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Abstract. Deep learning-based remote sensing image
compression methods show great potential, but traditional
convolutional networks mainly focus on local feature extrac-
tion and show obvious limitations in dynamic feature learn-
ing and global context modeling. Remote sensing images
contain multiscale local features and global low-frequency
information, which are challenging to extract and fuse ef-
ficiently. To address this, we propose a Feature Dynamic
Enhancement and Global Collaboration Guidance Network
(FDEGCNet). First, we propose an Omni-Dimensional At-
tention Model (ODAM), which dynamically captures the key
salient features in the image content by adaptively adjust-
ing the feature extraction strategy to enhance the model’s
sensitivity to key information. Second, a Hyperprior Ef-
ficient Attention Model (HEAM) is designed to combine
multi-directional convolution and pooling operations to ef-
ficiently capture cross-dimensional contextual information
and facilitate the interaction and fusion of multi-scale fea-
tures. Finally, the Multi-Kernel Convolutional Attention
Model (MCAM) integrates global branching to extract fre-
quency domain context and enhance local feature repre-
sentation through multi-scale convolutions. The experi-
mental results show that FDEGCNet achieves significant
improvement and maintains low computational complex-
ity regarding image quality evaluation metrics (PSNR, MS-
SSIM, LPIPS, and VIFp) on the three datasets compared
to the advanced compression models. Code is available at
https://github.com/shiboGu12/FDEGCNet
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1. Introduction
Remote sensing images can reflect a wealth of informa-

tion about features, such as surface types, vegetation cover,

water bodies, buildings, and so on. Therefore, remote sens-
ing images are widely used in many fields [1], [2] such as
earth science, geological exploration, environmental moni-
toring, agriculture, urban planning, and management. With
the upgrading of platforms such as satellites, airplanes, and
drones, along with the widespread use of high-resolution
sensors [3], the volume and complexity of remotely sensed
imagery continue to rise. The exponential growth in data vol-
ume may lead to serious transmission and storage challenges
for remote sensing satellites and users. Consequently, the
development of effective compression techniques for remote
sensing images is of paramount importance. Compared with
natural images, remote sensing images are affected by imag-
ing angles, atmospheric conditions, lighting conditions, and
other factors. Remote sensing images are characterized by
rich feature information, delicate texture details, and a mix-
ture of high-frequency and low-frequency features, which
makes it difficult for traditional image compression methods
to effectively compress remote sensing images [4].

Recent advancements in traditional remote sensing im-
age compression methods have yielded notable research
outcomes. For instance, Báscones et al. [5] have pro-
posed a method that integrates Principal Component Analysis
(PCA) with JPEG2000 [6] to compress hyperspectral image
data. This underscores the pressing need to develop efficient
remote sensing image compression networks. This demand
has led to the emergence of more advanced networks, such as
WebP [7] and BPG [8], which play a crucial role in the effi-
cient storage and transmission of image data. However, these
standards exhibit some notable limitations [9], [10]. First,
due to the block-based hybrid coding approach, the encoding
and decoding processes need to be processed block by block,
which is prone to produce undesirable block effects or ring-
ing artifacts in the decoded image. Second, these methods
rely on complex module dependencies, which complicates
the optimization of the overall algorithm. The resolution of
remote sensing images continues to increase. The demand
for diversified applications is growing. As a result, devel-
oping more advanced compression techniques has become
increasingly important.
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In the field of image compression, there has been a no-
table shift in focus towards learnable compression mod-
els [11–13]. Within the domain of deep learning-based
image compression, prominent frameworks include Autoen-
coders (AE) [14] and Variational Autoencoders (VAE) [15].
These frameworks encompass two symmetrical data process-
ing stages: compression and reconstruction. Since VAE
has continuous mapping spatial capability compared to AE,
it helps to reconstruct the image with a smooth transition.
Therefore, VAE based framework has a more powerful im-
age reconstruction capability. Therefore, Ballé et al. [11]
develop a VAE-based image compression model that utilizes
a hyperprior structure to capture spatial dependencies in the
latent representation. In addition, the side information is
used to estimate the variance of the parameter distributions.
For more accurate compression modeling, Cheng et al. [10]
proposed a Gaussian mixture model that uses a discretized
Gaussian mixture likelihood to parameterize the distribution
of potential codes, thus improving the accuracy of entropy
model predictions. In order to improve the nonlocal model-
ing capability, Liu et al. [14] proposed a parallel structure of
transformer and convolutional neural network (CNN). They
cleverly fused the two methods of CNN and transformer,
combining the local modeling ability of CNN and the non-
local modeling ability of the transformer, in order to improve
the overall performance of the image compression model.

In recent years, learnable compression models have
also been introduced into remote sensing image compres-
sion due to their powerful feature extraction and represen-
tation capabilities. Although these techniques perform well
in processing natural images, remote sensing images still
face greater challenges in terms of compression effective-
ness due to factors such as complex texture and spatial in-
formation [4]. Therefore, how to improve the reconstruc-
tion quality of remote sensing images by considering various
factors comprehensively has become the focus of current re-
search. Tang et al. [16] proposed an end-to-end image com-
pression method combining graph attention and asymmetric
CNN. The method overcomes the over-reliance of traditional
CNNs in processing local features to a certain extent and pro-
motes effective interaction between information. Although
the CNN-based approach excels in extracting spatial informa-
tion and local contextual features, it extracts latent features by
applying convolutional filters in the local receptive domain.
This approach leads the network to focus too much on the
local details of the image, thus reducing the attention to the
global visual features. To overcome this limitation, Zhang
et al. [17] introduced a global anchored stripe self-attention
mechanism. It captures global, local, and inter-channel infor-
mation dependencies and enhances feature extraction during
encoding and decoding with multi-scale modules. In ad-
dition, Pan et al. [18] developed a Coupled Compression
Generation Network, which enhances information integrity
and texture resolution through separate content and texture
branches. In the generation stage, a Multi-Dimensional
Residual Attention Module focuses on critical task informa-
tion, while the texture branch employs a GAN-based training

strategy. This strategy integrates the Enhanced Perception-
Guided Refinement Stage and a Multi-Scale Fusion Discrim-
inator to improve texture quality. Zhang et al. [19] proposed
a low-complexity transformer-CNN hybrid model (LTCHM),
which focuses on integrating non-local and channel informa-
tion in remote sensing images by combining the dynamic
attention model and the hyper-prior hybrid attention model.

Although existing remote sensing image compression
algorithms have made significant progress in terms of rate-
distortion performance, they still face several challenges
when compressing high-resolution remote sensing images.
First, the high resolution of remote sensing images results in
low spatial continuity between neighboring pixels. It makes
the compression efficiency suffer because the reduced con-
tinuity between pixels increases data redundancy. Second,
remote sensing images contain multi-scale features such as
vehicles, buildings, roads, and other landforms, which makes
it more complicated to capture both small- and large-scale
features simultaneously and efficiently. In addition, remotely
sensed images usually contain a large amount of global infor-
mation, such as terrain features and landform details, which
are crucial for achieving efficient image compression and ac-
curate image reconstruction. If the global information is not
captured efficiently, the reconstructed image may lose critical
information, resulting in blurring and detail loss.

To address these challenges, this paper proposes a novel
remote sensing image compression model called FDEGCNet.
It introduces three innovative approaches to overcome the
limitations of existing methods. The specific contributions
of this paper are summarized as follows:

• To overcome the static nature of traditional convolu-
tional kernels and their limitations in feature learning,
ODAM is proposed in this paper. By introducing Omni-
Dimensional Dynamic Convolution (ODConv) [20] and
deeply integrating it with the attention mechanism. As
a result, ODAM makes the convolution kernel adaptive
in multiple dimensions (including the number of convo-
lution kernels, spatial dimensions, input channels, and
output channels) according to different features of the
input data. This mechanism enables the convolution
strategy to be adaptively adjusted according to the spe-
cific features of the input data. Thus, it can capture
the subtle texture and edge variations in remote sensing
images more accurately.

• To address the challenge of multi-scale feature charac-
terization in remote sensing images, this paper proposes
the HEAM module. The module utilizes parallel con-
volutional branches and adaptive pooling methods to
capture global spatial contextual information of an im-
age in multiple spatial dimensions (height, width, and
channel). HEAM can effectively enhance the fusion of
local and global features by learning the feature weights
across the space to improve the spatial feature represen-
tation. In addition, the HEAM module provides more
accurate probabilistic guidance for the encoding and de-
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coding process and realizes the effective coordination
of global features.

• To effectively process local details and global structure
information in remote sensing images, MCAM is pro-
posed in this paper. This module can flexibly capture
feature information at different scales by introducing
a multi-scale convolution kernel, which enhances the
model’s ability to perceive multi-level features in im-
ages. Meanwhile, MCAM converts global features to
the frequency domain for processing by transforming
between the spatial domain and the frequency domain
using the Fourier transform to fully utilize the global
representation capability of the frequency domain. For
local features, weighting operations are performed in
the spatial domain to highlight the detailed informa-
tion. This synergistic mechanism between spatial and
frequency domains effectively combines the advantages
of both, thus significantly improving the image com-
pression performance.

• The experimental results demonstrate that the pro-
posed network outperforms traditional image compres-
sion methods and advanced deep learning-based im-
age compression methods on the DOTA, UC-Merced,
and NWPU-RESISC45 datasets. The superior com-
pression performance of the proposed network is evi-
dent in terms of Peak Signal-to-Noise Ratio (PSNR),
Multi-Scale Structural Similarity (MS-SSIM), Learned
Perceptual Image Patch Similarity (LPIPS), and Visual
Information Fidelity in the Pixel Domain (VIFp).

The structure of this study is organized as follows:
Section 2 provides a thorough overview of the FDEGC-
Net compression framework, including its fundamental
components—ODAM, HEAM, and MCAM. Section 3 dis-
cusses the experimental setup and the datasets utilized, fol-
lowed by extensive experiments comparing and analyzing
the proposed FDEGCNet with other compression methods.
Section 4 concludes the study and discusses potential future
research directions.

2. Proposed Method

2.1 Overall Framework
The proposed remote sensing image compression

framework is illustrated in Fig. 1. The overall network ar-
chitecture consists of a main encoder (𝑔a) and decoder (𝑔s),
a hyperprior encoder (ℎa) and decoder (ℎs), a MCAM, and
an entropy model. Q represents the quantizer, AE represents
the arithmetic encoder, and AD represents the arithmetic
decoder. The main encoder and decoder are constructed
using the ODAM and residual blocks. The hyperprior en-
coder and decoder network include the HEAM and a down-
sampling module. Assuming an input image of dimension
𝑋 ∈ R𝐶×𝐻×𝑊 , it is transformed into a latent representa-

tion y through the encoder, which consists of residual blocks
and ODAM. The latent representation y is quantized using
the quantization operation Q to obtain �̂�, and the arithmetic
encoder is then applied to �̂� to generate the compressed bit-
stream. During quantization, truncation errors (i.e., 𝑦−𝑄(𝑦))
are introduced, leading to certain reconstruction distortions
in the decoded image. To emulate the quantization process
during training and circumvent non-differentiable operations,
uniform noise U (−0.5, 0.5) is incorporated to approximate
quantization [21]. In the prediction phase, the potential rep-
resentation y is then discretized using a rounding function
to obtain a discrete representation for actual image compres-
sion and reconstruction. In decompression, the reconstructed
image is obtained with �̂� and decoder 𝑔a network.

To encode �̂� with fewer bits, entropy models are com-
monly used to parameterize the distribution of �̂�. After de-
coding �̂�, this study utilizes the Gaussian Mixture Entropy
Model proposed by Cheng et al. [10] to estimate 𝑝 ( �̂� | �̂�) ( �̂� | �̂�),
expressed as:

𝑝 ( �̂� | �̂�) ( �̂� | �̂�) ∼
∑︁

𝐾
𝑘=1𝑤

(𝑘 )N
(
𝜇 (𝑘 ) , 𝜎2(𝑘 )

)
. (1)

The entropy model is further expressed as:

𝑝 ( �̂� | �̂�) ( �̂� | �̂�) =
∏
𝑖

𝑝 ( �̂� | �̂�) ( �̂�𝑖 | �̂�) ,
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where 𝑖 represents the position of the feature map, 𝑘 is the in-
dex of the mixture components, and each component is char-
acterized by three parameters: weight (𝑤 (𝑘 )

𝑖
), mean (𝜇 (𝑘 )

𝑖
),

and variance (𝜎2(𝑘 )
𝑖

).

The core objective of an image compression network
is to achieve an optimal balance on the rate-distortion curve.
This balance is regulated by a Lagrange multiplier 𝜆, which
trades off between compression distortion and the desired bit
rate. This relationship can be expressed as:

L = R ( �̂�) + R ( �̂�) + 𝜆 · 𝐷 (𝑥, �̂�)
= E

[
− log2

(
𝑝 �̂� | �̂� ( �̂� | �̂�)

) ]
+ E

[
− log2

(
𝑝 �̂� |𝜑 ( �̂� |𝜑)

) ]
+ 𝜆 · 𝐷 (𝑥, �̂�)

(3)

where R ( �̂�) and R ( �̂�) represent the bit rates of �̂� and �̂�,
respectively. 𝐷 (𝑥, �̂�) denotes the distortion between the
original and reconstructed images, typically calculated using
MSE or MS-SSIM. Since no prior information is available,
a non-parametric fully factorized density model 𝜑 is used for
entropy estimation:

𝑝 ( �̂� |𝜑) ( �̂� |𝜑) =
∏
𝑖

(
𝑃𝑧𝑖 |𝜑 (𝜑) ∗ U (−0.5, 0.5)

)
( �̂�𝑖) (4)

where 𝑧𝑖 represents the 𝑖-th element of 𝑧, and 𝑖 denotes the
position of each element.
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Fig. 1. The overall compression framework. The Entropy Model is the Gaussian Mixture Entropy Model. ODAM denotes the Omni-Dimensional
Attention Model. HEAM denotes the Hyperprior Efficient Attention Model. MCAM denotes the Multi-Kernel Attention Model. 𝐾
denotes the kernel size, where 𝐾1 denotes a kernel size of 1 and 𝐾3 denotes a kernel size of 3. 𝑆 denotes the stride size, where 𝑆1 denotes
a stride of 1 and 𝑆2 denotes a stride of 2.

2.2 Omni-Dimensional Attention Model
To enable the main encoder and decoder to dynamically

focus on the critical regions of an image, this study proposes
the ODAM, whose core component is the ODConv [20]. The
structure of ODConv is shown in Fig. 2(a). Assuming the
input feature map is 𝑋 ∈ R𝐶×𝐻×𝑊 , the model first applies
adaptive average pooling to the input to reduce its dimen-
sions and extract global feature information across channels.
Subsequently, the input is passed through a 1 × 1 convolu-
tion layer to generate a more accurate channel representation,
effectively compressing the information and reducing com-
putational complexity. Next, BatchNorm normalization and
ReLU activation are performed to achieve dimensionality re-
duction and nonlinear mapping, which in turn generates four
different attention weights. Specifically:

• Convolutional Kernel Attention Scalar (CKAS): The
input features are adaptively average pooled and 1 × 1
convolved to generate the attention weights of the con-
volution kernels. This weight is used to dynamically
adjust the weights of the convolution kernel combina-
tions, allowing the model to flexibly select different
convolution kernels and enhance the diversity of fea-
ture extraction.

• Output Channel Attention Scalar (OCAS): The number
of channels is mapped to the number of output channels
after the input features have been adaptively average
pooled and 1 × 1 convolved. The attention weights of
the filters are restricted to the range [0, 1] by a Sigmoid
activation function, which dynamically adjusts the con-
tribution of each convolution kernel channel to enhance
the attention to the important filters.

• Input Channel Attention Scalar (ICAS): The input fea-
tures are subjected to adaptive mean pooling to com-
press the spatial dimension (𝐻,𝑊) to (1, 1) to obtain
global information at the channel level. This global in-
formation is dimensionalized and activated by a 1 × 1
convolutional layer, and the number of channels is re-
covered by another 1 × 1 convolutional layer. Finally,
the channel weights are mapped to the [0, 1] interval by
a Sigmoid activation function in order to multiply them
channel-by-channel with the input feature map to en-
hance or suppress the importance of different channels.

• Spatial Dimension Attention Scalar (SDAS): The in-
put features are first processed through adaptive aver-
age pooling and a 1 × 1 convolution to generate spatial
attention weights, which are applied to each spatial lo-
cation of the input features. This mechanism allows the
model to weigh important regions in the spatial dimen-
sions, enabling it to focus on more meaningful spatial
positions.

In the model, the ICAS is first multiplied channel-by-
channel with the input feature map to enhance or suppress
the importance of different channel features. Then, the SDAS
and CKAS are applied to the spatial dimension of the convo-
lution kernel and the number of convolution kernel groups,
respectively, to generate the dynamic convolution kernel. Fi-
nally, the dynamic convolution kernel is applied to the input
feature maps and the convolution operation is performed to
obtain the output feature maps, which are then multiplied
with the OCAS to further weight the output channels. The
operation of ODConv can be defined as follows:
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Fig. 2. (a) Omni-Dimensional Dynamic Convolution (ODConv): 𝐶, 𝐾 , and 𝑆 represent the number of channels, the number of convolutional
kernels, and the stride size, respectively. 𝐶 = 192 when 𝜆 = {128, 256, 512} and 𝐶 = 256 when 𝜆 = {1024, 2048, 4096}. 𝐾1 |𝑆1
indicates that the kernel size is 1 and the stride is 1. GAP refers to Global Average Pooling. (b) Omni-Dimensional Dynamic Attention
Model (ODAM): 𝐶, 𝐾 , and 𝑆 represent the number of channels, the number of convolutional kernels, and the stride size, respectively.
𝐾1 |𝑆1 indicates that the kernel size is 1 and the stride is 1.

𝑦 =
(
𝛼𝑤1 ⊙ 𝛼 𝑓 1 ⊙ 𝛼𝑐1 ⊙ 𝛼𝑠1 ⊙𝑊1 + · · · + 𝛼𝑤𝑛

⊙𝛼 𝑓 𝑛 ⊙ 𝛼𝑐𝑛 ⊙ 𝛼𝑠𝑛 ⊙𝑊𝑛

)
∗ 𝑥

(5)

where ⊙ denotes the multiplication operation and * denotes
the convolution operation. 𝑊𝑖 represents the convolutional
kernel, while 𝛼𝑤𝑖 , 𝛼 𝑓 𝑖 , 𝛼𝑐𝑖 , and 𝛼𝑠𝑖 represent the four scalar
attention weights of the convolutional kernel: CKAS, OCAS,
ICAS, and SDAS, respectively. 𝑥 is the input feature, and 𝑦

is the output feature.

Attention mechanisms have been extensively applied in
the domain of image compression [10, 13, 17, 22] and have
been demonstrated to enhance compression performance and
improve rate-distortion efficiency. Building upon this foun-
dation, we propose an ODAM based on ODConv. As shown
in Fig. 2(b), ODConv is used to construct residual blocks,
which process input features during the convolution opera-
tion and add the processed results to the original input through
residual connections. This mechanism effectively prevents
information loss and gradient vanishing problems. Unlike
traditional static convolutions, ODConv generates four types
of attention: input channel attention, output channel atten-
tion, spatial attention, and convolutional kernel attention.
These dynamically generated scalars are used to adjust the

weights of the convolution kernels, allowing the convolution
operation to adaptively select different convolution kernels
based on the characteristics of the input data, thus flexibly
enhancing the focus on important features and effectively
suppressing unimportant features.

2.3 Hyperprior Efficient Attention Model
Convolutional Neural Networks have demonstrated pro-

ficiency in capturing local features due to their localized re-
ceptive fields. However, their limitations become apparent
when addressing tasks that require global information model-
ing [23]. To enhance global feature modeling and effectively
suppress information redundancy, this paper proposes a novel
HEAM, which is deeply integrated with the hyperprior en-
coder and decoder framework to improve the accuracy of
feature extraction and representation. As shown in Fig. 3, as-
suming the input feature map is 𝑋 ∈ R𝐶×𝐻×𝑊 , the features
𝑋 are divided into 𝐺 sub-feature groups through a group-
ing operation, enabling more efficient feature processing and
global information modeling. This process can be expressed
as follows:

𝑔𝑟𝑜𝑢𝑝𝑥 = reshape (𝑋 (𝐵 · 𝐺,𝐶/𝐺, 𝐻,𝑊)) . (6)
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Fig. 3. HEAM Network Structure. Groups denote the grouping
operation. 𝐶, 𝐾 , and 𝑆 represent the number of chan-
nels, the number of convolutional kernels, and the stride
size, respectively. 𝐶 = 192 when 𝜆 = {128, 256, 512}
and 𝐶 = 256 when 𝜆 = {1024, 2048, 4096}. 𝐾3 |𝑆1
indicates that the kernel size is 3 and the stride is 1.
Reweight refers to the dynamic spatial reweighting within
each group.

Next, through three independent sub-networks, the fea-
ture map is first subjected to pooling operations along the
height and width dimensions to calculate the average val-
ues for each row (𝑥ℎ) and each column (𝑥𝑤), respectively.
Then, the cross-channel information interaction between two
parallel paths in a 1 × 1 branch is realized by aggregating
the two-channel attentions through a simple multiplication
operation, thus fusing the feature information in the height
and width directions. Finally, the concatenated features are
split back into height features 𝑥ℎ and width features 𝑥𝑤 . The
specific process can be expressed by the following formulas:

𝑥ℎ = poolℎ (𝑔𝑟𝑜𝑢𝑝𝑥) ,
𝑥𝑤 = pool𝑤 (𝑔𝑟𝑜𝑢𝑝𝑥) ,
ℎ𝑤 = conv1×1 (cat ( [𝑥ℎ, 𝑥𝑤])) ,

𝑥ℎ, 𝑥𝑤 = split (ℎ𝑤, [𝐻,𝑊]) .

(7)

The activation results of 𝑥ℎ and 𝑥𝑤 are multiplied and
then group normalized to obtain the normalized feature 𝑥1.
In 3 × 3 branching, 3 × 3 convolution is applied to capture
the local cross-channel interactions, extend the feature space,
and further extract the local features to obtain an enhanced
feature representation.

𝑥11 = reshape(softmax (𝐺𝑎𝑝 (𝑥1)) ,
𝑥12 = reshape (𝑥2) ,
𝑥21 = reshape(softmax (𝐺𝑎𝑝 (𝑥2)) ,
𝑥22 = reshape (𝑥1) ,

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = (matmul (𝑥11, 𝑥12) + matmul (𝑥21, 𝑥22)) ,
𝑜𝑢𝑡 𝑝𝑢𝑡 = reshape (𝑔𝑟𝑜𝑢𝑝𝑥 · sigmoid (𝑤𝑒𝑖𝑔ℎ𝑡𝑠))

(8)

where 𝑥11 represents the dependency and weights between
the computed channels, 𝑥12 represents the number of chan-
nels and spatial dimensions of the feature map after convo-
lution. 𝑥21 represents the Softmax weights of the feature
map obtained after convolution. 𝑥22 represents the number
of channels and spatial dimensions of the processed feature
map. The weights are the final weights. The output repre-
sents the output of the network.

2.4 Multi-Kernel Convolutional Attention
Model

Cui et al. [24] proposed an Omni-Kernel Model (OKM)
that effectively captures the multi-scale receptive fields re-
quired for image restoration through dual-domain processing
and large kernel-scale depthwise convolution modulation.
On this basis, we design a MCAM, which combines multi-
kernel convolution with a Dual-Domain Attention Module
(DDAM), to optimize the modulation effect of the global
representation, so as to achieve an efficient fusion of global
and local information. To reduce the computational cost
of convolution operations, the MCAM is deployed between
the hyperprior encoder and decoder, where the feature map
has the smallest dimensions within the compression network.
The architecture of MCAM is shown in Fig. 4(a). Given the
input feature 𝑋 ∈ R𝐶×𝐻×𝑊 , it first undergoes channel trans-
formation via a 1 × 1 convolution and is then fed into the
global branch, mixed-kernel branch, and local branch.

In the global branch, the features are fed into the DDAM,
whose structure is shown in Fig. 4(b). The global features
𝑋Global are first subjected to global average pooling and 1× 1
convolution to generate channel attention to extract global
information and guide frequency domain weighting. Then
the global features 𝑋Global are switched to the frequency do-
main by Fourier transform to obtain the frequency domain
features. The frequency domain features are weighted using
channel attention to enhance important frequency domain
components and suppress redundant features. Then, return
to the spatial domain by inverse Fourier transform to extract
the spatial context information and get the spatial attention
weights 𝑋Global1. This process can be expressed as:
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Fig. 4. (a) Multi-Kernel Convolutional Attention Model (MCAM): DWC refers to Depth-wise Convolution. 𝐶, 𝐾 , and 𝑆 represent the
number of channels, convolutional kernels, and stride size, respectively. 𝐶 = 192 when 𝜆 = {128, 256, 512} and 𝐶 = 256 when
𝜆 = {1024, 2048, 4096}. 𝐾1 |𝑆1 indicates a kernel size of 1 and a stride of 1. (b) Dual-Domain Attention Module (DDAM): FFT and
IFFT denote Fast Fourier Transform and its Inverse Fourier Transform, respectively. GAP represents Global Average Pooling.

𝑋Global1 = F −1 (F (𝑋Global)
⊗conv1×1 (GAP (𝑋Global)))

(9)

where F and F −1 denote the Fast Fourier Transform and
its Inverse Fourier Transform. GAP denotes Global Average
Pooling. ⊗ denotes element-by-element multiplication.

Next, the spatial attention is generated using a 1 × 1
convolution on 𝑋Global1 to localize important regions in
space. The results of the frequency domain enhancement
are weighted point by point according to the spatial atten-
tion 𝑋Global1 weights to generate new features 𝑋Global2. The
spatial features 𝑋1 and the frequency domain features 𝑋2 are
then extracted and fused through element-wise multiplica-
tion, resulting in features with enhanced global perception
capabilities. This process can be expressed using the follow-
ing formula:

𝑋Global2 = 𝑋Global1 ⊗ conv1×1 (GAP (𝑋Global1)) ,
𝑋1 = conv1×1 (𝑋Global2) ,
𝑋2 = F (conv1×1 (𝑋Global2)) ,

𝑋out = F −1 (𝑋1 ⊗ 𝑋2)

(10)

where 𝑋out denotes the final output of the DDAM model.
In the mixed kernel branch, 1 × 3 convolution, 3 × 1

convolution, and 3 × 3 convolution are used to capture local
features in the vertical direction, local features in the hor-
izontal direction, and feature information in a larger range
of receptive fields, respectively, so as to make up for the
limitations of a single receptive field and to fully integrate
information at different scales.

In the local branch, a 1 × 1 convolution is applied to
maintain consistency between the input and output channels,
facilitating feature integration. Finally, the convolution re-
sults from all branches are summed with the input features
and the spatial enhancement results to produce the final out-
put features.

3. Experiments
In this section, the proposed FDEGCNet method was

extensively evaluated on multiple standard remote sens-
ing datasets. These datasets include DOTA [25], UC-
Merced [26], and NWPU-RESISC45 [27], all of which
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contain rich geospatial information, providing an effective
benchmark for assessing the performance of the FDEGCNet
method. This section compares the results of FDEGCNet
with several state-of-the-art traditional image compression
methods and deep learning-based image compression meth-
ods. The conventional image compression methods include
JPEG2000 [6], WebP [7], JPEG XL [28] and AVIF [29],
while the deep learning-based methods include those pro-
posed by Cheng et al. (2020) [10], Zou et al. (2022) [22],
Jiang et al. (2023) [30], Liu et al. (2023) [31], Liu et
al. (2024) [32], and Zhang et al. (2024) [19]. The fi-
nal experimental results show that the proposed FDEGCNet
achieves significant performance improvements in all four
metrics (PSNR, MS-SSIM, LPIPS, and VIFP) when com-
pared with existing deep learning-based and traditional meth-
ods. These results highlight the superiority of FDEGCNet in
remote sensing image compression tasks.

3.1 Datasets
In the experiments, three remote sensing image datasets

were used to train and evaluate the proposed model:
DOTA [25], UC-Merced [26], and NWPU-RESISC45 [27].
The DOTA dataset contains 2806 images with pixel resolu-
tions ranging from 800 × 800 to 4000 × 4000. It includes
objects of various scales, orientations, and shapes, ensur-
ing diversity and adaptability in the experiments. The UC-
Merced dataset comprises 2100 images across 21 categories
of remote sensing scenes, with each image having a resolu-
tion of 256×256. The NWPU-RESISC45 dataset consists of
45 different categories of remote sensing images, including
airports, deserts, sports fields, forests, and harbors, with 700
images in each category. From each category, 70 images
were randomly selected to form the dataset, with each image
having a resolution of 256 × 256. During the experiments,
each dataset was randomly divided into a ratio of 8:1:1 for
training, validation, and testing. The images were cropped
into 256×256 blocks and then processed for subsequent tasks.

3.2 Training Details
To ensure the fairness of the experiments, all models

were implemented using Python and the PyTorch framework
and developed with the publicly available CompressAI [33]
image compression library. All training processes were con-
ducted on an NVIDIA GeForce RTX 3090 GPU. The frame-
work version used was PyTorch 2.1.1, and the CUDA version
was 11.8. The compression level of the model was controlled
by adjusting the Lagrange multiplier 𝜆, with its values set to
{128, 256, 512, 1024, 2048, 4096}. Six models were trained
to correspond to these 𝜆 values. Low-bitrate models corre-
sponded to 𝜆 values of 128, 256, and 512, with the number of
channels set to 192, while high-bitrate models corresponded
to𝜆 values of 1024, 2048, and 4096, with the number of chan-
nels set to 256. During training, the Adam optimizer [34]
was used with an initial learning rate of 1×10−4. After 100k
iterations, the learning rate was reduced to 1×10−5 and main-
tained until the end of training. The batch size was set to 8.

3.3 Traditional Codecs
We use the official FFmpeg library obtained from the

official website https://ffmpeg.org/ to compress and decom-
press JPEG2000, WebP, and AVIF. The compression quality
is set to {60, 50, 40, 30, 20, 10} for JPEG2000, {1, 10, 20,
30, 40, 50} for WebP, and {60, 55, 50, 45, 35, 30} for AVIF.

For JPEG XL, we use the libjxl library obtained
from [28] with the default configuration. The compression
quality for JPEG XL is set to {5, 15, 25, 35, 45, 55}.

3.4 Evaluation Strategies
To evaluate the rate-distortion performance of the de-

signed compression model, four commonly used metrics
were adopted: PSNR, MS-SSIM, LPIPS, and VIFp. These
metrics provide a comprehensive assessment of image recon-
struction distortion.

• PSNR: PSNR is based on Mean Squared Error (MSE)
to compare the difference between the original image
and the compressed reconstructed image, reflecting the
degree of distortion. A higher PSNR value indicates
that the reconstructed image is closer to the original
image, signifying better quality. PSNR is expressed as:

PSNR
(
𝑋, 𝑋

)
=

1
𝐶

𝐶∑︁
𝑖=1

10 log10

(
max2 (

𝑋 𝑖
)

MSE𝑖

)
,

MSE
(
𝑋, 𝑋

)
= (1/𝐻 ×𝑊 × 𝐶) ∥𝑋 − 𝑋 ∥2

(11)

where max2 (
𝑋 𝑖

)
represents the square of the maximum

pixel value in the 𝑖-th band, and𝐶 represents the number
of bands.

• MS-SSIM: MS-SSIM is a metric used to measure the
similarity of images across multiple scales. By taking
the weighted average of image details at different reso-
lutions, it evaluates the differences between the original
image and the reconstructed image. The value ranges
from [0, 1], where a value closer to 1 indicates higher
similarity between the two images [35]. MS-SSIM is
expressed as:

MS-SSIM = −10 log10 (1 − 𝐷MS-SSIM) ,

𝐷MS-SSIM = 1 −
𝑀∏
𝑚=1

(
2𝜇𝑋𝜇𝑋 + 𝐶1

𝜇2
𝑋
+ 𝜇2

𝑋
+ 𝐶1

)𝛽𝑚
(

2𝜎
𝑋𝑋

+ 𝐶2

𝜎2
𝑋
+ 𝜎2

𝑋
+ 𝐶2

)𝛾𝑚 (12)

where 𝐷MS-SSIM is a normalized value with a range of
0−1. M represents different scales, 𝜇𝑋 and 𝜇

𝑋
represent

the mean of the original image and the reconstructed
image, 𝜎𝑋 and 𝜎

𝑋
represent the standard deviation be-

tween the original image and the reconstructed image,
𝜎
𝑋𝑋

represents the covariance between the original im-
age and the reconstructed image, 𝛽𝑚 and 𝛾𝑚 define the
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relative weighting of the two components, and 𝐶1 and
𝐶2 are constants introduced to avoid division by 0. Un-
der the same bit rate condition, the larger the value of
MS-SSlM, the better the quality of the reconstructed
image and the higher the similarity between the recon-
structed image and the original image.

• LPIPS: LPIPS is a metric used to measure the perceptual
differences between the original image and the recon-
structed image. Unlike PSNR and MS-SSIM, LPIPS
does not rely solely on pixel-wise comparisons. Instead,
it quantifies the perceptual similarity by calculating the
distance between the feature maps of the two images.
The value ranges from [0, 1], where a lower score in-
dicates that the original and reconstructed images are
perceptually very similar, while a higher score indicates
significant differences. The formula is expressed as:

LPIPS
(
𝑋, 𝑋

)
=

𝐿∑︁
𝑙=1

∥𝑤𝑙 ⊙
(
𝐹𝑙 (𝑋) − 𝐹𝑙

(
𝑋

))
∥2 (13)

where 𝑙 represents the network layer, 𝐹𝑙 denotes the
feature map at the 𝑙 layer, 𝑤𝑙 is the weight of the 𝑙 layer,
and ⊙ indicates element-wise multiplication.

• VIFP: VIFP is a metric used to measure the degree of
visual information retained in the reconstructed image
relative to the original image. It calculates the similarity
of visual information between the input image and the
reconstructed image using a channel model. The value
of VIFP ranges from 0 to 1, where a value closer to 1
indicates a higher retention of visual information in the
reconstructed image compared to the original image.

VIFP =

𝑁∏
𝑖=1

𝐼 r
𝑖

𝐼o
𝑖

,

𝐼𝑖 = −
∑︁
𝑥

𝑝 (𝑥) log (𝑝 (𝑥))
(14)

where 𝐼o
𝑖

is the amount of local information in block 𝑖 of
the original image, 𝐼r

𝑖
is the amount of local information

in block 𝑖 of the reconstructed image, and 𝑁 is the total
number of image blocks.

3.5 Rate-Distortion Performance
We selected ten state-of-the-art image compression

methods for comparison with FDEGCNet, including four tra-
ditional image compression methods and six deep learning-
based methods. Figures 5–7 show the rate-distortion perfor-
mance curves obtained with different compression methods
on the three datasets [25–27], respectively. It can be ob-
served that, regardless of high or low bitrates, deep learning-
based image compression methods significantly outperform
traditional methods across all evaluation metrics. Among the
four traditional image compression methods, AVIF has better
rate-distortion performance than JPEG XL [28], WebP, and
JPEG2000. Its performance advantage is mainly based on
the efficient compression capability of advanced AV1 codec

technology, which effectively removes the redundant infor-
mation in the image to achieve higher compression efficiency.

For deep learning-based image compression methods,
the method [32] obtains a better rate-distortion performance
by adaptively convolving different regions according to the
mask. However, on the DOTA dataset, the method [32]
rate-distortion performance performs poorly, indicating poor
robustness of the compression model. The method [10]
also achieves good performance due to its more reason-
able residual convolution structure and excellent entropy
model. In comparison, method [19]is more advantageous
mainly because it combines dynamic convolution and Hyper-
Prior hybrid attention model. The other comparison meth-
ods [22, 30, 31] based on deep learning have average perfor-
mance, mainly because they lack a strong attention mech-
anism and excellent rate-distortion optimization strategies.
However, the proposed FDEGCNet achieves the best per-
formance of this paper’s method compared to method [19],
and its advantage is especially evident in high bit rate condi-
tions. This is mainly attributed to the fact that FDEGCNet
improves the dynamic convolution by applying the atten-
tion mechanism to the four dimensions of the convolution
kernel, which can effectively enhance the image feature ex-
traction ability of the main encoder and decoder processes.
It also effectively handles multi-scale information through
the hyperprior model, and combines the Fourier transform
and inverse Fourier transform to simultaneously process the
high-frequency local features and low-frequency global infor-
mation of the image. It provides more accurate and compre-
hensive prior information for the main encoder and decoder
processes, and better realizes the global synergy between
global and local information.

To intuitively demonstrate the improvement achieved by
different compression methods, this study adopts PSNR-BPP
curves to calculate BD-Rate [36] and BD-PSNR as quanti-
tative evaluation metrics. Using JPEG2000 as the baseline
anchor point (with a BD-Rate of 0%), we compare the BD-
Rate and BD-PSNR results of our proposed method and other
methods [7, 10, 19, 22, 29–32] on three datasets. As shown
in Tab. 1, compared to JPEG2000, FDEGCNet achieves BD-
Rate improvements of 81.325%, 77.354%, and 44.173% on
the DOTA, UC-Merced, and NWPU-RESISC45 datasets, re-
spectively, with corresponding BD-PSNR gains of 5.64 dB,
5.745 dB, and 2.061 dB. Compared to the next-best method,
FDEGCNet achieves bit rate savings of 3.152%, 3.193%,
and 2.652%, with BD-PSNR improvements of 0.273 dB,
0.422 dB, and 0.186 dB, respectively.

To provide a more comprehensive evaluation of the pro-
posed compression method, cross-dataset testing was con-
ducted. The model was trained using the DOTA dataset and
tested on the UC-Merced and NWPU-RESISC45 datasets.
The compression performance results are shown in Figs. 8
and 9. The proposed model consistently achieves supe-
rior performance across all four metrics—PSNR, MS-SSIM,
LPIPS, and VIFP—which effectively demonstrates its strong
generalization capability.
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Fig. 5. Rate-distortion performance of different methods trained on the DOTA dataset: (a) Comparison of PSNR results; (b) Comparison of
MS-SSIM results; (c) Comparison of LPIPS results; and (d) Comparison of VIFP results.
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Fig. 6. Rate-distortion performance of different methods trained on the UC-Merced dataset: (a) Comparison of PSNR results; (b) Comparison of
MS-SSIM results; (c) Comparison of LPIPS results; and (d) Comparison of VIFP results.
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Fig. 7. Rate-distortion performance of different methods trained on the NWPU-RESISC45 dataset: (a) Comparison of PSNR results; (b) Com-
parison of MS-SSIM results; (c) Comparison of LPIPS results; and (d) Comparison of VIFP results.

Model DOTA UC-Merced NWPU-RESISC45
BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR

WebP [7] –32.843% 1.371 dB –39.253% 2.062 dB –9.158% 0.467 dB
JPEG XL [28] –47.033% 2.439 dB –33.937% 1.631 dB –8.113% 0.425 dB

AVIF [29] –55.261% 2.923 dB –45.991% 2.554 dB –22.469% 1.035 dB
Cheng2020 [10] –76.892% 5.196 dB –74.161% 5.268 dB –40.333% 2.232 dB
Zou2022 [22] –67.438% 3.639 dB –66.604% 4.048 dB –32.329% 1.777 dB
Jiang2023 [30] –74.542% 4.320 dB –61.870% 3.733 dB –29.251% 1.383 dB
Liu2023 [31] –78.173% 4.999 dB –73.464% 4.664 dB –33.029% 1.623 dB
Liu2024 [32] –70.789% 3.912 dB –69.543% 4.462 dB –34.830% 1.991 dB

Zhang2024 [19] –77.239% 5.367 dB –73.841% 5.323 dB –41.521% 2.415 dB
Ours –81.325% 5.640 dB –77.354% 5.745 dB –44.173% 2.601 dB

Tab. 1. Comparison of BD-rate and BD-PSNR for different methods across DOTA, UC-Merced, and NWPU-RESISC45 datasets.
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Fig. 8. Rate-distortion performance of different methods trained on the DOTA dataset and tested on the UC-Merced dataset: (a) Comparison of
PSNR results; (b) Comparison of MS-SSIM results; (c) Comparison of LPIPS results; and (d) Comparison of VIFP results.
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Fig. 9. Rate-distortion performance of different methods trained on the DOTA dataset and tested on the NWPU-RESISC45 dataset: (a) Compar-
ison of PSNR results; (b) Comparison of MS-SSIM results; (c) Comparison of LPIPS results; and (d) Comparison of VIFP results.
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3.6 Visualization
To verify the visual quality of reconstructed images

using FDEGCNet, one image was selected from each of the
DOTA, UC-Merced, and NWPU-RESISC45 datasets. These
images were reconstructed using different image compression
methods, and the local regions of the reconstructed images
were magnified for comparison. Figures 10–12 show the re-
construction results of FDEGCNet and ten other methods on
the three datasets, respectively. Figure 10 presents an exam-
ple of a resort area. By magnifying the regions of the sports
field, buildings, and trees in the upper right corner, the recon-
struction effects of different image compression methods are
compared. Among traditional compression methods, AVIF
exhibits significantly better rate-distortion performance than
JPEG2000, JPEG XL, and WebP. As shown in Fig. 10, in
the AVIF reconstructed image, the white lines on the sports
field are clearer, and the outlines and textures of the buildings
are more detailed, with natural and smooth color transitions.
In contrast, WebP is slightly inferior in detail performance,
especially in the area of white lines with high contrast, which
shows slight distortion. Images compressed with JPEG XL
have color gradients in large areas and slight blurring of the
image at the edges. As for JPEG2000, the detail of the image
is more blurred, especially the outline of the building is not
as clear as WebP and JPEG XL, and the loss of detail in some
areas is more obvious.

The excellent compression effect of AVIF is due to the
advanced AV1 encoding algorithm, which is able to effec-
tively retain the image details during the compression pro-
cess while maintaining a high compression ratio. The AV1
algorithm performs particularly well in the retention of high-
frequency details, sharp edges, and complex textures, espe-
cially in high-contrast areas, and is able to retain details and
reduce distortion much better than the traditional JPEG2000,
JPEG XL, and WebP methods. Compared to traditional
methods, deep learning-based image compression methods
achieve significant improvements in both rate-distortion per-
formance and visual quality. However, as shown in Fig. 10,
methods [10,19,22,30–32] exhibit some blurriness in the re-
constructed sports field region. Compared with method [19],
which delivers the best reconstruction among these methods,
the proposed method has less blurring, especially in complex
areas (e.g., building roofs and ballparks), where the details
remain clearer and the sharpness of the image is maintained
better. This shows that the proposed method is effective in
achieving dynamic enhancement of global detail features and
synergistically capturing global information, which results in
better visual quality of reconstructed images.

In the UC-Merced and NWPU-RESISC45 datasets,
a remote sensing image of a transportation hub was selected
for visualization experiments. The local regions of the im-
ages, such as highway white lines and building rooftops,
were magnified to provide an intuitive comparison of recon-
struction quality. Figures 11 and 12 show the reconstruc-
tion results of the original image, the proposed method, and
ten other comparison methods. The experimental results

demonstrate that the proposed method effectively captures
the multi-scale detail features and global structural informa-
tion of the images. Compared with other methods, the re-
constructed images produced by the proposed method exhibit
superior overall visual quality, with key texture details bet-
ter preserved. The results show minimal artifacts and noise
interference, presenting a more natural and clearer visual ef-
fect. As a result, the proposed method outperforms existing
approaches, achieving the best performance in terms of im-
age quality, with a noticeable improvement in both subjective
visual perception and objective evaluation metrics.

3.7 Ablation Study
To demonstrate the effectiveness of each component,

several ablation experiments were conducted. Figure 13
presents the rate-distortion performance results of the ab-
lation experiments on the DOTA dataset. The configurations
for the ablation experiments are as follows: 1) baseline: The
baseline network serves as the foundational model for the
ablation study. 2) baseline + ODAM: ODAM is integrated
into the primary encoder-decoder of the baseline model. 3)
baseline + MCAM: MCAM is added to the baseline model
after the hyperprior encoder and before the hyperprior de-
coder. 4) baseline + HEAM: HEAM is incorporated into the
hyperprior encoder-decoder module of the baseline model.
5) baseline + ODAM + MCAM + HEAM: This represents
the integration of ODAM, MCAM, and HEAM into the base-
line model. As shown in Fig. 13, the baseline model exhibits
the lowest rate-distortion performance. The performance
of baseline + ODAM outperforms the baseline at the same
bit rate. This indicates that the method enhances the image
features by dynamically adjusting the feature map weights us-
ing full-dimensional dynamic attention, which improves the
rate-distortion performance. Similarly, baseline + MCAM
performs significantly better than the baseline. This indicates
that multi-scale extraction of local information and the use of
frequency domain information to capture the global feature
distribution plays an important role. A further comparison
between baseline + HEAM and the baseline highlights the
critical role of preserving key information across channels
for reconstructing remote sensing images. At the same bit
rate, the proposed method achieves the best performance in
terms of PSNR, MS-SSIM, LPIPS, and VIFP, with its advan-
tages being even more pronounced at higher bit rates. This
shows that the method in this paper can efficiently integrate
ODAM, MCAM, and HEAM, and can realize information
collaboration for high-quality image reconstruction.

3.8 Convergence Analysis
To evaluate the efficiency of our method, we com-

pared the PSNR of all methods with respect to the Epochs,
and the results are shown in Fig. 14. The graph shows
that our method exhibits the best performance throughout
the training process, with a stable PSNR value of around
35.1 dB, which is significantly better than the other methods.
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Fig. 10. Visual comparison of reconstructed images by different methods on the DOTA dataset.

Fig. 11. Visual comparison of reconstructed images by different methods on the UC-Merced dataset.
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Fig. 12. Visual comparison of reconstructed images by different methods on the NWPU-RESISC45 dataset.
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Fig. 13. Ablation results of different methods on the DOTA dataset. (a) Comparison of PSNR results, (b) Comparison of MS-SSIM results, (c)
Comparison of LPIPS results, and (d) Comparison of VIFP results.
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Method Params FLOPs Times (s)
(M) (G) Encoding Decoding

Cheng2020 [10] 8.78 27.41 0.1656 0.1502
Zou2022 [22] 75.00 48.70 0.2835 0.2722
Jiang2023 [30] 116.48 82.36 0.3291 0.2843
Liu2023 [31] 75.90 116.78 0.1431 0.1522
Liu2024 [32] 91.17 190.55 0.0910 0.1010

Zhang2024 [19] 12.34 24.91 0.124 0.127
Ours 17.07 54.96 0.1991 0.1897

Tab. 2. Complexity comparison of various compression meth-
ods.

It validates the effectiveness of ODAM, HEAM, and
MCAM modules. In addition, our method demonstrates
faster convergence, especially in the early stage of train-
ing (0–100 epochs), where the PSNR value quickly im-
proves from 20 dB to more than 32 dB. After training to
500 epochs, its PSNR value stabilizes and fluctuates less,
indicating that the method has good stability during training.

Among other methods [10, 19, 22, 30–32], the
method [19] shows better reconstruction quality and conver-
gence ability, with a stable PSNR value of around 35 dB, sec-
ond only to our method. Its excellent performance may be due
to its low-complexity transformer-CNN architecture. The de-
sign of the architecture may make it easier to converge quickly
and maintain high stability in the early stages of training.

In contrast, the method [22] has the worst performance,
with a stable PSNR value of only around 32.6 dB. Too short
a training period (e.g., only 50 epochs) leads to underfit-
ting, e.g., at this point the PSNR value of method [10] is
only 25.5 dB, which is much lower than its final performance
(34.8 dB). Conversely, too long a training period (e.g., 600
epochs) may trigger overfitting, especially in methods such
as method [22], which manifests itself as a small decrease
in the PSNR value. Therefore, a reasonable choice of train-
ing period will ensure its efficient convergence capability.

3.9 Complexity Analysis
To compare the computational complexity and

Encoding-Decoding Times of different deep learning-based
compression methods, the models were evaluated on the test
set of the DOTA dataset using metrics such as Parameters,
FLOPs, Encoding Times, and Decoding Times. Since hard-
ware conditions and input image size can affect the Encoding-
Decoding Times, this study averages the time for all inputs
in Tab. 2 with a fixed image size of 3 × 256 × 256. The
complexity analysis results are shown in Tab. 2. Compared
with other methods, the number of parameters of the pro-
posed method is second only to Cheng2020 and Zhang2024.
This means that the model has fewer parameters and takes
up less storage space, which make it ideal for resource-
constrained environments. In terms of FLOPs, the num-
ber of parameters increases by 27.55G, 6.26G, and 4.73G
compared with Cheng2020, Zou2022, and Zhang2024, re-
spectively, but decreases significantly by 27.4G, 61.82G, and
135.59G compared with Jiang2023, Liu2023, and Liu2024,
respectively. This indicates that the proposed method has
moderate computational complexity, which helps to improve
the efficiency of the compression process and reduce the
consumption of computational resources. In terms of En-
coding and Decoding Times, the performance of the pro-
posed method is in the middle of all compared methods.
This is because the arrangement of weight calculation may
affect the speed of Encoding and Decoding, but it is still
within reasonable limits. These experiments demonstrate
that the proposed method achieves superior rate-distortion
performance with relatively low computational complexity.

4. Conclusion
This paper proposes a novel remote sensing image com-

pression network called the FDEGCNet. The ODAM dynam-
ically adjusts attention weights to direct the network’s focus
to key image regions. This design improves rate-distortion
performance. The HEAM enables multi-scale contextual
information extraction. It enhances spatial dependencies
in latent representations and improves prior modeling ca-
pabilities. Finally, the MCAM is proposed, which utilizes
strip depthwise convolutions and standard depthwise convo-
lutions to capture local information while employing dual-
domain attention mechanisms to modulate global represen-
tations. This enables the HEAM to capture local features and
global contextual features. It provides more precise prob-
ability distributions to the primary channel and achieves
global coordination. Through comparison, our proposed
method achieves the best performance across the DOTA,
UC-Merced, and NWPU-RESISC45 datasets, compared to
Cheng2020, Zou2022, Jiang2023, Liu2023, Liu2024, and
Zhang2024. Specifically, on the DOTA dataset at 0.65 bpp,
the PSNR of our method improves by 1.83%, 8.21%, 6.88%,
4.67%, 7.97%, and 1.60%, respectively. The results show
that the proposed method is highly generalizable and indi-
cate that the introduced modules can be easily integrated into
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other network models. In future work, the core modules
of FDEGCNet can also be integrated into other application
scenarios such as urban building detection. For example, in
urban building detection, effectively reducing the amount of
data while providing high-quality compressed images will
provide clearer input images to the detection model, which
in turn will improve the detection accuracy of urban build-
ing targets. In addition, we will explore how to realize the
adjustment of compression strategies according to different
scenes and resolutions. This can ensure the image quality
while saving bandwidth and storage space to a greater ex-
tent, so as to adapt to diversified application requirements.
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