
RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 303

DOI: 10.13164/re.2025.0303

Comparative Analysis of Input Image Characteristics in

Convolutional Neural Network-based Signature Detection

Matej ADAMEC, Michal TURCANIK

Dept. of Informatics, Armed Forces Academy of gen. M. R. Štefánik, Demänovská cesta 393, 031 01 Liptovský Mikuláš,

Slovakia

{matej.adamec, michal.turcanik}@aos.sk

Submitted January 8, 2025 / Accepted February 13, 2025 / Online first May 13, 2025

Abstract. The detection of malware represents a primary

concern in contemporary computer security and is therefore

imperative for the protection of systems and data integrity.

This research presents an innovative approach to compar-

ing diverse input image formats with the objective of identi-

fying the optimal methodology for detecting specific mal-

ware-related signatures using convolutional neural

networks (CNN), which have been specifically developed by

the authors for this purpose. Subsequently, machine code in-

structions are generated and then converted into four dis-

tinct image format options. The four image formats, namely

1xN fixed, 1xN scalable, NxN fixed, and NxN scalable, are

subsequently employed for the training of the CNN. The

study assesses the formats in question in terms of training

time, accuracy, and computational complexity. The results

demonstrate that the NxN scalable format exhibits the high-

est accuracy with accelerated training times in comparison

to other formats. Furthermore, the scalable format necessi-

tates only 25% of the original pixel count for a 96% classi-

fication success rate. The utilization of the NxN scalable for-

mat for machine code instruction representation results in

enhanced accuracy, accelerated training, and a considera-

ble reduction in pixel usage, indicating a promising avenue

for optimizing the efficiency of malware detection.

Keywords

Signature detection, CNN malware detection, machine

code visualization, static analysis, interpolation

1. Introduction

Malware represents a persistent threat to networked

systems, manifesting in a multitude of forms and necessitat-

ing the continuous evolution of detection techniques [1]. De-

spite advancements in the field of cybersecurity, the profit

motives of cybercriminals drive the rapid proliferation of so-

phisticated and stealthy malware variants, which present

a significant challenge to traditional detection methods [2].

Convolutional neural networks (CNNs) are particularly

adept at image recognition tasks, utilizing their features for

both the visualization and classification of malware. The ob-

jective of this study is to enhance the classification of mal-

ware signatures by selecting the most appropriate input im-

age format in an innovative manner.

Recent studies have demonstrated the efficacy of inno-

vative approaches that leverage deep learning architectures,

such as Convolutional Neural Networks (CNNs) and ensem-

ble learning, in combating evolving threats [3–8]. These ap-

proaches demonstrate exceptional accuracy and resilience,

thereby underscoring the efficacy of AI methodologies in the

context of malware detection.

In study [3] authors employ CNN architectures for fea-

ture extraction, using ReLU dense layers, PCA, and SVD as

feature selection techniques combined with machine learn-

ing classifiers (SVM, K-NN, RF) and ensemble methods,

achieving significant performance improvements with PCA,

including a test accuracy of 99.36% and demonstrated resil-

ience to polymorphic malware.

A new approach is proposed in [4] for multi-classifica-

tion on imbalanced data sets. It addresses class imbalance

and enhances the accurate detection of multi-class anoma-

lies. The approach outperformed XGBoost, a CNN classi-

fier, and six ensemble classifiers.

In article [5] the authors put forth a semantic-based in-

telligent malware model for the identification of malicious

software within the Windows system. The proposed

BERT+ConvLSTM-AM(CNN) method demonstrated

an accuracy of 98.81%, thereby outperforming all baseline

models [5].

The deployment of autonomous systems is of critical

importance for the security of networked systems. However,

strategies such as centralized or distributed detection entail

a trade-off in performance. The study demonstrated that

a convolutional neural network (CNN) with long short-term

memory (LSTM) achieved 95.5% accuracy in the detection

of internet of things (IoT) malware, outperforming existing

methods [6].

A DL-AMDet architecture utilizing convolutional neu-

ral network (CNN) and bidirectional long short-term

memory (BiLSTM) autoencoders is proposed for the effi-

cient and robust detection of malware in the Android

304 M. ADAMEC, M. TURCANIK, COMPARATIVE ANALYSIS OF INPUT IMAGE CHARACTERISTICS IN CNN-BASED SIGNATURE …

operating system, even in the absence of an internet connec-

tion. The DL-AMDet architecture demonstrated a detection

accuracy of 99.935 in terms of F-score [7].

Additionally, the authors of [9] present a distributed

CNN model for malware classification, which adapts to en-

hance performance by examining supplementary file sec-

tions and scoring functions [8].

The aforementioned methodologies are implemented

in conjunction with CNNs, augmented by alternative AI

methodologies. However, none of these studies address the

optimal input image format. In particular, our investigation

will examine the most suitable image formats for CNN uti-

lization.

This paper presents a comprehensive investigation of

malware detection techniques, with a particular emphasis on

signature-based detection utilizing convolutional neural net-

works (CNNs). We begin by providing an overview of the

various analytical approaches employed in the field of mal-

ware research, including static, dynamic, and hybrid analy-

sis techniques. Subsequently, we examine the complexities

of signature-based detection techniques, emphasizing the

significance of data preprocessing and image format selec-

tion. The following sections present our methodology for

preprocessing machine code into suitable image representa-

tions and outline the various image formats considered. We

then establish a uniform training environment to facilitate

fair comparison across different scenarios. Finally, we as-

sess and determine the most suitable image format for robust

signature detection using CNNs. Through this structured ap-

proach, we aim to make a significant contribution to the ad-

vancement of malware detection methodologies.

This approach is distinctive in its conversion of ma-

chine code instructions into visual representations and for-

mat selection, utilizing convolutional neural networks for

malware detection, thereby providing a novel perspective on

signature detection within the cybersecurity domain.

2. Malware Analysis

Malware analysis is the study of malware behavior.

The goal of malware analysis is to understand how malware

works and how to detect and remove it. It involves analyzing

the suspicious binary in a secure environment to determine

its characteristics and functions to develop better defenses to

protect an organization’s network [9].

In the past, it was optional to define these two terms.

The term "detection" refers to distinguishing whether a par-

ticular file is malicious. Analysis, on the other hand, refers

to understanding how the malware in question works. Now-

adays, however, this dividing line is blurred. This is because

the role of automated analysis tools such as sandboxes has

now expanded. For manual analysis, it means understanding

malware behavior, and for automated analysis, it can addi-

tionally mean detection [10].

Over the years, several malware analysis techniques

have been proposed by various researchers to detect and

classify malware in general. Malware analysis methods can

be divided into static and dynamic analysis. The detection

techniques can be characterized based on the executable fea-

tures used for detection and their classification approach [11].

2.1 Static Analysis

A simple static analysis examines the ensemble with-

out examining machine instructions. However, simple static

analysis can confirm whether a file is malicious, providing

information about its functionality that can be used to create

simple signatures of the malicious file [1], [12].

Advanced static analysis is an in-depth examination of

the code of a potentially malicious program. The result is

single-machine instructions that accurately describe the

operation of the file. This approach is more time-consuming

and complex but results in a complete file analysis [1], [12].

Most applications are compiled and stored in hexadec-

imal format. The compiled program loses valuable infor-

mation that an analyst could use, such as variable names, etc.

2.2 Dynamic Analysis

Malware often has various code obfuscation

techniques that make static analysis extremely difficult.

Dynamic analysis can overcome these code obfuscation

techniques by running the malware [2].

Dynamic analysis, however, requires a secure environ-

ment in which we can dynamically analyze the process with-

out inadvertently falling victim to the potentially malicious

file being examined. The principle is to monitor file system

registry calls, network traffic, and process and thread activ-

ity [1, 12, 13].

2.3 Hybrid Analysis

Hybrid analysis combines the techniques of static and

dynamic analysis so that it takes advantage of both ap-

proaches. The software observes using static code analysis,

checking suspicious areas of the code and then running the

program in a virtual environment to observe its actual be-

havior. The different techniques help each other in extract-

ing artefacts [14].

3. Malware Detection

A program designed to detect malicious activity is

known as a malware detector, many times referred to as an-

tivirus software. The general function of malware detection

can be defined as follows:

 

 if contains malicious code

 other cases
p

Malicious p
D

Benign

 
 



 (1)

where D(p) is a function that can verify whether an applica-

tion or program (p) is either benign or malicious. In some

RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 305

cases, D(p) cannot correctly decide whether a program is

malicious or harmless. This case is adjusted in (2):

  

if () contains malicious code

if () is standard application

if () cannot determine

Malicious p

D Benign pp

Undecidable D p p




 



 (2)

The undecidable state may be due to a new type of mal-

ware or simply the detector's inability to detect that type of

malware. Therefore, we have added an undecidable state to

the function, which covers the set of unclassifiable pro-

grams. Mostly zero-day vulnerabilities fall into this set [14].

3.1 Signature-Based Detection

When malware is created, a unique sequence of bits,

commonly known as a signature, is inadvertently inserted

into its code, which can later be used to identify the malware

and determine its class. This detection technique is called

string/pattern scanning or simply matching. Signature detec-

tion can work statically, dynamically or hybrid [14], [15].

3.2 Heuristic-Based Detection

Heuristic-based detection identifies or distinguishes

between normal and abnormal system behavior and can use

the principles of signature detection and behavior detection

to identify and resolve known or unknown malware attack

attempts [16].

The heuristic detection process consists of two steps.

In the first step, observation of the system takes place. In this

step, the security of each running application is guaranteed,

and essential information is recorded, which can be verified

and checked in the second step. In the second step, the dif-

ferences created by the running applications are actively

monitored. These changes may reveal malware [14], [15].

3.3 Specification-Based Detection

A specification-based technique monitors applications

according to their specification and checks for normal and

abnormal behavior. This technique is derived from the heu-

ristics-based approach. Still, the main difference is that the

heuristics technique uses artificial intelligence and machine

learning methods to determine malicious and benign soft-

ware. In contrast, specificity detection is based on analyzing

the behavior described in the system specification. This

method is a manual comparison of the normal activities of

a particular software [14].

Signature-based detection is efficient at identifying

known malware with low computing power but cannot

detect unknown threats without pre-defined signatures.

Heuristic-based detection can identify both known and new

malware but requires frequent updates, consumes more

resources, and has a high rate of false positives.

Specification-based detection effectively identifies known

and unknown malware with low false positives but struggles

with high false negatives and is time-consuming to define

Detection

method
Advantages Disadvantages

Signature-

based detec-

tion

- Easily detects known

malware.

- Uses significantly less

computing power than

other techniques.

- Fails to detect unknown

malware (for which no

signature has been de-

fined).

Heuristic-

based

detection

- Detects known and

unknown new malware.

- New malware character-

istics need to be updated.

- More time and disk

space consumption.

- False positives is high.

Specification-

based

detection

- Detects known and

unknown new malware.

- Low level of false

positives.

- Level of false negatives

is high.

- Ineffective in detecting

new malware.

- Defining specifics is

time-consuming.

Tab. 1. Comparison of detection methods.

specifics. The advantages and disadvantages are

summarised in Tab. 1.

4. Data Sets Setup for CNN

The research was conducted in a computational envi-

ronment powered by a DELL XPS 8930 equipped with

an Intel Core i7-8700 CPU, 16GB DDR4 RAM, M.2 PCIe

SSD 256GB combined with a 2000GB HDD and

an NVIDIA GeForce GTX 1080 GPU.

In our research, we aim to assess the effectiveness of

different image formats, namely NxN fixed, NxN scalable,

1xN fixed, and 1xN scalable, in identifying specific mal-

ware-related signatures. Instead of using actual malware

samples, we generate source codes and signatures using our

proprietary generator. Our objective is to determine which

image format best represents the characteristic patterns of

real malware signatures. We have discussed source code

generation in previous work from which we will obtain nec-

essary information [17].

In our previous work [17], we defined what is signa-

ture, infected and plain code. A plain code is a randomly

generated sequence of machine instructions without any in-

tentionally inserted sequence of instructions (signature).

A signature is a randomly generated sequence of instructions

which is then inserted into the plain code at a random posi-

tion. To verify the ability of the method using CNN to rec-

ognize any kind of text - malware signatures. This treats the

plain code as infected and marks it according to the corre-

sponding signature it contains. The signatures and the plain

code are randomly generated from the instruction set for the

8086 microprocessor. Subsequently, these instructions are

converted into an image.

4.1 Machine Code

The central processing unit (CPU) executes instruc-

tions (also called machine instructions). The instructions that

the CPU executes are stored in memory as a sequence of

bytes. During the execution of the instructions, the required

306 M. ADAMEC, M. TURCANIK, COMPARATIVE ANALYSIS OF INPUT IMAGE CHARACTERISTICS IN CNN-BASED SIGNATURE …

data (which is also stored as a sequence of bytes) is retrieved

from memory. The CPU itself contains memory in its pro-

cessor, which is called a register memory. The registers are

used to store the values loaded from memory during execu-

tion [9].

Each processor has a set of instructions that it can exe-

cute. The instructions that the CPU executes make up the

CPU's instruction set. These machine instructions are stored

in memory as a sequence of bytes that the CPU reads, inter-

prets, and executes. A compiler is a program that translates

programs written in a programming language (such as C or

C++) into machine language [3].

Our approach utilizes machine code instructions as the

primary resource for generating images used in

classification. The example code for generating source codes

is shown in Fig. 1.

Table 2 illustrates the manner in which an image is

constructed from instructions, with each instance of the let-

ter i representing the RGB value of a particular machine in-

struction.

4.2 Image Creation Process

A program's source code is made up entirely of instruc-

tions. We convert this source code to a visual representation

before training a convolutional neural network to recognize

code by image. Consequently, we give each machine code

instruction a special color from the RGB spectrum. It offers

us more than 16 million possible options. This fully satisfies

our needs. Instructions are created for the image one at

a time, going from left to right from top to bottom. The

example code is shown in Fig. 2.

Fig. 1. Machine instruction generation code.

Tab. 2. Image layout.

Fig. 2. Image generation code.

4.3 Image Size

The first consideration is determining the appropriate

image resolution. Let's explore the following options. In

both fixed and scalable formats, missing instructions (pixels)

are filled with a NOP operation, represented as a white pixel.

After careful evaluation, we identified two primary ap-

proaches: maintaining a fixed image size or adjusting it.

Each approach is further divided into 1xN and NxN formats.

We consider the Nx1 format equivalent to the 1xN format

The value of N is set by the user to best fit the application:

1 x N (Fixed) - The source code image in this possibil-

ity will have a defined width and height. Let the image's res-

olution be 110. In other words, 10 instructions are con-

tained in one image. For illustration as shown in Tab. 3, two

photos one with 10 and second with 10 visualized instruc-

tions will make up a source code file with 20 instructions.

N- is user-defined.

1 x N (Scalable) - This option, regardless of image

size, transfers the whole source code to a single image file

as shown in Tab. 4. The image is sent through a scaling filter

to achieve the uniform input size before being fed into the

neural network. The definition of N is the number of instruc-

tions in one source of code.

Tab. 3. 1 x N fixed.

RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 307

Tab. 4. 1 x N scalable.

Tab. 5. N x N scalable.

Tab. 6. N x N fixed.

N x N (Scalable) - The size of N is calculated so that

all instructions fit in the image and there are the least number

of unused fields. Thus, we calculate N as the square root of

the total number of source code instructions rounded up to

an integer. Thus, if we have a source code of size 20 instruc-

tions, we have calculated N to be 5. Thus, the resulting im-

age will be 5x5 as shown in Tab. 5. The image will then be

filtered to a final unite resolution before entering the neural

network. N is defined as square root rounded up to integer.

N x N (Fixed) - The width and height of the source

code picture are fixed. For illustration we decided on a size

of 4x4 for testing. This means that a single image has 16

pixels and can therefore include 16 instructions. Then two

pictures containing a source code with 20 instructions will

be generated as shown in Tab. 6. N is user-defined.

4.4 Image Resize Tool (Interpolation)

In order to avoid any potential loss of pixels, a tool

from the Cv2 library in the Python environment is utilized

for image resizing. This technique is also known as interpo-

lation. The extra pixels in the new image are computed via

interpolation. We use the Inter Cubic method. Inter cubic

does bicubic interpolation across a neighborhood of 4 x 4

pixels [18]. We use interpolation, only in the scalable

format. The fixed format is not rescaled. Python code for

interpolation is shown in Fig. 9.

4.5 CNN Training Setup

Four sets of codes were developed to assist in the se-

lection of the most appropriate image format. The first set,

designated as "clear," lacks an intended order of instructions.

In contrast, each signature in the remaining three sets is pre-

cisely one. These sets will remain constant throughout the

duration of the research. The complete set is presented in

Tab. 7.

We will select an existing convolutional neural net-

work model and adapt it to our needs. Our initial focus is on

establishing an appropriate image format (NxN / 1xN – Scal-

able/Fixed). This involves the conversion of a program into

machine code and subsequently into an image. Even with

a highly optimized model, it would not perform well with

Fig. 9. Python code for image interpolation.

Code

group
Shortcut

Number of

instructions

in one code

Number of

codes

Signature

length

Clear Clear 300 1000 0

Signature 0 S_0 300 4000 100

Signature 1 S_1 300 4000 100

Signature 2 S_2 300 4000 100

Tab. 7. Complete dataset.

308 M. ADAMEC, M. TURCANIK, COMPARATIVE ANALYSIS OF INPUT IMAGE CHARACTERISTICS IN CNN-BASED SIGNATURE …

Fig. 10. Topology of the modified CNN.

unsuitable inputs. After conducting research, we decided to

adopt the modified ResNet50 model as our choice following

up on previous research [17].

The ResNet architecture adheres to two key design ten-

ets. Initially, there are the same number of filters in each

layer regardless of the output feature map's size. Second,

even though the size of the feature map is cut in half, it con-

tains twice as many filters to maintain the time complexity

of each layer [19].

The original Resnet50 model is modified as shown in

Fig. 10. We duplicated first convolution and max pooling

layers. Also before fully connected layers we inserted two

more layers named Convolution6. In summary we added 7

more layers. After training original and modified ResNet50

on our data set, we consider that our modified CNN achieves

better classification results than the original ResNet-50 ar-

chitecture.

Tab. 8 presents the training options for training a mod-

ified CNN model. These options define the parameters and

settings that govern the training process and influence the

model's learning behavior. Training options are set as given

in Tab. 8.

Image format and option selection will undertake

a comparative analysis of the aforementioned alternatives,

Solver

Solver: Stochastic gradient descent with

momentum

Initial learn rate: 0.01

Basic

Validation frequency: 50

Max epochs: 30

Minimal batch size: 128

Shuffle: Every epoch

Drop factor: 0.1

Momentum: 0.9

Training data: 80%

Validation data: 20%

Tab. 8. Modified CNN training options.

with a particular focus on the selection between the NxN and

1xN formats. In addition to accuracy, a crucial component

that will be observed is the computational complexity re-

flected by the training time. The subsequent section will

delve deeper into the selection between scalable and fixed

formats, evaluating the potential drawbacks of both

methods.

5. Image Format and Option Selection

The initial decision is to select one of two formats:

NxN or 1xN. Subsequently, the selected format is then fur-

ther refined by choosing between Scalable and Fixed option.

The decision will be based on the time spent training and

accuracy. In the context of time consuming hypotheses, it

can be posited that a reduction in time will result in a corre-

sponding decrease in the computational intensity of the pro-

cess. Similarly, in the context of accuracy hypotheses, it can

be proposed that an increase in accuracy will lead to a supe-

rior outcome.

Time consuming hypotheses are:

 H0-NxN is less time consuming.

([NxN fixed elapsed time + NxN scalable elapsed

time]) < ([1xN fixed elapsed time + 1xN scalable

elapsed time]).

 H1-1xN is less time consuming.

([1xN fixed elapsed time + 1xN scalable elapsed

time]) < ([NxN fixed elapsed time + NxN scalable

elapsed time]).

 H2- NxN and 1xN are comparatively time consuming

([NxN fixed elapsed time + NxN scalable elapsed

time]) ≈ ([1xN fixed elapsed time + 1xN scalable

elapsed time]).

Accuracy hypotheses are:

 H0-[Format (NxN/1xN)] Fixed option is more

accurate.

([Format] fixed accuracy) < ([Format] scalable

accuracy).

 H1-[Format] Scalable option is more accurate.

([Format] fixed accuracy) > ([Format] scalable

accuracy).

 H2-[Format] Scalable and [Format] Fixed options are

comparatively accurate.

([Format] fixed accuracy) ≈ ([Format] scalable

accuracy).

We built a homogeneous computing environment for

training. Such that, the analysis of time consumption was

unaffected by any background processes. By homogeneous

computing environment we mean that all experiments had

the same hardware capacities. No other processes or appli-

cations degraded the performance of the devices on which

the capability test was run during testing. Table 9 shows the

RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 309

number of samples selected from the total dataset. The tested

formats are as follows:

NxN fixed - option can discover known signatures

quickly and efficiently. A notable drawback is the possibility

that, similar to the 1xN fixed, the signature may be split into

two images during the classification of the program's source

code. Convolutional neural network won't be able to classify

source codes properly.

1xN Fixed - Making an image from source code as

a line of pixels is the simplest method. As a result, we pre-

vent splitting the potential bit sequence into a separate row

of pixels, which can occur with NxN types. The drawback

of this strategy against NxN is the wider image, which in-

creases processing complexity. Since the signature can be

split into two images because of the fixed width and is there-

fore hidden, there may be an issue with the classification of

the images.

NxN Scalable - One of the finest possibilities looks to

be NxN scalable. And the reason for that is that each code

always generates a single image. This means that, unlike

with the fixed option, there can never be a situation where

the signature is split into many images. The drawback of re-

ducing the image resolution is that the signature loses its in-

dividuality.

1xN Scalable - The benefit of the last choice, 1xN scal-

able as well as 1xN fixed, is that the signature is not divided

into many lines of pixels. Another benefit of the scalable op-

tion is that it always produces a single image during classi-

fication, ensuring that the signature will remain intact.

5.1 NxN vs 1xN format (Time Consuming

Hypothesis)

The modified CNN model was able to accurately clas-

sify 100% of the photos in scalable resolutions, just like it

would in fixed resolution. All four possibilities have demon-

strated their ability to accurately recognize signatures.

Although training the model multiple times is a key

component of the decision-making process in the following

section, we only chose to proceed with the NxN Fixed and

NxN Scalable options due to their much shorter training du-

rations than the 1xN resolutions. According to Tab. 10 the

Train/Validate Dataset

Code

Number of

instructions in

one code

Number of

codes

Signature

length

Clear 300 1500 0

Signature 0 300 1500 100

Signature 1 300 1500 100

Signature 2 300 1500 100

Total number train/val set: 6000

Test Dataset

Clear 300 25 0

Signature 0 300 15 100

Signature 1 300 20 100

Signature 2 300 40 100

Total number test set: 100

Tab. 9. Train/Validate/Test set I.

Image

format

Format

option
Accuracy

Elapsed

time

Total time (per

format)

NxN

Scalable 100% 601 min.

1199 minutes

Fixed 100% 598 min.

1xN
Scalable 100% 3403 min.

6704 minutes
Fixed 100% 3301 min.

Tab. 10. NxN vs 1xN format.

null hypothesis (H0) was confirmed, while the alternative

hypotheses (H1 and H2) were rejected. This indicates that

NxN is a more time-efficient approach, with a reduced com-

putational complexity. This is due to the fact that the sum of

NxN training times is 1,199 minutes, whereas the sum of

1xN training times is equal to 6,704 minutes.

5.2 NxN Scalable vs. NxN Fixed (Accuracy

Hypothesis)

The number of source codes was reduced in order to

accelerate the training time required to determine whether a

scalable or fixed option would be more beneficial. The set

of images used in this experiment is displayed in Tab. 11.

The training set and validation set are known for 80% and

20% of the total number of images, the test set consists of

100 images correspondingly, according to the table.

The training of neural networks will be conducted in

three rounds, with a total of six instances. Due to the insuf-

ficient resolution of the image, the number of images in the

fixed option will increase with each instance where the res-

olution is inadequate for displaying the entirety of the code

instructions. The discrepancy in image count is illustrated in

Tab. 12.

Train/Validate Dataset

Code

Number of

instructions in

one code

Number of

codes

Signature

length

Clear 300 1500 0

Signature 0 300 1500 100

Signature 1 300 1500 100

Signature 2 300 1500 100

Total number train/val set: 6000

Test Dataset

Clear 300 25 0

Signature 0 300 25 100

Signature 1 300 25 100

Signature 2 300 25 100

Total number test set: 100

Tab. 11. Train/Validate/Test set II.

N.
NxN image

format

Instruction

count

Final size after

rescaling

Image

count

1
Fixed 300 16x16 12000

Scalable 300 16x16 6000

2
Fixed 300 14x14 12000

Scalable 300 14x14 6000

3
Fixed 300 9x9 24000

Scalable 300 9x9 6000

Tab. 12. Image count.

310 M. ADAMEC, M. TURCANIK, COMPARATIVE ANALYSIS OF INPUT IMAGE CHARACTERISTICS IN CNN-BASED SIGNATURE …

The reason why the total number of images in the fixed

image format is the same in the first and second rounds is

that at a resolution of 16x16 we cover 256 instructions and

to display the entire code (300 instructions) we need 2

images. This is twice the number of images compared to the

scalable format. Similarly, round 2, where the resolution is

14x14, will cover 196 instructions. We will also need 2

images per code (300 instructions). So round one and round

two are the same in number of images but different in reso-

lution. The third round already has a resolution of 9x9, so it

covers 81 instructions. This means that we need 4 images to

display 300 instructions, which is four times as much for the

fixed version as for the scalable version.

Table 13 presents a comparison of individual options

against the appropriate 18x18 format. We consider this for-

mat appropriate only for this experiment because we can dis-

play all the instructions in one image without changing the

image's size or needing to divide it into multiple images.

Once all six neural networks were properly trained, the

test set was created. And the key reason for this is to prevent

mistakenly using the test set during training while handling

a lot of images. There are 100 images in the test set. One

quarter for each class, which is 25 images per class. The

number of instructions in a single code and the length of the

signature match those of the training set.

Notwithstanding the 75% loss of pixels, Scalable Op-

tion was able to correctly classify 97% of the images. As

illustrated in Tab. 14 results corroborate Hypothesis 1, indi-

cating that Scalable Option is more accurate.

Table 15 provides a comparison of different methods

used for signature processing. Each method is evaluated

based on its advantages and disadvantages, highlighting

their key characteristics.

By understanding the advantages and disadvantages of

each method, researchers and practitioners can make in-

formed decisions about the most suitable approach for sig-

nature processing based on their specific requirements and

priorities.

Image

format
Image size

Percentual

image count

growth

Instruction

loss (Pixel loss)

Fixed

16x16 100% 0%

14x14 100% 0%

9x9 400% 0%

Scalable

16x16 0% 20.9%

14x14 0% 60.5%

9x9 0% 75%

Tab. 13. Image properties.

Image

format
Size

Classified/

Absolute
Accuracy

Scalable

16x16 100/100 100%

14x14 100/100 100%

9x9 97/100 97%

Fixed

16x16 100/100 100%

14x14 27/100 27%

9x9 8/100 8%

Tab. 14. NxN vs 1xN accuracy.

Method Advantages Disadvantages

NxN Fixed Fast training process.

Signature may split

into multiple images.

Signature may be

divided into multiple

pixel rows.

1xN Fixed

Signature won’t be

divided into multiple

rows.

Lengthy training

process.

Signature may split

into multiple images.

NxN Scalable

Fast training process.

Signature will not be

split into multiple

images.

Resizing may affect

signature

individuality.

1xN Scalable

Signature won’t be

divided into multiple

rows.

Signature will not be

split into multiple

images.

Lengthy training

process.

Resizing may affect

signature

individuality.

Tab. 15. Summary.

6. Results

Initially, a comparison was conducted between the

NxN and 1xN formats, from which it was determined that

the NxN format was more suitable according to Tab. 10. It

should be noted that the kernels in the 1xN options were not

modified to 1D. Nevertheless, this did not impact the results,

as CNN was still able to classify 100% of the images in

accordance with Tab. 10. The NxN format is, on average,

five times as fast as 1xN. Consequently, we proceeded with

the NxN format exclusively and explored the Scalable and

Fixed options in conjunction with it.

Despite a 75% reduction in pixel data, the Scalable Op-

tion demonstrated impressive resilience, achieving a 97%

classification accuracy rate. As demonstrated in Tab. 14,

these results confirm that the Scalable Option provides su-

perior accuracy, even with significantly reduced visual in-

formation. This outcome suggests that the Scalable Option

effectively preserves critical features needed for accurate

classification, making it a highly efficient approach for im-

age-based malware detection.

Future convolutional neural network signature recog-

nition applications would benefit much from implementing

the NxN format with scalable option. Although using only

25% of the pixels in the 9x9 format as opposed to the 18x18

version, we were still able to properly identify 97% of the

signatures.

7. Conclusion

CNN´s have proven themselves in a variety of security-

related applications. CNN´s have also been successfully used

in other security domains that do not have an obvious image-

based component. By treating executables as images, re-

searchers have been able to leverage the strengths of CNNs

for malware detection, classification, and analysis. CNNs

are successfully applied to a combination of static and dy-

namic features [20]. In this reasearch CNN created by autors

RADIOENGINEERING, VOL. 34, NO. 2, JUNE 2025 311

Who
Image

format

Data

preprocessing
Model Accuracy Dataset

[21] not stated
Converted into

opcode
ResNet 50 91.6 %

Public binary

(Benign/

Malware)

[22] not stated
Word to

vector
Custom 97.1%

Public binary

(Benign/

Malware)

[23] not stated

Feature

extraction

from existing

list of features

CNN-

LSTM
99%

Public binary

(Benign/

Malware)

Our

work

Scalable

NxN

Machine code

instructions

Our

modified

CNN

97%

Pseudorando

m generated

classes.

Tab. 16. Overall summary.

was used which has better results than topologies presented

in the introduction of the paper.

A comparison of the different methods can be seen in

Tab. 16. It is important to note the different datasets and

their difficulty of detection. Freely available datasets may

have truncated signatures which are easier to visualize in the

code.

By testing different image formats, we have proven

that the most suitable format in the malware detection prob-

lem is the NxN scalable resolution. This is because of the

speed and accuracy compared to the other tested formats.

We first examined which of the 1xN or NxN options is

the more suitable adept. After evaluation, we clearly proved

that the scalable option is the most suitable image generation

method for such an application. From the beginning, the

scalable NxN format appeared to be the best and most opti-

mal format. Which we proved at the end of the work

(Tab. 15).

One of the biggest advantages of the scalable format is

that we needed 25% of the original number of pixels for

a 97% classification success rate. We can use this feature in

real applications because the samples can be of different

sizes. Another important fact is that we solved the problem

of the CNN input layer, which is fixed for each trained

model.

In our future work, our emphasis will be on the proper

preprocessing of programs and determining the most suita-

ble approach for obtaining machine instructions. We are

considering the utilization of Ghidra in headless mode to

convert a significant volume of real malware samples into

machine language. This converted machine language da-

tasets will serve as the basis for generating images in our

future research.

References

[1] SIKORSKI, M., HONIG, A. Practical Malware Analysis: The

Hands-On Guide to Dissecting Malicious Software.1st ed. USA: No

Starch Press, 2012. ISBN: 978-1593272906

[2] HENG, Y., SONG, D. Automatic Malware Analysis: An Emulator

Based Approach. New York (USA): Springer, 2013. ISBN: 978-

1461455226

[3] KUMAR, S., JANET, B., NEELAKANTAN, S. IMCNN:

Intelligent Malware Classification using Deep Convolution Neural

Networks as Transfer learning and ensemble learning in honeypot

enabled organizational network. Computer Communications, 2024,

vol. 216, p. 16–33. DOI: 10.1016/j.comcom.2023.12.036

[4] XUE, L., ZHU, T. Hybrid resampling and weighted majority voting

for multi-class anomaly detection on imbalanced malware and

network traffic data. Engineering Applications of Artificial

Intelligence, 2024, vol. 128, p. 1–19. DOI:

10.1016/j.engappai.2023.107568

[5] LIU, J., ZHAO, Y., FENG, Y., et al. SeMalBERT: Semantic-based

malware detection with bidirectional encoder representations from

transformers. Journal of Information Security and Applications,

2024, vol. 80, p. 1–12. DOI: 10.1016/j.jisa.2023.103690

[6] MEHRBAN, A., AHADIAN, P., Malware Detection in IOT

Systems Using Machine Learning Techniques. 12 p. [Online]

Available at: https://arxiv.org/pdf/2312.17683, 2024. DOI:

10.48550/arxiv.2312.17683

[7] NASSER, A. R., HASSAN, A. M., HUMAIDI, A. J. DL-AMDet:

Deep learning-based malware detector for android. Intelligent

Systems with Applications, 2024, vol. 21, p. 1–10. DOI:

10.1016/j.iswa.2023.200318

[8] QUERTIER, T., BARUÉ, G., Use of Multi-CNNs for Section

Analysis in Static Malware Detection. 10 p. [Online] Available at:

https://arxiv.org/pdf/2402.04102, 2024. DOI:

10.48550/arXiv.2402.04102

[9] MONNAPPA, K. A. Learning Malware Analysis: Explore the

Concepts, Tools, and Techniques to Analyze and Investigate

Windows Malware. Packt Publishing, 2018. ISBN: 978-

1788392501

[10] AFIANIAN, A., NIKSEFAT, S., N., SADEGHIYAN, B., et al.

Malware dynamic analysis evasion techniques: A survey. ACM

Computing Surveys, 2019, vol. 52, no. 6, p. 1–28. DOI:

10.1145/3365001

[11] VIDYARTHI, D., KUMAR, C. R. S., RAKSHIT, S., et al. Static

malware analysis to identify ransomware properties. International

Journal of Computer Science Issues, 2019, vol. 16, no. 3, p. 10–17.

DOI: 10.5281/zenodo.3252963

[12] OKTAVIANTO, D., MUHARDIANTO, I. Cuckoo Malware

Analysis. Packt Pub Ltd, 2013. ISBN: 978-1782169239

[13] ZHANG, S., WU, J., ZHANG, M., et al. Dynamic malware analysis

based on API sequence semantic fusion. Applied Sciences, 2023,

vol. 13, no. 11, p. 1–16. DOI: 10.3390/app13116526

[14] TAHIR, R. A study on malware and malware detection techniques.

International Journal of Education and Management Engineering,

Pakistan, 2018, vol. 8, no. 2, p. 20–30. DOI:

10.5815/ijeme.2018.02.03

[15] JAWAD, A. R., KHAIRONI, Y. S., AMMAR, K. A. N/A and

signature analysis for malwares detection and removal. Indian

Journal of Science and Technology, 2019, vol. 12, no. 25, p. 1–7.

DOI: 10.17485/ijst/2019/v12i25/146005

[16] HOSSAIN FARUK, M. J., SHAHRIAR, H., VALERO, M., et al.

Malware detection and prevention using artificial intelligence

techniques. In 2021 IEEE International Conference on Big Data

(Big Data). Orlando (FL, USA), 2021, p. 5369–5377. DOI:

10.1109/BigData52589.2021.9671434

[17] TURCANIK, M., ADAMEC, M. Malware signatures detection with

neural networks. In 2022 New Trends in Signal Processing (NTSP).

Liptovsky Mikulas (Slovakia), 2022, p. 1–8. DOI:

10.23919/NTSP54843.2022.9920380

[18] ROSEBROCK, D. A. Practical Python and OpenCV: An

Introductory, Example Driven Guide to Image Processing and

Computer Vision. PyImageSearch, 2016.

312 M. ADAMEC, M. TURCANIK, COMPARATIVE ANALYSIS OF INPUT IMAGE CHARACTERISTICS IN CNN-BASED SIGNATURE …

[19] ROSEBROCK, D. A. Deep Learning for Computer Vision with

Python. PyImageSearch, 2017.

[20] STAMP, M., ALAZAB, M., SHALAGINOV, A. Malware Analysis

Using Artificial Intelligence and Deep Learning. 1st ed. Springer

International, 2021. ISBN: 978-3030625818

[21] ABDELKHALKI, J. E., AHMED, M. B., ABDELHAKIM, B. A.

Image malware detection using deep learning. International Journal

of Communication Networks and Information Security, 2020,

vol. 12, no. 2, p. 180–189. DOI: 10.17762/ijcnis.v12i2.4600

[22] BAKHSHINEJAD, N., HAMZEH, A. Parallel-CNN network for

malware detection. IET Information Security, 2020, vol. 14, no. 2,

p. 210–219. DOI: 10.1049/iet-ifs.2019.0159

[23] AKHTAR, M. S., FENG, T. Detection of malware by deep learning

as CNN-LSTM machine learning techniques in real time. Symmetry,

2022, vol. 14, no. 11, p. 2308–2321. DOI: 10.3390/sym14112308

About the Authors …

Matej ADAMEC was born in Žiar nad Hronom, Slovakia.

He received his master´s degree from the Armed Forces

Academy of Gen. M.R. Štefánik in 2021. His research inter-

ests include forensic analysis and programming.

Michal TURCANIK is an Associate Professor at the De-

partment of Informatics, Armed Forces Academy of general

Milan Rastislav Štefánik in Liptovský Mikuláš. He has been

teaching different courses for more than 20 years. He is

an IST Panel Member of the NATO–STO organization for

the Slovak Republic. His scientific research is focusing on

reconfigurable logic, artificial intelligence, and computer

networks.

