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Abstract. Recently, unmanned aerial vehicles (UAVs) have
become more popular due to their ease of adaptability and
capability to carry out a variety of activities, including the
delivery of services, monitoring and surveillance in military
and civilian contexts. One of the most significant challenges
in UAV operation is ensuring maximum network lifetime and
management of their limited battery life. To solve these prob-
lems, we have proposed an effective routing algorithm that
finds the best route to minimize UAV routing time and extend
network lifetime. This is performed using the Ant Colony
Optimization with Local Search (ACO-LS) algorithm for data
collection from the clustered IoT network by UAV to ensure
maximum network lifetime. It solved the routing problem in
the minimum time in the presence of multiple charging sta-
tions and optimized the routing path. The simulation was
carried out using various performance metrics: network life-
time (NT), energy consumption (EC), number of alive nodes
(NAN), and packet delivery percentage (PDP). These param-
eters were compared with some existing algorithms such as
Ant Colony Optimization (ACO), Particle Swarm Optimiza-
tion (PSO), and Genetic Algorithm (GA) and found that our
proposed algorithm performs better in terms of higher NT,
less EC, more NAN, and higher PDP than the existing algo-
rithms ACO, PSO, and GA.

Keywords
Internet of Things (IoT), data collection (DC), un-
manned aerial vehicles (UAVs), ant colony optimization
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1. Introduction
The unmanned aerial vehicles (UAVs) are being widely

used because of their adaptability and capacity to carry out
a variety of activities in various fields such as agriculture,

transportation for delivery of services, environmental mon-
itoring, and surveillance in both military and civilian con-
texts [1–3]. The main significant challenges of UAV opera-
tions in internet of things (IoT) network are ensuring efficient
routing path for data collection, management of limited bat-
tery life of the UAV [4–7]. In order to address these issues,
multiple charging stations can be deployed in the operational
area to enable UAV to recharge their batteries during their
routing time. However, in the presence of multiple charging
stations introduces new routing challenges, such as determin-
ing which charging station to use in the network and when,
and also considering the UAV remaining battery life and
mission requirements [8–9]. Therefore, the design of an ef-
fective routing algorithm that can account for the presence
of multiple charging stations is essential for optimizing the
use of UAV in various applications. The routing of UAV in
the presence of numerous charging stations has gain impor-
tance in recent years [10–14]. The objective is to determine
the best route for a UAV to collect data and travel to several
charging stations to recharge its battery while taking into ac-
count a number of variables, including the charging stations
locations, the UAVs battery level, and the energy used during
routing [15], [16].

In article [17], a layered UAV swarm network architec-
ture is developed to address the issues of low latency service
needs and dynamic topology for efficient routing, and the
ideal number of UAVs is examined. The low latency and
data traffic flows that maximize the packet delivery ratio and
enhance route stability based on the predicted connection sta-
bility of UAVs and minimize the delay. In paper [18], extend
the lifetime of the WSN through energy harvesting and sensor
energy consumption. The primary goal is to minimize the en-
ergy consumption by sensor node and optimize the hovering
position and duration of the UAVs during data collection.

In [19], reducing the overall distance traveled by the
UAV while analyzing congestion where there are many charg-
ing stations. This problem may be resolved by using a multi-
head heterogeneous attention system in conjunction with
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a deep reinforcement learning based approach to develop
an automated route design strategy. In paper [20], mini-
mize the average delivery time to user by using an innovative
approach that uses the optimum deployment strategy. A sub-
optimal method is used while moving to the charging stations
one after the other so that every relocation causes an average
distance travelled. In paper [21], a novel MILP model is de-
veloped for a low cost design approach in order to handle the
UAV route and charging station scheduling for belt conveyor
monitoring. The MILP model depicts a difficult real world
issue for determining the right number of UAVs for tracking
the system, how to use charge stations and the optimal routes.

In article [22], two routing methods have been used: i)
intra-cluster and ii) inter-cluster. In the inter-cluster routing
the CH apply the ACO algorithm to identify the optimum
path to the BS. This minimizes the algorithmic latency and
offers a smoother operation by combining ACO with cluster-
ing. In [23], primary goal is to maximize the network life-
time by specifying link cost, remaining power, and necessary
transmission energy utilization link cost. A new pheromone
update operator was created to incorporate the use of en-
ergy and travels into the routing decision. In the article [24],
a novel ACO-based mobile sink path selection method is pro-
posed for WSN that reduces latency and maximizes network
lifespan. A proficient method is employed to identify a nearly
ideal combination of Rendezvous point (RP) and mobile sink
travel path in order to accomplish the intended goal.

In our article, we have proposed an effective routing
algorithm for data collection from the cluster heads (CHs) of
IoT nodes using a UAV with charging stations in the network.
The UAV acts as a mobile data collector that gathers informa-
tion from the CHs throughout the network. To determine the
optimal routing path, we employ an Ant Colony Optimiza-
tion with Local Search (ACO-LS) algorithm. This approach
creates a virtual ant colony that explores the search space
and updates pheromone trails based on the quality of the
solutions found. The algorithm takes into account the UAV
battery level and the locations of charging stations, thereby
identifying a path that minimizes travel distance while ensur-
ing that data is collected from the clustered IoT nodes within
the designated time window [25], [26]. To apply ACO-LS to
the UAV routing problem with multiple charging stations, the
problem is represented as a complete network with IoT nodes,
charging stations, base station, and connecting path between
these IoT nodes. The algorithm then selects the shortest path
based on both the pheromone levels and the distances to the
charging stations. By integrating dynamic programming into
the ACO framework, the ACO-LS algorithm also determines
the optimal charging strategy for the UAV, when and where
to charge to maximize its range and minimize travel time.
Overall, the ACO-LS algorithm is an effective optimization
algorithm for solving the UAV routing problem in scenar-
ios with multiple charging stations, as it provides an optimal
solution that balances the trade-off between the distance trav-
eled and the UAV charging time during data collection from
the cluster heads of IoT nodes in the network.

The major contributions of our proposed article are
summarized as follows: This article describes a clustered dis-
tributed network model for optimizing IoT networks. In this
model, IoT nodes are randomly deployed and then grouped
into different clusters. The cluster heads (CH) of the clusters
are selected based on the residual energy of the IoT nodes,
distance, and degree of connectivity between nodes. This
clustering strategy significantly enhances energy efficiency,
reduces communication overhead, and extends the network’s
lifetime. The network design presents an advanced ACO-
LS based routing algorithm that guides UAV in collecting
data efficiently and locating charging stations within the net-
work. The hybrid ant colony optimization (ACO) with local
search (LS) technique ensures UAV follow the most opti-
mized routes, balancing energy consumption and reducing
the time to travel across the network.

The main motive of our work is to minimize the UAV
routing time and to enhance the lifetime of the network by
ensuring that all data are collected throughout the network us-
ing ACO-LS, an effective routing algorithm. This approach
results in an optimized routing path that maintains opera-
tional efficiency. The proposed algorithm ACO-LS is com-
pared to existing algorithms like ACO, PSO, and GA with
performance metrics- network lifetime, energy consumption,
number of alive nodes, and packet delivery percentage. The
proposed method demonstrate superior performance in multi-
ple aspects and significantly improves the network’s lifetime,
consumes less energy, increases the number of active nodes,
and ensures a higher packet delivery rate. These remarkable
enhancements make the method not only more energy effi-
cient but also more reliable and scalable, offering a robust
solution for large-scale IoT applications that relay on UAV
for data collection.

The paper is organized as follows: In Sec. 2, proposed
network model is explained in detail. In Sec. 3, proposed
algorithm of this work is presented. The simulation results
are discussed in Sec. 4. Finally, Section 5 concludes the work
and presents future works.

2. Proposed Network Model
The network model aims to determine the most efficient

routing strategy for the UAV while allowing for the presence
of multiple charging stations. The objective is to extend the
network lifetime and maximize the number of completed
tasks while minimizing the total path of UAV travel within
a given time window. To achieve this, the UAV must visit
all required locations, effectively manage its battery capacity,
and strategically use the available charging stations along the
optimal routes. The step by step strategy of our proposed
work is presented in the flow chart diagram in Fig. 1.

We have considered a distributed network model based
on clusters, where the clustered distribution implies that IoT
nodes are deployed randomly and then grouped together in
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distinct clusters. For partitioning the complete network, we
have used the K-Means clustering algorithm presented in Al-
gorithm 1 [27]. The list of parameters used is presented in
Tab. 1.
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Fig. 1. Flow chart diagram of proposed model for UAV routing.

Algorithm 1. K-Means clustering algorithm.

1: Input: Dataset D = {𝑥1, 𝑥2, . . . , 𝑥𝑛 }, where each 𝑥𝑖 ∈ R𝑑 ; number
of clusters 𝐾 ; initial cluster heads {CH1, CH2, . . . , CH𝐾 } selected
from the IoT nodes.

2: Repeat until convergence:
a. Assignment step: For each data point 𝑥𝑖 ∈ D, assign it to the

nearest cluster:
𝑆 𝑗 = {𝑥𝑖 ∈ D | ∥𝑥𝑖 − CH 𝑗 ∥2 ≤ ∥𝑥𝑖 − CH𝑘 ∥2,

∀𝑘 ∈ {1, 2, . . . , 𝐾 }}, for 𝑗 = 1, 2, . . . , 𝐾.

b. Update step: For each cluster 𝑗 = 1, 2, . . . , 𝐾 , update the
cluster head as follows:

CH 𝑗 ←
1
|𝑆 𝑗 |

∑︁
𝑥𝑖 ∈𝑆 𝑗

𝑥𝑖 .

3: Termination: Stop when the cluster head change negligibly between
iterations.

4: Output: The 𝐾 clusters {𝑆1, 𝑆2, . . . , 𝑆𝐾 } with their corresponding
cluster heads {CH1, CH2, . . . , CH𝐾 }.

The proposed network model for UAV routing to collect
data from the cluster head (CH) of the clustered IoT nodes in
the presence of multiple charging stations is shown in Fig. 2.
We assumed total N number of IoT nodes, a UAV to collect
data from the CH of the IoT nodes, the base station (BS) in
the presence of C number of charging stations in the network.
In clustered network model UAV will visit the CH for data
collection by choosing the shortest route, for that it requires
an efficient routing algorithm. When multiple requests come
from IoT nodes with a time window for data collection, this
algorithm tries to fulfill all requests within the time window.
While the UAV travels to the IoT nodes, the battery of the
UAV may be low, so it is required to recharge the battery of
the UAV before traveling to the next CH. The UAV travels to
the charging station for recharging, then it travels to the IoT
nodes to collect data before the deadline.

In this article, we have explained how UAV should be
routed in the network to collect data from the IoT nodes when
there are several recharging stations available. The data or
packets are delivered using a fleet of UAV with fixed flying
ranges and uniform loading capacity. The UAV may need to
stop at charging stations in order to resume their journey’s
since as they follow their planned itineraries, their batter-
ies run out proportionally to the distance travelled. In the
context of routing UAV with multiple charging stations, it is
typically assumed that each UAV departs from BS or central
depot with a fully charged battery and returns to the same
depot after completing it’s tasks.

Parameter Definition of the parameter
𝑛 Total number of data points
𝑑 Number of features (dimensions) in each data point
𝐾 Number of clusters
𝑥𝑖 A data point in the dataset, where 𝑖 ∈ {1, . . . , 𝑛}
CH𝑖 The cluster heads of clusters 𝑖, where 𝑖 ∈ {1, . . . , 𝐾 }
𝑆 𝑗 The set of data points assigned to cluster 𝑗

∥𝑥𝑖 − CH𝑖 ∥2
Euclidean distance squared between a node and
a cluster head

Tab. 1. Definition of parameters used in K-Means clustering al-
gorithm.

Base Station:  

IOT Node: 

Cluster Head: 

UAV:

Moving Path: 

Recharging station: 

Fig. 2. Block diagram of proposed network model for routing of
UAV.
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We considered the complete network as 𝐺 = ⟨𝑈,𝑉⟩,
where G is the collection of IoT nodes and connecting paths,
𝑈 = 1, . . . , 𝑁 denotes the set of IoT nodes, and C represent
the set of charging stations. Let 𝑈 ′ be the set of IoT nodes
with𝑈 ′ = 𝑈 ∪𝐶. It appears that you are referring to a math-
ematical notation for a set of IoT nodes, where 0 and 𝑁 + 1
represent the starting and ending depots i.e BS respectively.
In this notation,𝑈0 is the set of nodes that includes the start-
ing depot 0 but not the ending depot (𝑁+1), i.e𝑈 ′0 = 𝑈

′∪{0}
and 𝑈 ′

𝑁+1 = 𝑈
′ ∪ {𝑁 + 1} is the set of nodes that includes

both the starting depot 0 and the ending depot (𝑁 + 1). To be
more precise,𝑈0 can be defined as𝑈0 = 1, 2, . . . , 𝑁 where N
is the total number of nodes excluding the depots. It seems
like you have provided a context for a problem on a complete
network with 𝑁 +1 nodes, where distance between the nodes
and travel time associated with it. In this network, there are
𝑁 + 1nodes represented by numbers 1 to 𝑁 + 1. Each path in
the network is represented by an ordered pair (𝑖, 𝑗), where i
and j are distinct nodes in the network.

Where V is the set of connecting path between the nodes
in the network, and each path is associated with a distance
𝐷𝑖, 𝑗 and a travel time𝑇𝑖, 𝑗 . The traveling path consumes a cer-
tain amount of the battery at a constant rate of r. A positive
demand 𝑑𝑖 , a service time 𝑠𝑖 , and a temporal window [𝑡𝑖 , 𝑡 𝑗 ]
for each path 𝑖 ∈ 𝑉 . A positive demand 𝑘𝑖 , a service time 𝑇𝑖 ,
and a time frame [𝑡𝑖 , 𝑡 𝑗 ] are present for each path 𝑖 ∈ 𝑉 , and
the UAV has batteries with E capacity. The decision variables
i, 𝑢𝑖 , and 𝑣𝑖 represent the IoT node i, service beginning time,
and remaining charge level, respectively. If the path (𝑖, 𝑗) is
traversed, the binary choice variable Υ𝑖 𝑗 takes 1, otherwise it
takes 0. The notation used in the network model formulation
with definition is shown in Tab. 2.

The mathematical representation of the proposed model
is formulated as a mixed integer linear program as follows:

min
∏

= 𝑝f
∑︁
𝑗∈𝑁 ′

Υ0 𝑗 + 𝑝t
∑︁
𝑖, 𝑗∈𝑁 ′

Υ𝑖 𝑗𝑇𝑖 𝑗

+𝑝r
∑︁
𝑖∈𝐶

𝑘𝑖Θ𝑖 + 𝑝w
∑︁
𝑖∈𝑁

𝛼𝑖 ,

(1)

∑︁
𝑗∈𝑁 ′

𝑛+1 ,𝑖≠ 𝑗

Υ𝑖 𝑗 = 1,∀𝑖 ∈ 𝑁, (2)

∑︁
𝑗∈𝑁 ′

𝑛+1 ,𝑖≠ 𝑗

Υ𝑖 𝑗 ≤ 1,∀𝑖 ∈ 𝐶, (3)

∑︁
𝑖∈𝑁 ′0 ,𝑖≠ 𝑗

Υ𝑖 𝑗 =
∑︁

𝑖∈𝑁 ′
𝑛+1 ,𝑖≠ 𝑗

Υ 𝑗𝑖 ,∀ 𝑗 ∈ 𝑁
′
. (4)

The objective of Equation (1) is to minimize the dis-
tance traveled. Equation (2) ensures that each node in the
network is connected to exactly one other, except for the fa-
cilities. Equation (3) limits the number of connections that
can be made to facilities to at most one. Equation (4) ensures
the flow is conserved at each node in the network.

Notation Definition of the notations
𝑎𝑖 Demand of IoT nodes 𝑖
𝑏𝑖 Nodes service period 𝑖
ℎ𝑖 Service at vertex’s earliest possible time 𝑖
𝑘𝑖 Recent beginning of service at vertex 𝑖
𝑃f UAV’s fixed cost
𝑃t Cost of travel for each individual
𝑃r Recharging cost for each unit
𝑃w Waiting expense per unit
𝑤𝑖 Time when the vertex’s service began 𝑖
𝛼𝑖 UAV’s vertex based waiting time 𝑖 ∈ 𝑉
𝛽𝑖 UAV’s remaining battery charge level node 𝑖
𝜃𝑖 In partial recharge, the amount of recharging
𝜂𝑖 Remaining charge level after UAV departs 𝑖
𝑥𝑖 UAV battery state after departing C station
𝛼 Pheromone trail exponent
𝛽 Heuristic information exponent
Ψbest Current best solution
𝜁best Best feasible solution of ACO-LS algorithm
𝛾Curr Current solution found after of LS algorithm
𝛾best Best solution found after of LS algorithm

Tab. 2. Notations used in the network model formulation.

𝜔𝑖 + (𝑇𝑖 𝑗 + 𝑏𝑖)Υ𝑖 𝑗 − 𝐾0 (1 − Υ𝑖 𝑗 ) ≤ 𝑤 𝑗 ,
∀𝑖 ∈ 𝑁 ′0,∀ 𝑗 ∈ 𝑁

′

𝑛+1, 𝑖 ≠ 𝑗 ,
(5)

𝜔𝑖 + 𝑇𝑖 𝑗Υ𝑖 𝑗 +𝑄𝑙𝑖𝑘𝑖 − (𝑘0 +𝑄𝑙) (1 − Υ𝑖 𝑗 ) ≤ 𝑤 𝑗 ,
∀𝑖 ∈ 𝐶,∀ 𝑗 ∈ 𝑁 ′𝑛+1, 𝑖 ≠ 𝑗 ,

(6)

ℎ 𝑗 ≤ 𝑤 𝑗 ≤ 𝐾 𝑗 ,∀ 𝑗 ∈ 𝑁
′

𝑛+1, (7)

0 ≤ 𝛽 𝑗 ≤ 𝛽𝑖 − 𝑎𝑖Υ𝑖 𝑗 + 𝐿 (1 − Υ𝑖 𝑗 ),
∀𝑖 ∈ 𝑁 ′0,∀ 𝑗 ∈ 𝑁

′

𝑛+1, 𝑖 ≠ 𝑗 .
(8)

0 ≤ 𝛽0 ≤ 𝐿 (9)

Equation (5) ensures that the transit time from node i
to j plus any setup time at i does not exceed the latest al-
lowable arrival time at node j. Equation (6) ensures that the
transit time from facility i to j plus any production time in
facility i does not exceed the latest allowable arrival time at
node j, while also taking into account the capacity of facility
i. Equation (7) enforces the time window constraint in each
of the networks. Equations (8) and (9) guarantee demand
fulfillment at all customers by assuring a nonnegative cargo
load upon arrival at any node including the BS.

0 ≤ 𝜂 𝑗 ≤ 𝜂𝑖 − (𝜌.𝐷𝑖 𝑗 )Υ𝑖 𝑗 + 𝑙 (1 − Υ𝑖 𝑗 ),
∀𝑖 ∈ 𝑁,∀ 𝑗 ∈ 𝑁 ′𝑛+1, 𝑖 ≠ 𝑗 ,

(10)

0 ≤ 𝜂 𝑗 ≤ 𝑥𝑖 − (𝜌.𝐷𝑖 𝑗 )Υ𝑖 𝑗 + 𝑙 (1 − Υ𝑖 𝑗 ),
∀𝑖 ∈ 𝐶,∀ 𝑗 ∈ 𝑁 ′𝑛+1, 𝑖 ≠ 𝑗 ,

(11)
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𝑥𝑖 = 𝑘𝑖 (𝜂𝑖 + 𝜃𝑖) + 𝜇𝑖 𝑙,∀𝑖 ∈ 𝐶, (12)

𝑥𝑖 ≤ 𝑙,∀𝑖 ∈ 𝐶, (13)

Υ𝑖 𝑗 ∈ {0, 1} ,∀𝑖 ∈ 𝑁
′

0,∀ 𝑗 ∈ 𝑁
′

𝑛+1, 𝑖 ≠ 𝑗 , (14)

𝜇 𝑗 , 𝑘 𝑗 ∈ {0, 1} ,∀ 𝑗 ∈ 𝐶. (15)

Equations (10) and (11) ensure that the battery charge
never falls below 0. Equation (12) ensures that the battery
of UAV at charging station is equal to partial recharging or
full recharging done. Equation (13) ensures that the battery
state of UAV after charging station departs is less or equal to
the actual battery power of UAV. Equation (14) is the binary
variable equal to 1 if the path is traversed otherwise 0, mean-
ing that no recharging done. Equation (15) whether charging
done at the station or not if it is done then it’s value = 1,
otherwise 0.

3. Proposed Algorithm
The proposed algorithm section is represented with so-

lution strategy of our article is explained below.

3.1 Ant Colony Optimization-Local Search
(ACO-LS)

An updated ACO with LS algorithm is suggested to ad-
dress the UAV routing problem with the presence of multiple
charging stations. The main procedure for improving ACO
with LS is explained and the pseudo-code is presented in
Algorithm 2.

Algorithm 2. Ant Colony Optimization-Local Search.

1: Initialization: Set pheromone trail 𝜏 ← 1, best quality of the solution
𝜁best ← 0, initial solution Ψ0 ← 0, and evaporation factor 𝜌← 0.

2: for 𝑖 ← 1 to maxiteration do
3: for 𝑘 ← 1 to 𝑁 do
4: Construct an initial solution 𝜙0 using a constructive heuristic.
5: for 𝑗 ← 1 to 𝑁𝑅 do
6: Construct a new solution Ψ0 using an insertion heuristic.
7: Improve Ψ0 by applying Algorithm 3.
8: Update the pheromone trail 𝜏 based on the quality of the

current solution.
9: end for

10: if Ψbest > 𝜁best then
11: Update 𝜁best ← Ψbest.
12: end if
13: end for
14: Evaporate the pheromone trail: 𝜏 ← 𝜏 · (1 − 𝜌) .
15: Reinforce the pheromone trail with the best solution: 𝜏 ← 𝜁best.
16: end for
17: Output: 𝜁best.

3.2 Construction of the First Colony
The usage of pheromone trails in an ant colonies is an ef-

fective illustration of how positive feedback mechanisms can
result in the creation of complex behaviour and effective re-
source distribution in a decentralized system. The goal is
to reduce the overall distance travelled while still allowing
the UAV to effectively cover the full region. However, be-
cause the Nearest Recharging (NR) system does not take
into consideration the battery constraint or the accessibility
of recharging stations, it is not a workable solution for the
original UAV problem. The classic probabilistic algorithm
employed in ACO for choosing the IoT nodes has been im-
proved by the distances and time windows (DTW) probabilis-
tic model. It produces more effective and workable solutions
since it considers both the time window and distance restric-
tions. The following is a presentation of the DTW probability
model for ant k at the current location of IoT node i [28]:

𝐹𝑘𝑖, 𝑗 =


𝜆𝜃
𝑖, 𝑗
.𝛾
𝜙

𝑖, 𝑗
. 𝛿𝜕
𝑖, 𝑗∑

𝜑∈ℎ𝑘 (𝑖)𝜆𝜃𝑖𝜑 .𝛾
𝜙
𝑖𝜑
.𝛿𝜕
𝑖𝜑

, if ℎ𝑘 ∈ ℎ𝑘 (𝑖)

0, otherwise
(16)

where 𝐹𝑘
𝑖, 𝑗

determines the likelihood of combining IoT nodes
i and j along the path of ant k, ℎ𝑘 (𝑖) is the collection of IoT
nodes available for selection. The 𝜆𝑖 𝑗 , 𝛾𝑖 𝑗 and 𝛿𝑖 𝑗 indicates
the density of pheromones, distance horizon visibility and
path i to j time windows respectively. The relative weights
of the pheromone trails and the two visibility levels are indi-
cated by 𝜃, 𝜙 and 𝜕. The expectation factors in this study 𝛾𝑖 𝑗
and 𝛿𝑖 𝑗 are established as follows:

𝛾𝑖 𝑗 =
1
𝐷𝑖 𝑗

, (17)

𝛿𝑖 𝑗 =
1
𝑡 𝑗

(18)

where 𝑡 𝑗 is the most recent arrival time of the time windows
for the IoT node j, and 𝐷𝑖 𝑗 is the length of edge from node i to
j. The time window restriction 𝛿𝑖 𝑗 is represented as a penalty
function that punishes nodes that violate the time window
limitations. It accounts for the length of the time frame, the
arrival time, and the waiting time. The penalty is zero if the
waiting period is less than or equal to 0. Otherwise, the
penalty is based on how long you have to wait. The proba-
bilistic DTW model allows the ants in the colony to select the
subsequent IoT based on the pheromone concentration, vis-
ibility, and time window constraints. This leads to solutions
that are practical and satisfy the limited time window in UAV
routing with numerous charging stations.

3.3 Insertion Heuristic
The insertion heuristic is a typical method for solv-

ing optimization problems, especially when it comes to UAV
routing issues, including the refueling station or charging sta-
tion. The insertion heuristic works by incrementally adding
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a charging station to a route until it is practical. Finding the
path that requires the greatest charge to become practicable
is the first step in the procedure, and then the charging sta-
tion that incurs the least additional expense is added to the
route. Once all routes are feasible, the heuristic repeats the
process with the remaining impossible routes. In general,
using the insertion heuristic to solve UAV routing issues that
require charging or refueling stations can be successful, and
the effectiveness of the algorithm can vary depending on the
particular problem and the caliber of the initial solution.

3.4 Local Search (LS) Algorithm
The local search algorithm is shown in Algorithm 3.

The local search technique used in this study combines re-
moval and insertion operators in an effort to increase the
quality of the solutions. The removed IoT node is then fixed
by reinserting it using insertion operators into the solution.
Its crucial to keep in mind during the local search process that
the placement and number of recharging stations may change
depending on where and how many IoT nodes are removed
or added. Therefore, only non-recharging routes without sta-
tions are subject to the removal and insertion operators. The
insertion heuristic is used to create new workable solutions
once the removal and insertion operators have been applied.
The time violated IoT node is removed from the route and
added to a set of 𝑆unvisited IoT nodes if the final solution breaks
any time windows. In the following iterations of the local
search, these unexplored IoT nodes are taken into account. If
the answer is workable, it is included in the list of workable
answers 𝑋0. The local search is carried out repeatedly until
the maximum number of iterations is reached or a feasible
solution is found to be a more alive node in the network.

Algorithm 3. Local Search.

1: Initialization: 𝛾curr ← 0, 𝛾best ← 0, 𝜓removal_list ← 0, and 𝑖 ← 1.
2: Generate an initial feasible solution 𝛾curr.
3: Set the best solution 𝛾best ← 𝛾curr.
4: for 𝑖 = 1 to maxiteration do
5: Randomly select a removal operator and form a list 𝜓removal.
6: Remove the nodes in 𝜓removal from 𝛾curr.
7: Reinsert the removed nodes in 𝛾curr using a random insertion oper-

ator.
8: Improve 𝛾curr by applying an insertion heuristic.
9: if Cost(𝛾curr ) < Cost(𝛾best ) then

10: Update 𝛾best ← 𝛾curr.
11: end if
12: Generate a new solution 𝛾new

curr by removing all charging stations
from the current routes in 𝛾curr.

13: Set 𝛾curr ← 𝛾new
curr .

14: end for
15: Output: 𝛾best.

Algorithms [ref. no.] Time complexity
GA [31] 𝑂 (𝑀 × 𝑁2 )
PSO [30] 𝑂 (𝑀 × 𝑁2 )
ACO [29] 𝑂 (𝑁2 )
ACO-LS [Proposed] 𝑂 (𝑁2 )

Tab. 3. Time complexity comparison with existing algorithms.

3.5 Time Complexity Analysis
The time complexity (TC) of our proposed ant colony

optimization-local search (ACO-LS) algorithm is a combi-
nation of the ACO and the LS algorithm. The TC of the
ACO algorithm is 𝑂 (𝐼 × 𝑘 × 𝑁2), where I is the number of
iterations, k is the number of ants and N is the number of IoT
nodes including cluster heads and recharging stations. The
local search improves solutions by examining neighbouring
options. The TC of the local search is 𝑂 (𝐼 × 𝑁2). The
𝑂 (𝑁2) is for evaluating neighbours solution. The total TC
of our proposed local search algorithm for the optimization
of the ant colony (ACO-LS) is 𝑂 (𝐼 × 𝑘 × 𝑁2)+ 𝑂 (𝐼 × 𝑁2)
= 𝑂 (𝐼 × 𝑘 × 𝑁2), now neglecting the values of I and k. The
final time complexity of the ACO-LS algorithm 𝑂 (𝑁2).

The TC of the existing algorithms are: The TC of the
ACO [29] algorithm is 𝑂 (𝑁2), the TC of the PSO [30] algo-
rithm is 𝑂 (𝑀 × 𝑁2) and the TC of the GA [31] algorithm is
𝑂 (𝑀 × 𝑁2), where N is the number of sensor nodes and M
is the number of cluster heads. The comparison of TC of our
proposed algorithm with the existing algorithms is shown in
Tab. 3.

4. Simulation Results
The proposed approach is designed to increase the life-

time of the network using efficient routing and data collection
using UAV. There are many definitions of the lifetime of the
network in the WSN literature [32]. We have defined the
network lifetime based on the time at which the first node
dies and the last node dies in the network. To prove the effi-
ciency of proposed approach, we have applied the ACO-LS
based routing algorithm for data collection from IoT nodes
by UAV with multiple charging stations. We have compared
the network lifetime based on the first node dies and the last
node dies in the network and number of alive nodes with the
number of iterations, the total energy consumption and the
packet delivery percentage with number of nodes. Further-
more, this proposed method is compared to existing methods
such as ACO, PSO, and GA [29–31].

The simulations were carried out on a computer sys-
tem with an AMD Ryzen-7 processor running at a speed of
1.8 GHz and 16 GB of RAM using the Python 3.10 program-
ming language. An AMD Ryzen-7 processor, which provides
an excellent mix between processing capability and energy
efficiency, is installed on the computer system utilized for the
studies. The processor operating frequency, which affects
the algorithm overall execution performance. The 16 GB
RAM size ensures that there is enough memory to satisfy the
experiment computing needs. Overall, the decision to use
Python as the programming language and the use of an AMD
Ryzen-7 processor running at a speed of 1.8 GHz and 16 GB
of RAM give a strong basis for carrying out the computational
experiments and generating trustworthy results to assess the
effectiveness of the proposed ACO-LS algorithm.
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Parameters Value
Area of Network 200 × 200 m2

Number of UAV 1
Velocity of UAV 2 m/s
Number of IoT nodes 100 to 500
Number of iterations 0 to 3000
Types of IoT nodes Static
Deployment IoT nodes Random
Clustering method K-Means
Initial energy of IoT nodes 0.5 J
𝐸sensing 0.001 J/task
𝐸processing 0.005 J/task
𝐸UAV−tx 0.0003 J/bit
𝐸tx 4.602 μJ/bit
𝐸rx 2.34 μJ/bit
𝐸elec 50 nJ/bit
𝐸cpu 7 nJ/bit

Tab. 4. Simulation parameter details.

We opted for a single UAV to minimize cost, as UAVs
are more expensive than standard IoT nodes. To obtain a re-
liable average, we set the simulation to 3000 iterations. For
simplicity and precision, IoT nodes are treated as static. Their
deployment is random due to the challenging environment,
making manual setup difficult. Our primary objective is to
minimize energy consumption, so we assign low initial en-
ergy levels and optimize other energy parameters for the IoT
nodes. The parameters used in the simulations for this paper
are shown in Tab. 4. The value of the simulation parameters
are based on values provided in articles [10], [33].

The simulation assumes that the base station is station-
ary, located in the center, and has unlimited energy. All
IoT nodes in homogeneous environments are uniform, with
equal and limited initial energy. They have a random uni-
form distribution and are deployed in a fixed position with
a unique identity. The velocity of the UAV is constant. The
UAV will collect data from the CHs. This device comes with
a rechargeable battery and long-range transceiver.

Figure 3 shows the network lifetime vs. number of IoT
nodes at which the first nodes die, and Figure 4 shows the
network lifetime vs. number of IoT nodes at which the last
node dies. The network lifetime increases with the increase
in number of nodes in both the cases as shown in Figs. 3
and 4 by varying the number of nodes from 100 to 500.

The network lifetime percentage increased analysis
compared to existing methods in terms of iterations at which
the first nodes die: When IoT nodes = 100, network life-
time percentage increased by 8.62%, 28.57%, and 34.04%.
When nodes = 200, network lifetime percentage increased by
3.24%, 8.69%, and 25%. When the IoT nodes= 300, network
lifetime percentage increased by 5.12%, 8.46%, and 12.63%.
When nodes = 400, network lifetime percentage increased by
2.32%, 10%, and 16.48% and when the nodes= 500, network
lifetime percentage increased by 3.63%, 8.57%, and 16.92%
compared to ACO, PSO, and GA. The average percentage
of packet delivery increased by 4.58%, 12.85%, and 21.01%
compared to ACO, PSO, and GA for IoT nodes = 100 to 500.
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Fig. 3. Network lifetime based on first IoT node death in the net-
work.

100 200 300 400 500

Number of IoT Nodes

0

500

1000

1500

2000

2500

3000
N

et
w

or
k 

L
ife

tim
e 

(N
o.

 o
f I

te
ra

tio
ns

) ACO-LS (LND) ACO(LND) PSO (LND) GA (LND)

Fig. 4. Network lifetime based on last IoT node death in the net-
work.

The network lifetime percentage increased analysis
compared to existing methods in terms of iterations at which
the last nodes die: When IoT nodes = 100, network life-
time percentage increased by 3.29%, 5.61%, and 13.93%.
When nodes = 200, network lifetime percentage increased
by 3.07%, 7.30%, and 10.84%. When the IoT nodes = 300,
network lifetime percentage increased by 2.94%, 6.98%,
and 10.85%. When nodes = 400, network lifetime per-
centage increased by 1.54%, 6.04%, and 7.78% and when
the nodes = 500, network lifetime percentage increased by
2.20%, 3.73%, and 5.70% percentage compared to ACO,
PSO and GA. The average percentage of packet delivery in-
creased by 2.60%, 5.93%, and 9.82% compared to ACO,
PSO and GA for IoT nodes = 100 to 500. It is clearly seen
from Figs. 3 and 4 that our proposed method outperforms
existing methods. Therefore, the lifetime of the network is
longer compared to the other existing methods.

Figure 5 shows the number of alive nodes vs. number of
iterations. The number of alive nodes decreases with an in-
crease in the number of iterations. In Fig. 5 it is clearly
observed that our proposed method has more number of
alive nodes in each iteration ranges from 0 to 3000. The
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nodes start draining their energy completely between 400 to
2800 iterations. When iterations = 500, the number of alive
nodes increased by 7.14%, 13.92%, and 23.28%. When it-
erations = 1000, number alive nodes increased by 19.04%,
38.88%, and 66.67%. When iterations = 1500, number alive
nodes increased by 33.33%, 60%, and 100%. When itera-
tions = 2000, number alive nodes increased by 37.5%, 120%,
and 450%. When iterations = 2500, number alive nodes in-
creased by 150%, 400%, and 490% compared to ACO, PSO,
and GA. The proposed method maintains a more balanced
number of alive nodes than the existing methods. This also
achieves a longer network lifetime.

Figure 6 shows the total energy consumption vs. num-
ber of IoT nodes. The total energy consumption increases
with an increase in the number of IoT nodes ranging from
50 to 1000. From Fig. 6, we can see that our pro-
posed method has less energy consumption than the exist-
ing methods in each range of number of IoT nodes from
50 to 1000. When IoT nodes = 200, energy consump-
tion is reduced by 4.27%, 23.80%, and 32.93%. When
nodes = 400, energy consumption reduced by 12.93%,
43.98%, and 56.22%. When nodes = 600, energy con-
sumption is reduced by 10.75%, 25.44%, and 29.66%.
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Fig. 5. Number of alive based on number of iterations in the
network.
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Fig. 6. Total energy consumption based on number of IoT nodes.

When nodes = 800, energy consumption reduced by 5.68%,
10.75%, and 13.54%. When nodes = 1000, energy consump-
tion is reduced by 4.04%, 5%, and 5% compared to ACO,
PSO, and GA. The average percentage of energy consump-
tion is reduced by 7.53%, 21.79%, and 27.47% compared to
ACO, PSO, and GA. From the graph and percentage analysis,
we can say that our proposed method maintains low energy
consumption that ensured the maximization of the lifetime
of the network.

Figure 7 shows the percentage of packet delivery
vs. number of IoT nodes at which the first IoT nodes die. The
packet delivery percentage analysis at which the first nodes
dies. When the nodes = 100, packet delivery percentage in-
creased by 4.21%, 7.60%, and 8.79% . When nodes = 200,
packet delivery percentage increased by 4.25%, 7.69%, and
10.11%. When nodes = 300, packet delivery percentage in-
creased by 3.26%, 5.55%, and 6.74%. When nodes = 400,
packet delivery percentage increased by 2.22%, 4.54%, and
4.54% and when the nodes = 500, packet delivery percentage
increased by 2.27%, 5.88%, and 7.14% percentage compared
to ACO, PSO, and GA. The average percentage of packet de-
livery increased by 3.24%, 6.25%, and 8.71% compared to
ACO, PSO, and GA for IoT nodes range from 100 to 500.
Through comparison from Fig. 7, we can observe that our
proposed method has a higher packet delivery percentage
than the existing methods in each range of number of IoT
nodes from 100 to 500, which gives a smaller number of data
loss in the network.

Figure 8 shows the packet delivery percentage vs. num-
ber of IoT nodes at which the last IoT node dies. The packet
delivery percentage analysis at which the last nodes dies.
When IoT nodes = 100, packet delivery percentage increased
by 3.26%, 4.39%, and 7.95%. When nodes = 200, packet
delivery percentage increased by 3.33%, 5.68%, and 8.13%.
When the IoT nodes = 300, packet delivery percentage in-
creased by 3.48%, 4.70%, and 5.95%. When nodes = 400,
packet delivery percentage increased by 2.35%, 3.57%, and
4.81% and when the nodes = 500, packet delivery per-
centage increased by 3.65%, 4.93%, and 6.25% percentage
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Fig. 7. Packet delivery percentage based on first IoT node death
in the network.
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Fig. 8. Packet delivery percentage based on last IoT node death
in the network.

compared to ACO, PSO, and GA. The average percentage
of packet delivery increased by 2.48%, 4.65%, and 6.61%
compared to ACO, PSO and GA for nodes = 100 to 500.
Through comparison from Fig. 8 and percentage analysis,
we can observe that our proposed method has a higher packet
delivery percentage than the existing methods in each rang of
number of IoT nodes from 100 to 500, which gives a smaller
number of data loss in the network.

The justifications for the better efficiency of our pro-
posed ACO-LS over existing algorithms [29–31] are listed
below:

1. In ACO-LS, the cluster heads in the cluster are chosen
on the basis of nodes with higher energy, degree of con-
nectivity, and distance from the base station. Because
IoT nodes for CH with these may withstand more load
from normal IoT nodes. This clustering approach dra-
matically improves energy efficiency, decreases com-
munication overhead, and increases network lifetime.

2. During cluster formation, our proposed ACO-LS uses
a multi-objective optimization approach to choose its
CH-based on factors such as residual energy of the CH,
node to CH distance, and distance from CH to BS.
However, in existing algorithms, non-CH nodes join
a CH within their communication range based solely
on distance. Such single-objective selection produces
non-uniform burden distribution.

3. In terms of total energy consumption, our proposed
ACO-LS consumed less energy compared to existing
algorithms, as shown in Fig. 6 with detailed analysis.
This method improves energy conservation and ex-
tends the lifetime of the network.

4. In ACO-LS, it performs better in terms of higher
network lifetime, more number of alive nodes, and
higher packet delivery percentage than the existing al-
gorithms, as shown in Figs. 3–5, 7, and 8 with detailed
analysis.

5. Conclusion
In this paper, we have proposed an Ant Colony Opti-

mization with Local Search (ACO-LS) algorithm to solve the
UAV routing problem, which improves the data collection
efficiency and network lifetime in the IoT network. This al-
gorithm optimizes UAV routing paths by forming a virtual
ant colony that explores routes and updates pheromone trails
based on pheromone density, minimizing travel distance and
ensuring timely data collection from clustered IoT nodes.
This algorithm improves routing efficiency by collecting data
with multiple charging stations, resulting in greater network
lifetime, lower energy consumption, more alive nodes, and
higher packet delivery compared to traditional methods. We
benchmark the proposed ACO-LS approach against Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and
General Ant Colony Optimization (ACO), demonstrating su-
perior performance across metrics.

In future work, UAV may be used to test the algorithm’s
performance in a network where the movement of mobile
sinks, installed sensor nodes, and network size changes will
be considered.
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