear 300 1500 0 

Signature 0  300 1500 100 

Signature 1 300 1500 100 

Signature 2 300 1500 100 

Total number train/val set: 6000 

Test Dataset 

Clear 300 25 0 

Signature 0 300 15 100 

Signature 1 300 20 100 

Signature 2 300 40 100 

Total number test set: 100 

Tab. 9. Train/Validate/Test set I. 

 

Image 

format 

Format 

option 
Accuracy 

Elapsed 

time 

Total time (per 

format) 

NxN 

Scalable 100% 601 min. 

1199 minutes 

Fixed 100% 598 min.  

1xN 
Scalable 100% 3403 min.  

6704 minutes 
Fixed 100% 3301 min.  

Tab. 10.   NxN vs 1xN format. 

null hypothesis (H0) was confirmed, while the alternative 

hypotheses (H1 and H2) were rejected. This indicates that 

NxN is a more time-efficient approach, with a reduced com-

putational complexity. This is due to the fact that the sum of 

NxN training times is 1,199 minutes, whereas the sum of 

1xN training times is equal to 6,704 minutes.  

5.2 NxN Scalable vs. NxN Fixed (Accuracy 

Hypothesis) 

The number of source codes was reduced in order to 

accelerate the training time required to determine whether a 

scalable or fixed option would be more beneficial. The set 

of images used in this experiment is displayed in Tab. 11. 

The training set and validation set are known for 80% and 

20% of the total number of images, the test set consists of 

100 images correspondingly, according to the table. 

The training of neural networks will be conducted in 

three rounds, with a total of six instances. Due to the insuf-

ficient resolution of the image, the number of images in the 

fixed option will increase with each instance where the res-

olution is inadequate for displaying the entirety of the code 

instructions. The discrepancy in image count is illustrated in 

Tab. 12. 
 

Train/Validate Dataset 

Code  

Number of 

instructions in 

one code 

Number of 

codes 

Signature 

length 

Clear 300 1500 0 

Signature 0 300 1500 100 

Signature 1 300 1500 100 

Signature 2 300 1500 100 

Total number train/val set: 6000 

Test Dataset 

Clear 300 25 0 

Signature 0 300 25 100 

Signature 1 300 25 100 

Signature 2 300 25 100 

Total number test set: 100 

Tab. 11.   Train/Validate/Test set II. 

 

N. 
NxN image 

format 

Instruction 

count 

Final size after 

rescaling 

Image 

count 

1 
Fixed 300 16x16 12000 

Scalable 300 16x16 6000 

2 
Fixed 300 14x14 12000 

Scalable 300 14x14 6000 

3 
Fixed 300 9x9 24000 

Scalable 300 9x9 6000 

Tab. 12.   Image count. 
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The reason why the total number of images in the fixed 

image format is the same in the first and second rounds is 

that at a resolution of 16x16 we cover 256 instructions and 

to display the entire code (300 instructions) we need 2 

images. This is twice the number of images compared to the 

scalable format. Similarly, round 2, where the resolution is 

14x14, will cover 196 instructions. We will also need 2 

images per code (300 instructions). So round one and round 

two are the same in number of images but different in reso-

lution. The third round already has a resolution of 9x9, so it 

covers 81 instructions. This means that we need 4 images to 

display 300 instructions, which is four times as much for the 

fixed version as for the scalable version. 

Table 13 presents a comparison of individual options 

against the appropriate 18x18 format. We consider this for-

mat appropriate only for this experiment because we can dis-

play all the instructions in one image without changing the 

image's size or needing to divide it into multiple images. 

Once all six neural networks were properly trained, the 

test set was created. And the key reason for this is to prevent 

mistakenly using the test set during training while handling 

a lot of images. There are 100 images in the test set. One 

quarter for each class, which is 25 images per class. The 

number of instructions in a single code and the length of the 

signature match those of the training set. 

Notwithstanding the 75% loss of pixels, Scalable Op-

tion was able to correctly classify 97% of the images. As 

illustrated in Tab. 14 results corroborate Hypothesis 1, indi-

cating that Scalable Option is more accurate. 

Table 15 provides a comparison of different methods 

used for signature processing. Each method is evaluated 

based on its advantages and disadvantages, highlighting 

their key characteristics. 

By understanding the advantages and disadvantages of 

each method, researchers and practitioners can make in-

formed decisions about the most suitable approach for sig-

nature processing based on their specific requirements and 

priorities. 
 

Image 

format 
Image size 

Percentual 

image count 

growth 

Instruction 

loss (Pixel loss) 

Fixed 

16x16 100% 0% 

14x14 100% 0% 

9x9 400% 0% 

Scalable 

16x16 0% 20.9% 

14x14 0% 60.5% 

9x9 0% 75% 

Tab. 13.   Image properties. 

 

Image 

format 
Size 

Classified/ 

Absolute 
Accuracy 

Scalable 

16x16 100/100 100% 

14x14 100/100 100% 

9x9 97/100 97% 

Fixed 

16x16 100/100 100% 

14x14 27/100 27% 

9x9 8/100 8% 

Tab. 14.   NxN vs 1xN accuracy. 
 

Method Advantages Disadvantages 

NxN Fixed Fast training process. 

Signature may split 

into multiple images. 

Signature may be 

divided into multiple 

pixel rows. 

1xN Fixed 

Signature won’t be 

divided into multiple 

rows. 

Lengthy training 

process. 

Signature may split 

into multiple images. 

NxN Scalable 

Fast training process.  

Signature will not be 

split into multiple 

images. 

Resizing may affect 

signature 

individuality. 

1xN Scalable 

Signature won’t be 

divided into multiple 

rows. 

Signature will not be 

split into multiple 

images. 

Lengthy training 

process. 

Resizing may affect 

signature 

individuality. 

Tab. 15.   Summary. 

6. Results 

Initially, a comparison was conducted between the 

NxN and 1xN formats, from which it was determined that 

the NxN format was more suitable according to Tab. 10. It 

should be noted that the kernels in the 1xN options were not 

modified to 1D. Nevertheless, this did not impact the results, 

as CNN was still able to classify 100% of the images in 

accordance with Tab. 10. The NxN format is, on average, 

five times as fast as 1xN. Consequently, we proceeded with 

the NxN format exclusively and explored the Scalable and 

Fixed options in conjunction with it. 

Despite a 75% reduction in pixel data, the Scalable Op-

tion demonstrated impressive resilience, achieving a 97% 

classification accuracy rate. As demonstrated in Tab. 14, 

these results confirm that the Scalable Option provides su-

perior accuracy, even with significantly reduced visual in-

formation. This outcome suggests that the Scalable Option 

effectively preserves critical features needed for accurate 

classification, making it a highly efficient approach for im-

age-based malware detection. 

Future convolutional neural network signature recog-

nition applications would benefit much from implementing 

the NxN format with scalable option. Although using only 

25% of the pixels in the 9x9 format as opposed to the 18x18 

version, we were still able to properly identify 97% of the 

signatures. 

7. Conclusion 

CNN´s have proven themselves in a variety of security-

related applications. CNN´s have also been successfully used 

in other security domains that do not have an obvious image-

based component. By treating executables as images, re-

searchers have been able to leverage the strengths of CNNs 

for malware detection, classification, and analysis. CNNs 

are successfully applied to a combination of static and dy-

namic features [20]. In this reasearch CNN created by autors 
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Who  
Image 

format 

Data 

preprocessing 
Model Accuracy Dataset 

[21] not stated 
Converted into 

opcode 
ResNet 50 91.6 % 

Public binary 

(Benign/ 

Malware) 

[22] not stated 
Word to 

vector 
Custom 97.1% 

Public binary 

(Benign/ 

Malware) 

[23] not stated 

Feature 

extraction 

from existing 

list of features 

CNN-

LSTM 
99% 

Public binary 

(Benign/ 

Malware) 

Our 

work 

Scalable 

NxN 

Machine code 

instructions 

Our 

modified 

CNN 

97% 

Pseudorando

m generated 

classes. 

Tab. 16.   Overall summary. 

was used which has better results than topologies presented 

in the introduction of the paper. 

A comparison of the different methods can be seen in 

Tab. 16. It is important to note the different datasets and 

their difficulty of detection. Freely available datasets may 

have truncated signatures which are easier to visualize in the 

code. 

By testing different image formats, we have proven 

that the most suitable format in the malware detection prob-

lem is the NxN scalable resolution. This is because of the 

speed and accuracy compared to the other tested formats. 

We first examined which of the 1xN or NxN options is 

the more suitable adept. After evaluation, we clearly proved 

that the scalable option is the most suitable image generation 

method for such an application. From the beginning, the 

scalable NxN format appeared to be the best and most opti-

mal format. Which we proved at the end of the work 

(Tab. 15).  

One of the biggest advantages of the scalable format is 

that we needed 25% of the original number of pixels for 

a 97% classification success rate. We can use this feature in 

real applications because the samples can be of different 

sizes. Another important fact is that we solved the problem 

of the CNN input layer, which is fixed for each trained 

model. 

In our future work, our emphasis will be on the proper 

preprocessing of programs and determining the most suita-

ble approach for obtaining machine instructions. We are 

considering the utilization of Ghidra in headless mode to 

convert a significant volume of real malware samples into 

machine language. This converted machine language da-

tasets will serve as the basis for generating images in our 

future research. 
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