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Abstract. Secure and efficient data transmission is crucial 

for maintaining seamless system operations and user trust 

in the rapidly evolving Internet of Things (IoT) environ-

ments. However, IoT networks consistently suffer from data 

integrity breaches, security vulnerabilities at various net-

work layers, and a high computational cost. Bridging the 

gap between IoT applications and network infrastructure is 

essential to addressing these issues. This paper introduces 

SeCo2, a secure cognitive semantic communication frame-

work for 6G-IoT networks. The framework incorporates 

a blockchain-based system to provide a secure and privacy-

preserving data transmission mechanism. Data prepro-

cessing is conducted using the IoT-Sense dataset, and then 

encryption is done through a hybrid combination of Key-

Policy Attribute-Based Encryption (KP-ABE) and Elliptic 

Curve Cryptography (ECC). Access control and data per-

missions are implemented via smart contracts to ensure se-

cure transmission. Additionally, a blockchain security layer 

utilizing Proof of Stake with Fixed Staking Amounts (PoS-

FSA) enhances network security and energy efficiency. For 

further protection of data integrity, tamper-proof prove-

nance logging prevents unauthorized tampering. Experi-

mental results demonstrate ultra-low latency data transmis-

sion (in the microsecond range), with a transmission delay 

as low as 0.003001 s for data sizes ranging from 1 GB to 

50 GB, and a network security rate of 98%, ensuring more 

reliable and privacy-preserving IoT ecosystems. 
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1. Introduction 

The rapid advancement of 6th-Generation (6G) wire-

less communication technology has led to the emergence of 

the Internet of Things (IoT) paradigm, connecting a vast 

number of smart devices for various services [1]. As a key 

enabler of 6G networks, IoT plays a crucial role in ensuring 

seamless connectivity and intelligent automation. 6G-ena-

bled IoT networks have been developed to offer high-quality 

connectivity to many wireless devices. This evolution of the 

IoT is revolutionizing the way devices communicate and in-

teract with each other within an integrated ecosystem [2]. 

Cognitive Semantic Communication (CSC) emerges as 

a promising paradigm that extends beyond traditional com-

munication models, enabling IoT devices to interpret and 

transmit both raw data and meaningful information [3]. The 

CSC develops communication systems that mimic human-

like understanding, processing, and exchange of semantic 

(meaning-based) information [4]. However, data transmis-

sion must be secure in the CSC-IoT due to the large number 

of IoT devices and the high volume of data that need to be 

transmitted exponentially [5], [6]. This is where blockchain 

technology becomes indispensable [7]. Blockchain technol-

ogy enhances data integrity and security by providing an im-

mutable, tamper-proof ledger for transaction verification [8], 

[9]. Additionally, DL enhances CSC by enabling devices to 

learn vast amounts of data, adapt to dynamic network con-

ditions, optimize data transmission, and predict anomalies in 

near real-time [10], [11]. The integration of CSC, block-

chain, and DL ensures trusted communication, authenticity, 

and auditability across all IoT network layers. 

In existing works, several research studies have been 

conducted to achieve better security, integrity, and data per-  
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formance using various cryptographic methods, blockchain-

based approaches, and DL models in the CSC-IoT [12], [13]. 

However, these existing solutions often struggle with high 

computational costs, scalability issues in large-scale IoT net-

works, and insufficient adaptability to dynamic network 

conditions [14]. Furthermore, the fragmented security layers 

in current models create inconsistencies and make them vul-

nerable to attacks [15]. To address these challenges, this pa-

per proposes a novel framework that addresses the complex-

ity of data integrity breaches, security issues across network 

layers, and high computational costs. Hence, we propose in-

tegrating blockchain infrastructure with the DL model to en-

sure data security and provide efficient data transmission in 

large-scale IoT networks in CSC. The proposed SeCo2 

demonstrates the complexity of real-time applications and 

enhances the performance of the 6G-IoT networks. 

1.1 Research Contribution 

The main contributions of this study are as follows: 

 This study integrates CSC and blockchain technology 

to develop a framework for secrecy-preserving data 

transfer. Unlike conventional models that use block-

chain or semantic encryption separately, our approach 

ensures real-time, secure, and semantic-aware commu-

nication in 6G-IoT networks. 

 The proposed framework incorporates a robust, com-

prehensive semantic knowledge base to enhance sys-

tem update efficiency. By minimizing redundant data 

exchanges and synchronizing semantic representa-

tions, this mechanism significantly reduces transmis-

sion overhead while maintaining high accuracy in IoT 

network updates. 

 To address the high computational cost of IoT devices, 

we introduce an optimized hybrid encryption scheme 

that combines Key-Policy Attribute-Based Encryption 

(KP-ABE) with Elliptic Curve Cryptography (ECC). 

This approach achieves stronger security while reduc-

ing processing overhead, making it ideal for resource-

constrained IoT environments. Smart contracts further 

enhance integrity by automating secure data transfers 

without compromising semantics. 

 Existing blockchain-based security models often suffer 

from high energy consumption and scalability chal-

lenges. Our framework introduces Proof of Stake with 

Fixed Staking Amounts (PoS-FSA), which enhances 

network security while reducing computational energy 

costs. This mechanism strengthens multi-layered secu-

rity protections against evolving cyber threats in 6G-

IoT networks. 

 The work proposes a solution to verify data authentic-

ity and prevent tampering even in resource-constrained 

IoT ecosystems by introducing data provenance log-

ging within the blockchain. This enhances trust and 

transparency by creating an immutable audit trail for 

all data transactions. 

The paper is organized as follows: Section 2 provides 

an in-depth review of the existing literature. Section 3 pre-

sents the proposed framework. Section 4 presents results and 

a detailed discussion of the system's performance. Finally, 

Section 5 concludes the paper. 

2. Literature Survey 

This section reviews existing research and methodolo-

gies in IoT networks to identify current trends, gaps, and 

challenges. This provides an understanding and helps to po-

sition the proposed work within the broader context. Xu et 

al. [16] discussed distributed edge learning techniques and 

communication optimization in dual-functional networks. 

The authors explained the performance metrics and recent 

advancements in communication systems for learning, with 

applications in B5G networks. Still, energy and computation 

capacity remain an unsatisfactory challenge. To improve ef-

ficiency, Yi et al. [17] discussed a semantic communication 

system for text transmissions that reduces the number of 

symbols transmitted by using a shared knowledge base. The 

model improved efficiency by integrating the message using 

DL, but the performance improvements were limited due to 

the small number of commonly used semantic messages. 

Chen et al. [18] suggested a neuromorphic wireless IoT 

system that integrated spike-based sensing, processing, and 

communication. Each device utilized a neuromorphic sen-

sor, spiking neural network, and multi-antenna transmitter. 

However, security fragmentation across network layers cre-

ates inconsistencies, compromising IoT network protection. 

To enhance security, Yang et al. [19] employed machine 

learning models to assess secure semantic communication 

and explored methods for extracting semantic information. 

However, high computational costs limit performance in re-

source-constrained environments, underscoring the need for 

efficient solutions in semantic communication systems. For 

this, Zheng et al. [20] optimized computation offloading for 

users with limited resources and provided a satellite-edge 

cloud framework for semantic communication. They intro-

duced federated learning for semantic code updates, improv-

ing accuracy while enhancing privacy. While enhancing ac-

curacy, scalability remained a challenge in large data 

volumes and limited device resources. 

Sagduyu et al. [21] studied DL-based joint sensing and 

communication systems, which utilized a task-classifying 

decoder to implement semantic communication. Using 

multi-task learning, the system combined source coding, 

channel operations, and semantic fidelity evaluation. Alt-

hough highly efficient in data reconstruction and target de-

tection, it lacked provisions for incorporating security objec-

tives. Similarly, Lin et al. [22] analyzed a semantic 

communication framework that utilizes region-of-interest 

semantic segmentation to reduce communication costs by 

transmitting only meaningful semantic information. The 

model introduces a blockchain-based, edge-assisted system 

for managing diverse semantic knowledge bases. However, 

challenges in data integrity remained unresolved. Similarly, 
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Chaccour et al. [23] presented a comprehensive view of end-

to-end semantic communication networks by integrating 

transfer learning. They highlighted a shift from data-centric 

to logic-based network efficiency. As the model dealt with 

semantic communication distinctions, there were challenges 

in developing efficient systems that scale with real-time re-

quirements. 

Wang et al. [24] introduced a hybrid deep reinforce-

ment learning-based intelligent resource allocation scheme 

that enables agents to perceive semantic tasks and adapt to 

dynamic wireless environments. Simulations demonstrate 

improved performance against semantic noise compared to 

benchmarks. However, challenges remain in scalability and 

practical implementation. Kavitha et al. [25] suggested a hy-

brid non-orthogonal multiple access to optimize the wireless 

federated learning framework for 6G and to minimize la-

tency for transmission by utilizing successive convex opti-

mization. The model successfully reduced the latency and 

complexity of non-convex algorithms. However, it could be 

further optimized by using resource management and an ef-

fective decision-making model. 

In this analysis, we have identified several issues, in-

cluding data security, semantic preservation, high computa-

tional costs, and energy efficiency concerns. Thus, we pre-

sent a novel framework that integrates blockchain-based 

infrastructure into the CSC, ensuring a secure and scalable 

solution for IoT networks. 

3. System Model 

The 6G-IoT network comprises various IoT devices 

that generate massive amounts of data, necessitating secure 

storage and efficient communication. This is achieved by in-

tegrating blockchain technology with semantic communica-

tion principles, as shown in Fig. 1. The entire process is di-

vided into two layers, the blockchain layer and the semantic 

communication layer. 

Blockchain layer: The blockchain layer ensures the se-

curity and integrity of the data generated by IoT devices. 

These devices collect data, including sensor readings, telem-

etry, and user interactions. The collected data is encrypted to 

ensure confidentiality and to prevent unauthorized access. 

This encrypted data is stored securely on a blockchain, 

which provides immutability, decentralization, and tracea-

bility. The synchronization mechanism ensures that all 

blockchain nodes maintain a consistent and up-to-date copy 

of the stored data. 

Semantic Communication Layer: The semantic com-

munication layer focuses on transmitting meaningful infor-

mation and optimizing communication efficiency. It facili-

tates efficient, meaningful communication between the 

transmitter and receiver. This layer operates through the se-

quence of encoding and decoding processes at both the se-

mantic and transmission levels. At the semantic level, infor-

mation is processed to extract a meaningful representation 

through encoders and decoders, while at the transmission 

 

Fig. 1.  System model for secure IoT data transfer in CSC with 

blockchain. 

level, the information is carried through channel encoding. 

The knowledge base facilitates the extraction of semantic 

features by providing a structured representation of 

knowledge. 

3.1 Proposed Methodology for Secure Cogni-

tive Semantic Communication 

The proposed SeCo2 framework presents a compre-

hensive approach to data transfer security, aiming to en-

hance security, efficiency, and flexibility within 6G-IoT net-

works via CSC and blockchain technology. The IoT-Sense 

dataset is initially collected and then pre-processed to focus 

on data quality and accuracy. This pre-processed data is en-

crypted using a hybrid encryption mechanism that employs 

KP−ABE and ECC to prevent unauthorized access to sensi-

tive information. Once encrypted, the data is stored within 

a blockchain infrastructure where Smart Contracts enforce 

access control policies, allowing only authorized entities to 

access the information.  

Furthermore, blockchain technology strengthens the 

framework that overcomes major challenges involving 

scalability, security, and energy efficiency by adopting  

P-FSA. Blockchain nodes periodically synchronize to main-

tain a consistent state across the network. To enhance com-

munication efficiency, a semantic communication frame-

work is employed, which focuses on extracting and 

transmitting meaningful information between the transmitter 

and receiver over wireless communication channels. The 

transmitter conducts semantic encoding and channel encod-

ing, while the receiver performs the corresponding de-

coding. 
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3.2 Blockchain-based Data Integrity Scheme 

The proposed model utilizes blockchain technology to 

ensure data integrity and system availability. The scheme 

consists of three entities, which are detailed as follows: 

3.2.1 IoT Data Collection 

IoT-Sense dataset: The IoT device collects real-time 

data from sensors, cameras, and wearable sources. The en-

vironment, health, and user input variables are among the 

captured datasets. Thus, a multidimensional dataset is pre-

sented. This allows the system to ensure continuous collec-

tion of accurate, context-aware input for semantic pro-

cessing and secure data transfer.  

3.2.2 Preprocessing 

Designed to prepare raw IoT-Sense data for seamless 

semantic analysis, this approach addresses data inconsisten-

cies and enhances interpretability. 

 Handling Missing Values: We fill gaps in our categor-

ical data with mode or placeholders (Device Type) and 

use statistical measures like mean/median for numeri-

cal data (Transmission Power). This ensures data com-

pleteness, enabling accurate downstream processing. 

 Normalization: Scaling numerical attributes (such as 

Signal Strength and Network Latency) to a standard 

range for uniformity, which reduces biases and im-

proves performance across different IoT data sources. 

 Feature Engineering involves extracting actionable 

insights from time-based patterns, such as daily or sea-

sonal trends, using timestamps. This enables the sys-

tem to contextualize user interactions and adapt to any 

dynamic. 

3.2.3 Hybrid Data Encryption  

The pre-processed data is encrypted to secure semanti-

cally enriched IoT data using a hybrid encryption layer that 

combines KP-ABE and ECC for robust, multi-level protec-

tion. 

Key-Policy Attribute-Based Encryption (KP-ABE) 

KP-ABE is a cryptographic technique that was inno-

vated for fine-grained access control through decryption 

keys associated with an attribute set designed to protect the 

data [26]. KP-ABE secures data by attaching decryption 

rights according to specific attributes, allowing for fine-

grained access controls to determine the actual separation of 

access control rights and the fine-grained management of 

data decryption. During encryption, data is embedded with 

an attribute set based on the policy. Decryption keys are ac-

companied by policies that define these attributes, allowing 

only authorized users with matching credentials to access the 

data. The following equations describe the operation of  

KP-ABE. 

     Pr ,  , , 1 1 Pr ,  , , 2 1 .A par D R A par D R negl           
 

   (1) 

Equation (1) ensures that the probability Pr of an ad-

versary A distinguishing two ciphertexts R1 and R2 is negli-

gible, represented by negl(). Here, D is the ciphertext com-

ponent for KP-ABE encryption (2).  represents the security 

parameter used to determine the strength of the crypto-

graphic system. par indicates the public parameters gener-

ated by the system (3). The structure of the ciphertext is de-

fined in (2): 

 
2 1 1, , .s sD g w w  (2) 

This combines system parameters and encryption-spe-

cific keys. Here, g2
s is the public parameter raised to the en-

cryption secret s. w1, w1
s represents the attribute-based com-

ponents derived from w1. This provides that decryption is 

tied to attributes. To build the encryption system, KP-ABE 

uses cryptographic parameters, as shown in (3). 

    , 1, 2, , , 1, 2par p G G GT e g g GroupGen   .  (3) 

Here, p indicated the prime number used in the finite field of 

cryptography. G1, G2, GT are the cyclic groups with bilinear 

pairings e, g1, g2 generators of groups to form the crypto-

graphic computations. This equation is for secure group op-

erations and bilinear pairings to enable attribute-based en-

cryption. To embed the attribute-based policy into this 

ciphertext, the following equation (4) ensures R1 to integrate 

the encryption secret and the access policy. This binds de-

cryption capabilities to the defined attributes. 

  
, 1

1 1, 2
s aq

R e g g


  (4) 

where e(g1, g2) indicates a bilinear pairing operation be-

tween generators g1 and g2. s is the encryption secret tied to 

the specific data. a, q denote the policy-specific coefficients 

representing attributes and conditions. 

 2 Uniformly random element .R     (5) 

Equation (5) represents a random ciphertext for secu-

rity analysis in (1). This validates that the ciphertext is se-

cure by providing that adversaries cannot distinguish it from 

random noise R2. This sequence ensures that data is en-

crypted with KP-ABE. 

Elliptic Curve Cryptography (ECC) 

ECC further enhances security through the use of a 

lightweight cryptographic scheme, which is optimal under 

resource restrictions on IoT devices for encrypting KP-ABE 

output. ECC utilizes the mathematics of elliptic curves to 

achieve smaller key sizes without compromising security, 

thereby reducing the computational workload in terms of 

bandwidth [27]. Since ECC is combined with KP-ABE, 

dual-layer encryption has been achieved, ensuring that the 

data remains secure with associated access policies attached 

to it. The ECC function is expressed as follows: 

 
32 .cE d m d n      (6) 
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Equation (6) defines the elliptic curve E2c used to se-

cure cryptographic parameters for generating encryption 

keys and securing data. d3 is a variable defining the curve's 

structure. m, n denote the key components derived from 

modular arithmetic to secure the elliptic curve. d is the pa-

rameter that varies depending on the encryption process. 

This defines the elliptic curve and parameters using modular 

arithmetic (7), (8). 

  mod ,c pm E B  (7) 

Here, m is a key component of using the modulus (mod) op-

eration to ensure bounded values within a finite field. Ec is 

a specific value on the elliptic curve. Bp is a prime number 

defining the finite field boundary. 

    2
mod , n

n B j B  (8) 

where n is another key component of modular arithmetic that 

is to add security. B(j) indicates a value dependent on the 

elliptic curve properties. The square of the value introduces 

non-linearity. Bn is a boundary value or modulus for the fi-

nite field. Here, we use organized values K, R to compute 

the two parts of the cipher C1, C2. 

 
1 .C K R    (9) 

Equation (9) defines the first part of the encrypted ci-

phertext C1 for secure communication. K is an organized in-

teger value for encryption. R is a systematic value between 

1 and n – 1 to ensure unpredictability. 

 
2 publickey .C m K Op     (10) 

Equation (10) defines the second part of the encrypted 

ciphertext C2 to combine the elliptic curve parameters with 

the optimized public key. m indicates the modular value de-

rived from (7). The optimized public key Oppublickey is de-

rived from the private key and elliptic curve operations. This 

combines m with the public key in a way that ties the cipher-

text to the elliptic curve while maintaining security. 

3.2.4 Blockchain Layer 

Blockchain ensures seamless integration of security 

measures across all network layers [7]. All data transactions 

are recorded on the blockchain, making them verifiable and 

tamper-proof with the provenance and suitability of such 

records. 

The smart contracts serve in this architecture to transfer 

encrypted data into the blockchain layer. This ensures auto-

mated, self-executing contracts in the blockchain layer that 

facilitate safe and speedy data sharing among IoT devices 

and relevant stakeholders. To process encrypted IoT data, 

smart contracts verify pre-defined conditions, such as au-

thorization of ownership, access rights, and encryption in-

tegrity, before performing any transactions on the IoT data. 

Smart contracts eliminate the risk of unauthorized access 

and promote the secure transfer of data, as they automate 

trust and reduce human interference. 

Proof of Stake with Fixed Staking Amounts  

The PoS mechanism is a consensus algorithm that se-

cures transaction validation in decentralized networks while 

significantly reducing energy consumption. In PoS, valida-

tors are chosen based on the cryptocurrency they hold and 

stake to propose and verify blocks instead of using the com-

putationally intensive mining process. 

Adopting an FSA in PoS reduces the energy consump-

tion typically associated with consensus mechanisms by lim-

iting computation capacity. A Fixed Stake Amount is a pre-

determined number of tokens that validators will stake to 

participate in the consensus, enabling more predictable and 

scalable network participation in large-scale IoT ecosys-

tems. 

Algorithm 1: Pseudo-code for transferring encrypted data to the blockchain 

using a smart contract. 

1. Smart contract = (authorization, access rights, encryption integrity) 

2. def select validators (stakeholders, fixed stake amount): 

3. validators = [] 

4. for stakeholder in stakeholders: 

5. if stakeholder. token >= fixed stake amount: 

6.  validators. append (stakeholder) 

7. return validators 

8. def PoS FSA (block, validators): 

9. Selected validator = random. choice (validators) 

10.  if verify block (selected validator, block): 

11.  append block to chain (blockchain, block, selected validator) 

12.  reward. validator (selected validator) 

13.  else: 

14,  Penalize. validator (selected validator) 

15.  if smart contract. Validate (encrypted data): 

16.  transaction = create transaction (encrypted data) 

17.  validators = select validators (blockchain. stakeholders, fixed 

stake amount=100) 

18.  PoS FSA (transaction, validators) 

19. else: 

20.  reject transaction ("Invalid data or permissions") 

21. while True: 

22.  IoT data = fetch IoT data () 

23.  blockchain operation (IoT data) 

24.  End 

25. optimize resources () 

3.3 Semantic Communication System 

The semantic communication system consists of three 

main components: the transmitter, the channel, and the re-

ceiver. The transmitter’s role is to ensure that the receiver 

can gain knowledge and enhance it. It includes a semantic 

encoder, a channel encoder, and a knowledge base for trans-

mission tasks. The semantic encoder transforms input data 

into meaningful semantic features. The knowledge base im-

proves the semantic extraction process by providing the se-

mantic encoder with a basic understanding. To ensure effi-

cient and reliable distribution, the channel encoder converts 

and compresses the semantic representation into a signal 

suitable for transfer over the communication channel. The 

receiver involves a semantic decoder, a channel decoder, and 
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a synchronized knowledge base that aligns with the trans-

mitters. The channel decoder processes the received signals 

to recover semantic features by mitigating errors caused dur-

ing the wireless communication process. Finally, the seman-

tic decoder decodes the recovered features with the help of 

the knowledge base [28]. 

Let us consider text transmission in the semantic com-

munication system with the sentence with M words, which 

is denoted as H = {g1, g2, …, gM} where gm represents the  

m-th word in the sentence. The sentence is initially embed-

ded as Hem to transmit. The transmitter utilizes the semantic 

encoder to extract features from Hem with the knowledge 

base, as shown in (11): 

  emJ H H KB   (11) 

where KB represents a knowledge base, J represents ex-

tracted features, H() represents a semantic encoder with 

a parameter . Then the channel encoder processes J to get 

a signal that is transmitted to s, as expressed in (12) and (13): 

  ,s CE J   (12) 

 
modelis H N    (13) 

where CE() represents the channel encoder with a parame-

ter , Hi represents the semantic information accurately ex-

tracted from H, Nmodel represents the noise with a Gaussian 

distribution, which causes an unstable gradient descending. 

At the receiver side, the signal p received is expressed as 

shown in (14): 

 
channelp as N   (14) 

where Nchannel represents the additive Gaussian noise and a 

represents channel gain, the received signal can be repre-

sented in (15):  

  model channel.ip a H N N     (15) 

How to recover the semantic features from p by the 

channel decoder is explained in (16): 

  Ĵ CD p   (16) 

where CD() represents the channel decoder with parameter 

. Subsequently, the semantic decoder uses the knowledge 

base to decode these features, as shown in (17): 

  ˆ
xH H J KB   (17) 

where Ĵ represents the recovered sentence, and Hx represents 

the decoder with parameter x. 

4. Results and Discussion 

The experiments were carried out on the IoT-Sense da-

taset and implemented on the following hardware and soft-

ware requirements as shown in Tab. 1 and its source code is 

attached [34]. The parameters involved in the system are 

shown in Tab. 2.  

 

Parameter Value 

Processor Intel Xeon E5-1650 v3 (6-core, 3.50 GHz) 

RAM 32 GB DDR4 

GPU NVIDIA Quadro M2000 (2 GB) 

Storage 1 TB SSD 

Operating System Windows 10 Pro 

Programming Language Python 3.10.1 

DL Framework TensorFlow 2.9, PyTorch 1.13 

Cryptography Library PyCryptodome 

Blockchain Framework Hyperledger Fabric 2.5 

Tab. 1.  Hardware and software requirements. 

 

Algorithm Parameter Value 

ECC 

 

Curve Used secp256r1 (NIST P-256) 

Equation y2 = x3 – 3x + b(mod p) 

Prime Field ()  1.16E+77 

Base Point (G) – x 4.84E+76 

Base Point (G) – y 3.61E+76 

Order (n)  1.16E+77 

Cofactor (h)  1 

Key Size 
256-bit (Equivalent to RSA-

3072) 

KP-ABE 

 

Security 

Parameter () 
128-bit 

Bilinear Pairing 

Function 
e: G1  G2  GT 

Prime Order ()  1.16E+77 

Pairing Type 
Type-1 symmetric bilinear 

pairing over an elliptic curve 

Access Policy 
Threshold-based, Role-based, 

Device Type 

Attribute Universe 
The predefined set of 

attributes is mapped to policy 

Tab. 2.  System parameters. 

4.1 Dataset Description 

IoT Sense Dataset: The IoT-Sense Dataset consists of 

12,673 rows and 16 columns, designed to support research 

in secure 6G-IoT networks. It includes three numerical at-

tributes, including Transmission Power (dBm), Signal 

Strength (RSSI), and Network Latency (ms), and 13 categor-

ical/text attributes such as User ID, Interaction Type, and 
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Device Type, with no missing values. The dataset is in CSV 

format with a file size of approximately 1.5 MB, and can be 

accessed via [data. world], [29] requiring user sign-in for ac-

cess. The collected data was split into 80% for training, 10% 

for validation, and 10% for testing, ensuring a balanced eval-

uation of the model. 

The dataset essentially reflects the larger set of activi-

ties that have been recorded within an IoT-enabled localiza-

tion, probably emerging from smart homes and other similar 

intelligent settings in such a way that reflects the activities 

of a wider variety of users, device interactions, and contex-

tualization metadata for a holistic picture of the economics 

of the IoT ecosystem.  

User interaction details are the metadata of the system's 

action, including the user ID, type of interaction (how a user 

interacts with the system, such as by gesture or button press), 

and specific action taken (e.g., turning on lights or setting up 

the thermostat). All of these are complemented by rich con-

textual data, including very specific timestamps, user loca-

tions (such as the kitchen, bedroom, or living room), and ac-

tivities (such as cooking, sleeping, or relaxing).  

This means that the device information can systemati-

cally record the unique IDs assigned to each device, along 

with its corresponding device type (e.g., smart lights, speak-

ers, or thermostats). This dataset provides a semantic insight 

through high-level analysis. It maps user intents (such as re-

laxation and illumination in the room) to specific, semanti-

cally labeled activities (e.g., music control and temperature 

adjustment), thereby increasing the applicability of the data 

in any real-world IoT application.  

From this dataset, we build a secure, adaptive frame-

work for the 6G-IoT networks by utilizing its semantic in-

formation. Extracting actionable insights, user intents, and 

device interactions will help enhance the efficiency of the 

IoT network. The data are quite variable, reflecting the dif-

ferences in users, their device interaction, and the surround-

ing environment, which makes the data generally useful 

across varying IoT contexts. 

4.2 Statistical Analysis of Evaluation Metric 

To evaluate the effectiveness of the proposed frame-

work, numerous evaluation criteria are needed. The perfor-

mance metrics included latency, encryption efficiency, and 

computational overhead, which were used to evaluate the 

proposed model and validate its suitability for critical 6G-

IoT applications, while ensuring security-preserving opera-

tions. 

(i) Encryption Efficiency  

Encryption efficiency measures how much faster and 

more optimized the proposed encryption scheme (KP-ABE 

+ ECC) is compared to a baseline encryption method (e.g., 

AES, RSA) as shown in (18): 

 enc
enc

base

1 100
T

E
T

 
   
 

  (18) 

where Eenc denotes energy efficiency in %, Tenc denotes total 

encryption time by KP-ABE+ECC, and Tbase denotes en-

cryption time by traditional encryption. 

(ii) Computational Overhead  

Computational overhead is the amount of time it takes 

to process when encryption and blockchain functionality are 

integrated, compared to a system without encryption, as 

shown in (19):  

 enc+bc base
over
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  (19) 

where Compover represents computational overhead in %, 

Tenc+bc represents processing time with encryption and block-

chain, and Tbase  represents processing time without encryp-

tion. 

(iii) Network Latency  

Network latency is the total delay in transmitting en-

crypted data between a sender and a receiver. It is obtained 

by finding the difference between the end time and the start 

time as shown in (20): 

 
end startL T T   (20) 

where L is latency in milliseconds (ms), Tend is the time when 

the transmission is finished, and Tstart is the time at which 

transmission begins. 

(iv) Security Level 

The security level represents the cryptographic 

strength of the encryption scheme based on the key length, 

and its resistance to cryptographic attacks is demonstrated in 

(21): 

 KP-ABE ECC
level                                            

2

K K
S

 
  
 

 (21) 

where Slevel represents the security level in bits, KKP-ABE  is 

the key length used in KP-ABE encryption in bits, KECC is 

the key length used in ECC encryption in bits. 

(v) Data Transmission Time  

Data transmission time represents the total duration 

required to transfer encrypted data over a network. It is 

determined by dividing the amount of data in bytes or bits 

by the data transmission rate in bytes per second or bits per 

second, as shown in (22):  

 
D

T
B

  (22) 

where T represents data transmission time in seconds (s), D 

represents data size in GB, and B represents data transfer rate 

in GB per second. 

(vi) Encryption Time  

Encryption time refers to the total time required to en-

crypt IoT data using a hybrid encryption process (KP-ABE 

+ ECC), as shown in (23). This includes attribute-based en-

cryption, elliptic curve encryption, and key generation. 
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encenc KP-ABE ECC key-genT T T T     (23) 

where Tenc represents the total encryption time in s, TKP-ABE 

represents the time taken to encrypt data using KP-ABE, 

TECC represents the time taken to apply ECC encryption, and 

Tkey-gen represents key generation and attribute assignment 

time. 

(vii) Decryption Time 

Decryption time calculates the overall time it takes to 

decrypt an encrypted data block and retrieve the original 

plaintext, as shown in (24). It involves decryption via  

KP-ABE, elliptic curve decryption, and key verification. 

 
dec decdec KP-ABE ECC key-verifyT T T T      (24) 

where Tdec represents the total decryption time in seconds, 

TKP-ABEdec represents the time taken to decrypt data using KP-

ABE, TECCdec represents the time taken to decrypt using ECC, 

and Tkey-verify represents attribute verification and key authen-

tication. 

4.3 Performance Analysis 

In this section, we demonstrate the functionality of the 

CSC framework in conjunction with encryption techniques 

and real-time adaptation models, which are used to ensure 

the secure, efficient, and reliable performance of IoT net-

works. 

Figure 2 illustrates the system performance measure-

ments, showing the effectiveness of encrypting and decrypt-

ing operations (Mean: 153.90 ms) and the latency of trans-

ferring data through hybrid KP-ABE and ECC mechanism 

transactions (Mean: 230.84 ms).  

The reduced encryption time is due to ECC’s effi-

ciency in handling smaller key sizes, which minimizes com-

putational complexity compared to traditional encryption 

methods. Additionally, the latency remains within an ac-

ceptable range for 6G-IoT applications, as the blockchain-

based security mechanism ensures faster validation using 

PoS FSA-based methods. 

 

Fig. 2.  System performance metrics of encryption/decryption 

and blockchain transaction latency. 

 

Fig. 3.  Latency statistics in CSC for IoT networks. 

Figure 3 shows the distribution of data transmission 

and processing latencies in a CSC with a mean of 153.90 ms, 

a median of 153.88 ms, and a maximum of 299.98 ms. The 

low median and mean values indicate consistent perfor-

mance, while the peak latency occurs in larger data trans-

mission cases due to occasional delays in blockchain pro-

cessing. Our model offers improved real-time transmission 

with enhanced security. 

Table 3 shows the transmission time for different data 

sizes (1 GB to 50 GB) in a 6G-IoT environment. The results 

demonstrate ultra-low latency transmission, in the microsec-

ond range, highlighting the efficiency of semantic-aware 

data transfer. All these are accomplished within a total sim-

ulation time of 0.003001 sec, revealing the seamless possi-

bilities of one in the next-generation networks under appli-

cations for massive data transfers, as the system compresses 

and encodes meaningful information, reducing bandwidth 

consumption and overall latency. 
 

Devices 

Data 

Size 

(GB) 

Transmission 

Time (s) 

Network 

Latency (s) 

Total 

Transmission 

Time (s) 

Device 1 1 0.01 0.001186 0.011186 

Device 2 5 0.05 0.001081 0.051081 

Device 3 10 0.1 0.001331 0.101331 

Device 4 20 0.2 0.00132 0.20132 

Device 5 50 0.5 0.001169 0.501169 

Total Simulation Time: 0.003001 (s) 

Tab. 3.  Data transmission efficiency in 6G networks. 

 

Fig. 4.  Encryption time for different character types. 
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Fig. 5.  Encrypted data size for different character types. 

Figure 4 shows encryption times for numeric, alphanu-

meric, and special character data. The encryption time is 

quite stable (0.00104 s–0.00106 s), indicating that  

KP-ABE+ECC efficiently processes different data formats 

without significant performance fluctuations. This 

demonstrates how the approach maintains efficiency due to 

its optimized key management and lightweight ECC 

operations. 

Figure 5 shows the encrypted data sizes for different 

character types. Alphanumeric data produces a larger en-

crypted size (187.45 bytes) compared to numeric 

(80.16 bytes) or special characters (41.57 bytes). This is be-

cause KP-ABE's attribute-based encryption process employs 

policy-based encryption, which introduces metadata, result-

ing in a marginal increase in output size. This enables an ef-

ficient storage system that dynamically adapts encryption 

and maintains security. 

Table 4 depicts that the model has a quadratic compu-

tational complexity, expressed as O(L  N2 + D), where L is 

the number of layers, N is the number of neurons per layer, 

and D is the size of the dataset. This complexity arises be-

cause each neuron connects to multiple neurons in the next 

layer, resulting in quadratic scaling of network size. Factors 

influencing complexity include the number of layers, the 

number of neurons per layer, and the dataset size, which di-

rectly affect training and inference costs. However, the 

model is efficient, with a training time of 3.2 hours on 

an NVIDIA RTX 3090 GPU for a 50,000-sample dataset 

and a low inference time of 12 milliseconds per image, mak-

ing it suitable for real-time applications. Compared to con-

ventional methods, our method reduces execution time by 

40%, reflecting a balanced trade-off between computational 

complexity and performance. 
 

Aspect Details 

Mathematical model complexity O(L  N2 + D) 

Factors influencing complexity L, N, D 

Training time 3.2 hours 

Inference time 12 milliseconds 

Comparison with other models 40% reduction in execution time 

Tab. 4.  Complexity and computational performance of the 

proposed model. 
 

Metric IoT-Sense TON IoT 

Encryption time (s) 0.001 0.0015 

Decryption time (s) 0.00108 0.0016 

Security level (%) 98 85 

Computational overhead (%) 20 40 

Tab. 5.  Generalization performance of the proposed model 

metrics. 

4.4 Result of the Proposed Model’s Perfor-

mance across Different Datasets  

To further validate the robustness and generalizability 

of the model, we validate our proposed model with other da-

tasets that were not part of the training dataset. We utilize 

the TON_IoT Datasets, which include heterogeneous data 

sources collected from telemetry datasets of IoT and IIoT 

sensors, operating systems datasets of Windows 7 and 10, as 

well as Ubuntu 14 and 18 TLS and network traffic datasets. 

The datasets were collected from a realistic and large-scale 

network designed at the Cyber Range and IoT Labs, the 

School of Engineering and Information Technology (SEIT), 

UNSW Canberra the Australian Defense Force Academy 

(ADFA). From these data, we use network datasets collected 

in the packet capture (pcap) formats, log files, and CSV files 

of the ZEEK (Bro) tool. It consists of 46 features and a ser-

vice profile for connection activity, statistical activity, DNS 

activity, SSL activity, HTTP activity, violation activity, and 

data labeling. 

Table 5 demonstrates that the model’s performance on 

the TON_IoT [30] dataset was not significantly different 

from that on the IoT Sense datasets [29]. It shows that our 

proposed model is better generalized across various datasets. 

The successful validation of our model using the TON_IoT 

dataset (external dataset) highlights its potential for real-

world IoT applications. 

4.5 Performance Comparison 

Table 6 displays the comparative performance of the 

proposed hybrid scheme, combining KP-ABE and ECC, 

along with various cryptographic methods, including  

KP-ABE, ECC, AES, RSA, and ElGamal. The results indi-

cate that the proposed hybrid method is superior to the others 

in terms of high efficiency and security, with reduced com-

putational overhead and transmission delay. The detailed 

performance evaluation is illustrated in the figures that follow. 

Figure 6 illustrates the comparison of the encryption 

efficiency between different cryptographic schemes. The 

proposed KP-ABE+ECC approach achieves the highest ef-

ficiency at 95%, outperforming KP-ABE (80%), ECC 

(85%), AES (70%), RSA (75%), and ElGamal (78%). The 

combination of KP-ABE with ECC optimizes key manage-

ment and eliminates redundant encryption processes. Com-

pared to traditional methods, which require larger key sizes 
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Metrics Proposed (KP-ABE + ECC) KP-ABE [26] ECC [27] AES [31] RSA [32] ElGamal [33] 

Encryption Efficiency (%) 95 80 85 70 75 78 

Computational Overhead (%) 20 35 30 50 40 38 

Security Level (%) 98 85 90 75 88 92 

Latency (ms) 10 25 20 30 35 28 

Tab. 6.  Comparative analysis of encryption methods performance metrics. 

 

Fig. 6.  Comparison of encryption efficiency. 

and increased computational resources, the proposed ap-

proach significantly enhances encryption speed without 

compromising security, making it highly suitable for re-

source-constrained IoT networks. 

Figure 7 represents the comparison of the computa-

tional overhead of the proposed model with that of existing 

ones. The proposed KP-ABE+ECC framework incurs only 

20% overhead, which is significantly lower than that of  

KP-ABE (35%), ECC (30%), AES (50%), RSA (40%), and 

ElGamal (38%). This reduction is achieved through the 

combination of KP-ABE with ECC, which enables efficient 

key distribution and low-complexity encryption, resulting in 

considerable reductions in computational costs compared to 

other approaches that are computationally expensive due to 

the large key operations. This renders our approach very ef-

ficient for resource-limited environments where processing 

power is limited. 

Figure 8 represents the comparison of the security level 

of the proposed model with that of existing ones. The pro-

posed KP-ABE+ECC approach achieves 98% security, out-

performing all other methods, including KP-ABE (85%), 

ECC (90%), AES (75%), RSA (88%), and ElGamal (92%). 

The security level is high due to the combination of fine-

grained access control in KP-ABE and robust cryptographic 

resistance of ECC. While other approaches are vulnerable to 

brute-force attacks at smaller key sizes, the proposed ap-

proach ensures quantum attack resistance without compro-

mising efficiency. This makes it highly applicable for next-

generation IoT and 6G networks. 

Figure 9 represents the comparison of the latency of the 

proposed model with that of existing ones. The proposed 

method achieves the lowest latency at 10 ms, significantly 

outperforming KP-ABE (25 ms), ECC (20 ms), AES 

(30 ms), RSA (35 ms), and ElGamal (28 ms). The lower la-

tency is due to the optimized key generation and faster en-

cryption/decryption cycles in ECC. Conversely, other ap-

proaches have greater latencies because of computationally 

costly modular exponentiation. This improvement makes 

our approach highly suitable for time-sensitive IoT applica-

tions such as smart healthcare, autonomous vehicles, and in-

dustrial automation. 

The time consumption analysis highlights the overall 

efficiency of our proposed approach. Figure 10 demon-

strates that our proposed technique exhibits significantly 

lower computational time of 15 ms compared to conven-

tional encryption techniques, including KP-ABE (30 ms), 

ECC (25 ms), AES (40 ms), RSA (45 ms), and ElGamal 

(38 ms). By reducing the complexity of key generation and 

decryption, our framework enhances real-time performance 

while maintaining security. This makes the system efficient 

for large-scale IoT deployments. 

 

Fig. 7.  Comparison of computational overhead. 

 

Fig. 8.  Comparison of security level. 

 

Fig. 9.  Comparison of latency. 
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Fig. 10.  Comparison of time consumption. 

4.6 Security Analysis  

The blockchain’s intrinsic characteristics provide a ro-

bust foundation for the proposed model. This decentralized 

approach enhances the system's overall security. 

Figure 11 illustrates the security analysis of blockchain 

integration. The system achieves a 98% security level, which 

is significantly higher than the 72% achieved without block-

chain. This is due to the incorporation of immutable block-

chain logging, smart contract-based authentication, and the 

PoS-FSA consensus mechanism, which collectively prevent 

unauthorized changes, DDoS attacks, and data tampering. 

The PoS-FSA mechanism conserves energy while ensuring 

high security, making it more suitable for IoT applications. 

Figure 12 illustrates the entropy curve for the number 

of key generations. Entropy measures the randomness of the 

encryption keys in key generation. The high entropy value 

 

Fig. 11.  Security analysis of blockchain. 

 
Fig. 12.  Entropy analysis. 

denotes more unpredictable and secure cryptographic keys. 

The increasing number of key generations indicates that the 

system maintains high-security standards during key gener-

ation. 

4.7 Discussion 

The experiments conducted during our research have 

demonstrated the effectiveness of SeCo2 for the promising, 

secure, and adaptive framework of 6G-IoT networks, utiliz-

ing insights from the IoT Sense dataset. The outcome reveals 

significant improvements in encryption and decryption op-

erations, as well as blockchain transaction latency and net-

work performance enabling security with minimal computa-

tional overhead while achieving a high encryption efficiency 

of 95% by using hybrid KP-ABE and ECC encryption mech-

anisms.  

This work has initiated the development of a secure 

method for managing IoT networks, addressing fundamental 

issues such as latency reduction and optimized data pro-

cessing, with a security level of 98% achieved through the 

use of blockchain technology. Furthermore, the proposed 

framework demonstrates practical applicability in real-

world scenarios, such as smart healthcare to ensure secure 

patient data transmission, intelligent transportation to pro-

vide safe vehicle-to-infrastructure communication, and in-

dustrial IoT contexts for encrypted machine-to-machine in-

teraction. The capture of advanced models and 

hybridizations highlights the potential for enabling seamless 

and secure communications in resource-constrained IoT, 

paving the way for robust implementations in future 6G net-

works. 

5. Conclusion 

The study proposed a framework, SeCo2, for integrat-

ing CSC into the 6G-IoT networks through a combination of 

blockchain-based infrastructure for security and efficient 

data transmission. We have successfully developed a frame-

work to address the pressing challenges of data security, in-

tegrity, and adaptability in existing IoT networks. Past re-

search has identified gaps, including vulnerabilities in data 

encryption and scalability issues in blockchain implementa-

tions. Thus, using KP-ABE and ECC improves security and 

data integrity with a 20% reduction in computational over-

head, achieving efficiencies of 95% encryption and 98% se-

curity compared to existing classical methods. Based on this 

research, we also propose solutions that deliver scalable, en-

ergy-efficient end-to-end IoT communication with tamper-

proof provenance logging and secure data transfer. This 

framework enables secure and low-latency data transfer in 

real-world applications such as smart healthcare, industrial 

IoT, and intelligent transportation systems by ensuring effi-

cient bandwidth utilization and enhanced security. Future 

work will focus on ultra-dense 6G-IoT scenarios and explore 

quantum-resilient methods for enhanced security against 

ever-evolving cyber threats, aiming to make networks more 

resilient and intelligent. 
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