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Abstract. Segmenting brain tumors is important for effective 

diagnosis and treatment planning. Conventional 3D seg-

mentation models achieve high accuracy but are computa-

tionally intensive, often limiting real-time applicability. In 

this study, pseudo-3D convolutions, which consist of spatial 

and depthwise convolutions, are used in place of traditional 

3D convolutions. Adaptive Dilated Multi-Fiber (DMF) units 

dynamically extract multi-scale features and parallel Multi-

Fiber (MF) units combine them with weighted sum. Efficient 

Channel Attention (ECA) and Cross Attention improve fea-

ture selection and fusion in decoder and encoder. Structured 

pruning reduces superfluous parameters and Quantization 

Aware Training (QAT) increases the speed of inference with 

the model converted to INT8 precision. Combination of Dice 

Loss and Boundary Loss enhances the precision of tumor 

boundaries. The framework has been evaluated on the 

BraTS 2021 data validation set and achieved high Dice 

scores of Whole Tumor 91.85%, Tumor Core 88.52%, and 

Enhancing Tumor 85.55%, with Hausdorff95 values of 

2.58 mm, 3.53 mm, and 3.65 mm. Our proposed model re-

quires only 3.57M parameters and 21.26 GFLOPs, achiev-

ing an inference time of 0.016 seconds per 3D volume while 

maintaining precision alongside efficiency to clinical appli-

cation. 
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1. Introduction 

In a clinical context, brain tumor segmentation is an in-

tegral part of one’s diagnosis, treatment strategy, and moni-

toring of a neurological disease. Providing accurate segmen-

tation helps the necessary precautions and information 

needed for surgery and radiotherapy as well as progression 

tracking and evaluation of the treatment results [1], [2]. De-

cision making accuracy and speed are both vital factors 

while determining the desired outcome within a patient [3]. 

There is a fundamental need for optimization between ut-

most getting care to patients with brain tumor and computa-

tional resources. 

Delineating three specific tumor regions on multi-

modal MRI scans is effective in brain tumor segmentation. 

The Enhancing Tumor (ET) refers to the actively growing 

tumor region visible on contrast-enhanced scans, providing 

crucial insights into aggressive tumor behavior [4]. The Tu-

mor Core (TC) region includes both the surrounding edema 

as well as the necrotic and enhancing tumor regions, this is 

important for the understanding of the tumor central struc-

ture and progression. Whereas the Whole Tumor (WT) re-

gion represents the entire tumor structure which provides 

an overview of the extent and impact on surrounding brain 

tissue. These segmentation regions are helpful during treat-

ment planning and clinical decision making and have shown 

rapid progress in automated segmentation and expert label 

validation [5]. 

It is important to note that there are significant compu-

tational implications while processing volumetric 3D MRI 

data for brain tumors segmentation. The most common 3D 

CNNs, like the 3D U-Net [6] and V-Net [7], are built upon 

multiple frameworks of 3D convolutions to accomplish this. 

Indeed, these architectures exhibit highly accurate segmen-

tation. However, the multi-resolution designs lead to in-

creased memory and computation requirements, rendering 

such approaches nonviable for coarse-grained or real-time 

clinical applications [8]. Ensemble models, as well as opti-

mized 3D U-Net, have proven to achieve better segmenta-

tion, yet their implementation comes at the price of increased 

computational overhead and time expenditure. This limits 

the usability of these methods in decision-making sensitive 

situations, which are time constrained [9], [10]. 

It is an understatement that a balance has to be struck 

between segmentation accuracy and computational speed 

when it comes to brain tumor segmentation. Simplified ar-

chitectures designed to enhance speed risk compromising 

segmentation precision, while highly accurate models may 

be too slow for practical use [11]. Developing optimized 

models that effectively balance these factors is essential for 
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advancing brain tumor segmentation in clinical practice, en-

suring both accuracy and efficiency [12]. 

2. State of the Art 

Recent studies have proposed strategies to address 

these challenges. For instance, 3D-ESPNet which extends 

ESPNet a fast and efficient network based on point-wise 

convolution for 2D semantic segmentation to 3D medical 

volumetric imaging data describes a significant decrease in 

the volumetric reasoning computational costs [13]. Analo-

gously, SD-UNet uses separating 3D convolutions, splits 

each convolution into three parallel branches with the aim of 

decreasing the learnable parameters, thus increasing the ef-

fectiveness of the model [14]. While these lightweight archi-

tectures have made strides in computational efficiency, their 

segmentation performance often falls short of state-of-the-

art models. 

Real-time inference has been achieved during the 3D 

brain MRI segmentation process with high levels of accu-

racy. This is just one of many benefits brought on by multi-

branch sharing networks [15]. Improved segmentation per-

formance has been reported [16] due to the use of cascaded 

convolutional networks which have been used to optimize 

memory expenditure, model complexity, and the field of 

view. There is, however, a need for further development in 

the lightweight, real-time, and highly efficient models that 

can be used in clinical practices. These models are clearly 

quite different from the traditional ones employed in today’s 

setting which are overly complex, inefficient, and tedious.  

Efficiency in computation accompanied by a potential 

increase in feature representation and segmentation perfor-

mance can be achieved through the use of attention mecha-

nism and parallel convolution integration as seen in LATUP-

Net and other extension models [17]. Additionally, research 

in segmentation tasks can focus on enhancing the ensemble 

deep learning models that have already shown an increase in 

classification accuracy with brain tumor grading [18]. 

Development of real time clinical applications requires 

further research even with advancements made so far. The 

goal is to complete ongoing efforts which involves creating 

models that achieve optimal accuracy metrics in segmenta-

tion while also being low in complexity to facilitate practical 

use in clinical settings with time constraints. 

The DMFNet, proposed by Chen et al. [19], introduced 

a novel approach to 3D brain tumor segmentation by utiliz-

ing multi-fiber units with group convolutions to achieve 

computational efficiency while maintaining high segmenta-

tion accuracy. The application of dilated convolutions cre-

ated an improved multi-scale feature representation, and 

a multiplexer moved information around efficiently through 

grouped residual units. With such few parameters and the 

ability to process volumes in milliseconds while maintaining 

powerful performance on the BraTS 2018 dataset, DMFNet 

proved its strong real-time capabilities, however, it suffered 

from severe drawbacks. Among it, reliance on expensive full 

3D convolutions and inability to adapt dilation rates to dif-

ferent scales of lesions was the biggest one. 

Inspired by the work of Chen et al., in this study 

DMFNet is built upon to propose a novel framework that 

achieves superior segmentation accuracy and computational 

efficiency. Previous efforts such as Liu et al. [20] and Wang 

et al. [21] introduced early use of dilated pseudo-3D convo-

lutions and multi-direction fusion techniques for brain tumor 

segmentation, which laid the foundation for designing com-

putationally efficient yet accurate models. First, full 3D con-

volutions in the residual units and multi-fiber design are re-

placed with pseudo-3D convolutions, which decompose 

operations into spatial 3×3×1 and depthwise 1×1×3 convo-

lutions, significantly reducing FLOPs while retaining volu-

metric context. Lightweight attention mechanisms, includ-

ing Efficient Channel Attention (ECA) [22], and Cross 

Attention are incorporated to enhance feature interactions 

and refine encoder-decoder feature fusion. Structured prun-

ing techniques are applied to remove redundant parameters 

at the channel and layer levels [23], creating a lightweight 

model without sacrificing accuracy. Additionally, Quantiza-

tion-Aware Training (QAT) [24] is employed to convert the 

model to INT8 precision, further accelerating inference. 

To integrate Dice Loss with Boundary Loss was neces-

sary to increase the segmentation accuracy and aid in the de-

tection of small lesions alongside their boundaries. Auxiliary 

segmentation heads were introduced to inspire Multi-Scale 

Feature Learning during training. The fixed dilation strate-

gies have been substituted with dynamic feature selection 

mechanisms that pick out the relevant features, while sub 

pixel convolution replaces the trilinear interpolation 

equipped in the decoder to enhance spatial detail recovery. 

Evaluated on the BraTS 2021 and 2020 dataset, the 

proposed model demonstrates superior performance, achiev-

ing higher Dice scores, reduced Hausdorff Distance (HD95), 

and an inference time of 0.016 seconds per 3D volume. This 

work solves the real-time segmentation bottlenecks of com-

puting tackling the issues of segmentation accuracy and 

computational efficiency and making it easier to use deep 

learning models in clinical settings. Our main contributions 

are the following: 

(1) In the proposed framework the conventional 3D 

convolutions are replaced with pseudo-3D convolutions, de-

composing operations into spatial 3×3×1 and depthwise 

1×1×3 convolutions, significantly reducing computational 

overhead while retaining volumetric context. 

(2) In adaptive DMF unit relevant features are dynam-

ically selected through adaptive weighting mechanisms, im-

proving multi-scale representation and segmentation preci-

sion. 

(3) In parallel MF units the features from parallel fibers 

are efficiently aggregated while the adaptability is main-

tained via weighted summation. 

(4) In ECA modules feature weighting is enhanced, en-

abling the network to focus on critical regions with minimal 

computational cost. 
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(5) Structured pruning techniques eliminate redundant 

parameters at both the channel and group levels, reducing 

model complexity and memory usage. 

(6) QAT converts the model to INT8 precision, accel-

erating inference without sacrificing accuracy. 

(7) The integration of Dice Loss and Boundary Loss 

improves boundary precision and enhances the detection of 

small lesions. 

These contributions tackle the issue of segmentation of 

brain tumors in a practical way which is crucial for clinical 

use. 

The rest of the article is organized as follows. Section 3 

covers the methodology, including data preprocessing and 

the proposed architecture, which is detailed with an over-

view of the framework and its key components, such as 

pseudo-3D convolutions, multi-fiber designs, and DMF 

units. Section 4 presents the experimental setup, including 

the dataset, training settings, and evaluation metrics, fol-

lowed by results and analysis covering ablation studies, 

quantitative results, and qualitative analysis. In Sec. 5 the 

key findings and future directions are concluded, followed 

by acknowledgments.   

3. Method 

3.1 Data Preprocessing  

Our preprocessing pipeline for brain tumor segmenta-

tion was designed to ensure consistency and standardization 

across MRI data. The initial scans underwent a series of pre-

processing techniques to get them ready for segmentation. 

The first step was the application of N4ITK bias field cor-

rection, which was used to reduce intensity inhomogeneities 

which stemmed from the magnetic field fluctuations during 

the image capturing process.  

Let I represent the original voxel intensity and B the 

estimated bias field. The corrected intensity, denoted as Ic, 

was computed 

  
 

 c
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  , ,     .

, ,  

I x y z
I x y z

B x y z
  (1) 

The various stages of our preprocessing pipeline are 

shown in Fig. 1. Specifically, (a) shows MRI modalities af-

ter applying N4ITK bias field correction, (b) depicts the 

original and cropped MRI slices along with their segmenta-

tion masks, and (c) visualizes the normalization process with 

voxel intensity mapping. 

The original MRI scans consist of 155 × 240 × 240 

voxels, representing 155 slices per scan with each slice 

measuring 240 × 240 pixels. Regardless of these previously 

stated issues, the intensity values of the MRI scan are often 

inconsistent on account of the differing acquisition settings. 

The developers of the BraTS datasets have carried out ex-

tensive pre-processing operations which include: interpolat-

ing to a standardized resolution of 1 mm3, putting through 

co-registration to an anatomy template, and skull stripping 

to get rid of the areas that are not of the brain. 

To ensure compatibility with the deep learning model, 

all the imaging modalities and their corresponding segmen-

tation masks were resampled to a uniform spatial resolution 

of 128 × 128 × 128 voxels. This process was done using im-

age modality nearest interpolation for image modalities and 

trilinear interpolation for segmentation masks. Let Ir repre-

sent the resampled intensity, and fx, fy, fz  denote the coordi-

nate mapping functions. The resampling process can be ex-

pressed as 

         xr y z, ,, ,I f f fyIx y z x z       (2) 

where (x′, y′, z′) are the new coordinates in the resampled 

space. 

 

Fig. 1.  MRI preprocessing steps including (a) MRI modalities after N4ITK bias correction; (b) Original vs. cropped MRI and segmentation 

masks, and (c) MRI slices with intensity mapping before and after normalization. 
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To reduce variability across datasets, intensity normal-

ization was applied by scaling voxel intensities to the range 

[0,1] as suggested by Patro et al. [25]. Let In denote the nor-

malized intensity, and Imin and Imax represent the minimum 

and maximum intensity values respectively within the mo-

dality and is calculated by 

 r  min
n

max min

 
   

 

I I
I

I I





 (3) 

which ensuring that all intensities are normalized for con-

sistent input to the model. Finally, the normalized modalities 

were combined into a single 4D array, denoted as A, with 

dimensions C × H × W × D where C is the number of chan-

nels, and H, W, D are the spatial dimensions. The prepro-

cessed data, including A and the resized segmentation mask, 

was saved in HDF5 format with GZIP compression for effi-

cient storage and loading. 

3.2 Proposed Architecture Overview 

3.2.1 Overview of the Framework 

Figure 2 shows the overview of the proposed brain tu-

mor segmentation framework, which integrates pseudo-3D 

convolutions, attention mechanisms, pruning strategies, 

QAT, and advanced loss functions to achieve high efficiency 

and accuracy. The process begins with the input stage, which 

accepts 4-channel 3D medical images of dimensions 

4 × 128 × 128 × 128. This input is passed to the initial 

pseudo-3D convolution layer. The initial pseudo-3D convo-

lution layer replaces traditional 3D convolutions with effi-

cient pseudo-3D convolutions, combining spatial 3 × 3 × 1 

and depthwise 1 × 1 × 3 convolutions, reducing the output di-

mensions to 32 × 64 × 64 × 64 with a stride of 2. 

The encoder stage comprises two sets of DMF units, 

ECA modules and pruning for computational optimization. 

The first set of DMF units reduces the dimensions to 

128 × 32 × 32 × 32, where pruning reduces the number  

of groups from g = 16 to g = 8. The second set of DMF units 

further reduces the dimensions to 256 × 16 × 16 × 16, with 

additional pruning applied. Each DMF unit utilizes pseudo-

3D convolutions, and ECA modules enhance feature 

weighting. The encoder stage is followed by the bottleneck 

stage, represented as a DMF unit with adaptive dilation, dy-

namically adjusting dilation rates to capture multi-scale fea-

tures. The bottleneck module significantly reduces the ten-

sor dimensions from 384 × 8 × 8 × 8 to 256 × 8 × 8 × 8. 

The decoder stage reconstructs the segmentation map 

by progressively upsampling the feature maps while inte-

grating skip connections from the encoder. The first stage in 

the decoder is a MF unit with cross-attention, outputting di-

mensions of 256 × 8 × 8 × 8. This is followed by three up-

sampling blocks, each doubling the spatial resolution. The 

first block outputs dimensions of 256 × 16 × 16 × 16 with 

a skip connection from the second set of DMF units. The 

second block outputs dimensions of 256 × 32 × 32 × 32 with 

a skip connection from the first set of DMF units. The final 

block outputs dimensions of 128 × 64 × 64 × 64 with a skip 

connection from the initial pseudo-3D convolution layer. 

The final pseudo-3D convolution layer reduces the 

dimensions to 32 × 128 × 128 × 128 using a 1 × 1 × 1 

convolution. This is followed by the output stage, which 

includes an upsampling block and a softmax layer, both with 

dimensions 4 × 128 × 128 × 128. The final output represents 

segmented tumor regions, categorized into ET, TC, and WT 

classes. 

Apart from these steps, QAT is used to convert the 

model to INT8 precision which improves inference speed 

while maintaining optimal accuracy. Combination of Dice 

Loss and Boundary Loss is used to improve boundary preci-

sion and enhance the detection of small lesions. Fixed dila-

tion rates within the bottleneck are replaced by adaptive 

weighting which allows the decoder to select relevant fea-

tures for improved multi-scale feature representation. Addi-

tionally, the decoder replaces trilinear interpolation with 

sub-pixel convolution, which enhances segmentation map 

detail. 

 

Fig. 2.  Proposed brain tumor image segmentation architecture. 
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In this architecture pseudo-3D convolutions, light-

weight attention mechanisms, pruning, QAT, and refined 

loss functions are integrated in order to boost segmentation 

efficiency as well as accuracy.  

3.2.2 Key Components of the Proposed Architecture 

(1) Residual unit with pseudo-3D convolutions 

The residual unit with pseudo-3D convolutions, as il-

lustrated in Fig. 3(a), is designed to enhance computational 

efficiency while preserving feature integrity. The unit begins 

with an input channel Cin, which undergoes a spatial convo-

lution operation 3 × 3 × 1, producing an intermediate output 

channel Cmid. This is followed by a depthwise convolution 

operation 1 × 1 × 3, resulting in the final output channel Cout. 

A residual shortcut connection directly links the input Cin to 

the output Cout, combining both pathways through an addi-

tion operation. This structure allows the gradient and fea-

tures to flow efficiently, and since we prefer pseudo-3D con-

volutions over 3D convolutions, the computational expenses 

are kept minimal. 

(2) Multi-fiber design with grouped residual units 

As shown in Fig. 3(b), three parallel fibers are incorpo-

rated, each representing a residual unit enhanced by pseudo-

3D convolutions. In each fiber, the input channels are di-

vided by the number of fibers, g, for computational effi-

ciency. A spatial convolution 3 × 3 × 1 processes the input 

Cin / g, producing intermediate channels Cmid / g which is fol-

lowed by a depthwise convolution 1 × 1 × 3, resulting in out-

put channels Cout / g. A residual shortcut connects the input 

Cin / g directly to the output Cout / g in each fiber, ensuring 

feature preservation. As a result of allocating the channels 

over fibers, the overall parameter count comes down by g 

which optimizes the computational cost without diminishing 

the output performance.  

(3) MF Unit  

The MF unit with enhanced residual and adaptive fu-

sion in Fig. 3(c) describes an architecture that is capable of 

collecting features from multiple parallel fibers and incorpo-

rating them into a single output in such a way that adaptabil-

ity is achieved through weighted summation. Every fiber 

processes the input data independent of each other which is 

powered by a pseudo 3D spatial convolution 3 × 3 × 1 and 

also a depthwise 1 × 1 × 3 convolving. All the fibers’ outputs 

are collected and summed together by the weighted summa-

tion block dynamically and in real time. 

In the weighted summation block, learnable scalar 

weights w1, w2, and w3 are applied to the outputs of the fibers 

F1, F2, and F3  enabling the model to adjust the contribution 

of each fiber based on the task requirements. Mathemati-

cally, the output of the block is represented by 

 
o 1 1 2 2 3 3                   F w F w F w F       (4) 

where Fi denotes the feature map from the i-th fiber. This 

adaptive fusion mechanism provides effective feature aggre-

gation without incurring remarkably high computational 

costs, thereby augmenting the unit's efficiency in extracting 

intricate spatial and depthwise features. 

 

Fig. 3.  Built blocks in the proposed architecture including: (a) Residual unit with pseudo-3D convolutions; (b) Multi-fiber design with grouped 

pseudo-3D residual units; (c) MF unit with adaptive fusion, and (d) DMF unit with adaptive weighting. 
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Fig. 4.  Comparison of 3D dilated and pseudo-3D convolution in the proposed pipeline. 

Furthermore, the MF unit has an auxiliary loss branch 

that emanates from the output of the weighted summation 

block. This branch facilitates exit loss and provides gradient 

intermediate supervision during training, thus ameliorate 

convergence. 

(4) DMF unit 

The DMF unit with adaptive weighting, as shown in 

Fig. 3(d), captures multi-scale features through parallel 

branches with distinct dilation rates d = 1, d = 2, and d = 3. 

Each branch processes the input using pseudo-3D convolu-

tions, consisting of a spatial convolution 3 × 3 × 1 followed 

by a depthwise convolution 1 × 1 ×3, and applies adaptive 

weights w1, w2, and w3  to adjust the contribution of each 

branch. The outputs of the branches are aggregated at a sum 

node, producing refined multi-scale features directed to the 

output feature maps. This design efficiently combines multi-

scale information while reducing computational overhead. 

(5) Schematic of 3D dilated and pseudo-3D convolu-

tion operations 

To better understand the architectural improvements in 

our model, it is important to visualize how convolution op-

erations differ in structure and computation. The differences 

between conventional 3D dilated convolutions and the pro-

posed pseudo-3D convolution design are illustrated in Fig. 4. 

It can be seen from Fig. 4 that the left panel illustrates 

3D dilated convolutions with varying dilation rates d = 1, 

d = 2, and d = 3, which increase the receptive field to capture 

multi-scale contextual information. Every dilation factor 

corresponds to grids whose points are arranged proportion-

ate to the dilation factor. The grids intensify the phenomenon 

that higher dilation rates lead to coarser sampling and 

broader spatial coverage meaning that dilated convolutions 

can leverage both local textures and global information. 

The right panel of Fig. 4 demonstrates the decomposi-

tion of a standard 3D convolution 3 × 3 × 3 into two sequen-

tial operations, specifically a spatial convolution 3 × 3 × 1 

followed by a depthwise convolution 1 × 1 × 3. This design 

of pseudo-3D convolution avoids the high computational 

cost by splitting the expensive 3D operation into less expen-

sive 2D and 1D operations. The grids show how spatial fea-

tures are first processed in a plane, and then the volumetric 

dimension is processed depthwise. Such designing achieves 

the application of these 3D convolutional neural networks 

without incurring the high cost of FLOPs, and is therefore 

useful for volumetric medical imaging tasks. 

4. Experimental Results and Analysis 

4.1 Experimental Setup 

To check how well the algorithm works for the pro-

posed brain tumor segmentation task, a set of experiments 

were set up to compare the results obtained with different 

algorithms developed for the task. The experiments were 

performed on a high-performance system featuring an Intel 

Core i9-14900K processor with 24 cores running at a fre-

quency of 6.0 GHz, an Nvidia GeForce RTX 3090 GPU with 

24 GB VRAM, 1 TB HDD, 500 GB SSD, and 48 GB RAM. 

The software platform utilized included Python 3.9, CUDA 

11.8, and PyTorch 2.0.0, alongside other relevant Python 

function libraries. Furthermore, this architecture was built 

and tested with Keras running on TensorFlow 2.15 for model 

building purposes. 
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4.2 Dataset and Training Settings 

In this study, the proposed model is trained and vali-

dated using the Brain Tumor Segmentation (BraTS) bench-

mark datasets, including BraTS 2020 [26] and BraTS 2021 

[27], which are widely used in the medical image analysis 

community for evaluating brain tumor segmentation algo-

rithms. BraTS 2021, an extension of the BraTS 2020 dataset, 

comprises a total of 1251 patient cases covering both high-

grade gliomas (HGG) and low-grade gliomas (LGG). In 

comparison, BraTS 2020 includes MRI data from 369 pa-

tients, with 76 cases diagnosed as LGG and the remaining 

cases classified as HGG. An example of multi-modal MRI 

scans with expert-labeled ground truth segmentation is 

shown in Fig. 5(a). 

We can see from Fig. 5(a) that the multi-modal MRI 

scans provide complementary information for tumor charac-

terization, with each modality highlighting different tissue 

properties. Both datasets consist of 3D MRI scans, each 

comprising 155 slices with an original resolution of 

240 × 240 pixels per slice. The scans include four imaging 

modalities: T2, T1, T1ce, and FLAIR, each offering distinct 

diagnostic insights. T1-weighted images capture anatomical 

structures, differentiating gray and white matter. T2-

weighted images emphasize areas with high water content, 

aiding in the visualization of edema. T1ce images, enhanced 

with contrast agents, highlight blood vessels and regions of 

active tumor growth. FLAIR images suppress cerebrospinal 

fluid signals, allowing better identification of subtle lesions 

and anomalies linked to tumor expansion. 

Ground truth segmentation masks, annotated by one to 

four expert neuroradiologists, include four primary classes: 

background (BG, Label 0), necrotic and non-enhancing tu-

mor (NCR/NET, Label 1), edema (ED, Label 2), and en-

hancing tumor (ET, Label 4). Figure 5(b) shows an example 

of a typical MRI scan including labeled ground truth seg-

mentation masks, where green represents necrotic and non-

enhancing tumor regions (NCR/NET, Label 1), red high-

lights edema regions (ED, Label 2), and yellow denotes en- 

 

Fig. 5.  Visual examples of the dataset including: (a) Multi-

modal MRI scans and expert-labeled ground truth for 

a patient. (b) Ground truth segmentation on an MRI 

scan: green denotes necrotic and non-enhancing tumor 

regions (NCR/NET, label 1), red represents edema (ED, 

label 2), and yellow highlights enhancing tumor regions 

(ET, label 4). 

hancing tumor areas (ET, Label 4). These classes are com-

monly grouped into three main tumor regions for 

segmentation including: the whole tumor (WT), which en-

compasses NCR/NET, ED, and ET (Labels 1, 2, 4), the tu-

mor core (TC), which includes NCR/NET and ET (Labels 1, 

4), and the enhancing tumor (ET, Label 4).  

Since there was no official validation or test data avail-

able for BraTS 2020 and 2021, the proposed model was val-

idated with five-fold cross validation. The data was further 

split in 4 : 1 ratio for training and validation, thus ensuring 

a reliable evaluation. Training was conducted using the 

Adam optimizer with an initial learning rate set to 1  10–4. 

Due to GPU memory limitation, the model was trained with 

a batch size of 2 and gradient accumulation was imple-

mented to mimic a higher batch size. This kept computa-

tional burden under control while not playing a detriment to 

model performance. For achieving better model generaliza-

tion with respect to the training dataset and preventing over-

fitting, L2 regularization was employed to the parameters of 

the convolutional kernels with a magnitude of 0.02. This fac-

tor was chosen after thorough testing over the selection of 

the model. 

A total of 400 epochs were used to train the model for 

this task, while segmentation performance was optimized 

with a hybrid loss function of Dice Loss and Boundary Loss. 

To improve inference speed, the model was first converted 

to INT8 precision QAT. Collapsible structured pruning was 

then performed to remove unnecessary parameters in the 

model and improve performance. Along with pseudo-3D 

convolutions and ECA modules, these alterations ensured 

great segmentation performance of the model without sacri-

ficing speed. 

Data augmentation techniques were applied to enhance 

model robustness, such as the random flip along specified 

spatial axes, random shifts in the depth, height and width, 

and insertion of Gaussian noise with a standard deviation of 

0.01. These augmentations assisted with accurate segmenta-

tion by achieving the desired degree of detail preservation 

while improving the model performance in unseen data. 

4.3 Evaluation Metrics 

The proposed segmentation algorithm is used in seg-

menting the ET, TC, and WT regions from multimodal MRI 

images of the patients organized hierarchically with TC con-

taining ET and WT containing TC. To assess the perfor-

mance of the model for these regions, we calculated several 

metrics, such as Dice coefficient, sensitivity, specificity, 

95% Hausdorff distance (HD95), Giga Floating-Point Oper-

ations (GFLOPs), and inference time. Each measure exam-

ines an angle of the model’s capability which makes the 

evaluation framework more comprehensive. 

The Dice coefficient is the primary metric used to as-

sess the overlap between the predicted P and ground truth T 

tumor regions and is calculated by 

 
2

Dice
P T

P T

 



 (5) 
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where ⃓P∩T⃓ denotes the true positive pixels, and ∣P∣ and 

∣T∣ are the total predicted and actual pixels. A higher Dice 

score indicates greater accuracy in segmentation. 

Since the segmentation performance is evaluated sepa-

rately for each tumor subregion including ET, TC, and WT 

the task can be considered a set of binary segmentation prob-

lems. In this context, the Dice coefficient used in our evalu-

ation is mathematically equivalent to the F1-score, com-

monly used in classification tasks. The F1-score is given by 

 
1

2 TP
-score

2 TP FP FN
F




  
. (6) 

Thus, the reported Dice scores for ET, TC, and WT 

also represent the corresponding F1-score for these tumor 

subregions. 

Sensitivity, also referred to as the recall rate, measures 

the model’s ability to detect tumor regions and is defined by 

 Sensitivity .
P T

T


  (7) 

High sensitivity indicates effective tumor detection. 

Specificity measures the ability of the model to correctly 

identify non-tumor regions while minimizing false positives 

and is given by 

 
C C

C
Specificity

P T

T


  (8) 

where PC TC denotes the true negatives, and TC repre-

sents the total number of actual background pixels. Higher 

specificity indicates fewer false alarms in segmentation. The 

HD95 at the 95th percentile evaluates the boundary align-

ment between the predicted P and ground truth T tumor re-

gions and is calculated by 

       sup supinf inf, ,HD95 m x,   ,a
b B a Aa A b B

d a b d aA bB
  

  (9) 

where A and B denote the surfaces of T and P, respectively, 

a and b are points on their surfaces, and d (a, b) calculates 

the Euclidean distance between points. GFLOPs assess the 

computational complexity of the model by calculating the 

number of floating-point operations required for a single in-

put and is given by 

 2

1

GFLOPs      
L

i i i i

i

C H W K


     (10) 

where L is the number of layers, Ci is the number of input 

channels, Hi and Wi are the spatial dimensions respectively, 

and Ki is the kernel size. Lower GFLOPs indicate a more 

efficient model with reduced computational overhead. 

Furthermore, the model’s speed was determined by the 

time needed to segment a single 3D volumetric input. It is 

measured in seconds and is an important criterion to judge 

the potential of the model for real-time clinical use. 

4.4 Ablation Studies 

The findings of the ablation study displayed in Tab. 1 

further support the effectiveness of the proposed methodol-

ogy illustrating the impact of each element in the system un-

der consideration with respect to the whole system effective-

ness on the BraTS 2021 benchmark dataset. Beginning from 

the baseline of 3D convolutions, pseudo-3D convolutions 

greatly restrain FLOPs and parameters, enhancing efficiency 

and accuracy by simplifying operations on grouped residuals 

units further subdivide the channels and so optimize the 

computations while MF units increase the parameters 

slightly because of the adaptive fusion. 

Adaptive DMF units improve the multi-scale represen-

tation for an elemental increase in FLOPs and the ECA mod-

ules weight the features more effectively on computation 

cost. Structured pruning saves a lot of redundant parameters 

and improved efficiency through ECA modules, and further 

speeds the inference to 0.016 s per volume with QAT. The 

combination of Dice + Boundary Loss improves the training 

segmentation parameter accuracy while relieving constraints 

on parameters or FLOPs optimization. Emphasizing these 

features shows that this framework is clinically applicable 

due to its sufficiency in accuracy, speed and efficiency. 

4.5 Quantitative Results 

To evaluate the effectiveness of the proposed model, 

we present a detailed comparison of its performance with the 

existing segmentation models for brain tumors in BraTS 

2021 and BraTS 2020. This is presented in Tab. 2 and 

Tab. 3, with emphasis on metrics such as Dice and 

Hausdorff95 distances. 

 

Method 
Mean Dice (%) Mean HD95(mm) Params 

(M) 
FLOPs 

Inference 

Time WT TC ET WT TC ET 

3D Convolutions 86.12 81.42 78.73 8.89 10.54 12.23 5.86 42.31G 0.034s 

+ Pseudo-3D 87.23 82.87 78.65 8.21 11.98 10.67 3.52 32.24 0.027s 

+ Grouped Residual 86.78 83.23 79.12 9.92 10.34 11.12 2.99 25.79 0.023s 

+ MF Units 87.27 83.82 81.85 9.35 10.76 12.75 3.29 28.55 0.025s 

+ Adaptive DMF Units 88.62 84.02 82.10 7.10 9.34 9.12 3.78 29.74 0.026s 

+ ECA Modules 89.76 86.32 82.34 7.82 8.87 8.16 3.97 28.35 0.022s 

+ Structured Pruning 89.62 88.02 84.45 6.65 7.15 6.70 3.57 24.32 0.017s 

+ QAT (INT8 Precision) 91.15 88.02 84.73 4.58 6.53 5.65 3.57 21.26 0.016s 

+ Dice + Boundary Loss 91.85 88.52 85.55 2.58 3.53 3.65 3.57 21.26 0.016s 

Tab. 1. Ablation study results of the proposed framework on BraTS 2021. 
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Model Name 
Published 

Year 

Dice (%) HD95 (mm) 

WT TC ET WT TC ET 

Cao et al. [28] 2024 91.00 89.70 85.60 6.15 9.98 11.23 

Liu et al. [29] 2024 89.87 86.48 78.65 6.42 5.88 4.39 

Jiang et al. [30] 2022 91.83 84.75 83.21 3.65 14.51 16.03 

Zhou et al. [31] 2024 89.47 89.24 83.62 10.09 7.41 11.86 

Hou et al. [32] 2023 92.7 88.70 85.40 3.510 5.771 13.983 

Sun et al. [33] 2024 85.3 86.10 78.10 2.66 1.51 2.82 

Al-Fakih et al. [34] 2024 86.6 89.90 85.50 22.70 9.78 9.60 

Liu et al. [35] 2022 91.6 86.80 83.30 5.945 7.567 19.27 

Proposed ------ 91.85 88.52 85.57 2.583 3.537 3.657 

Tab. 2.  Comparison of the proposed model with state-of-the-art methods on BraTS 2021 data validation set. 
 

Model Name Published 

Year 

Dice (%) HD95 (mm) 

WT TC ET WT TC ET 

Alwadee et al. [36] 2025 88.41 83.82 73.67 3.19 4.24 3.97 

Magadza et al. [37] 2023 91.2 84.8 79.2 4.41 6.20 29.31 

Isensee et al. [38] 2021 91.2 85.1 79.9 3.69 7.82 23.50 

Yang et al. [39] 2023 95.30 94.53 90.53 2.20 1.59 1.32 

Pan et al. [40] 2025 90.57 83.35 78.72 10.61 10.08 15.88 

Diao et al. [41] 2024 91.10 86.34 79.41 5.20 5.85 3.30 

Zhao et al. [42] 2023 92.00 84.00 75.00 1.04 2.88 3.19 

Gao et al. [43] 2025 92.29 85.71 77.14 1.152 2.942 2.375 

Proposed ------ 90.63 87.16 84.31 2.9762 2.433 2.104 

Tab. 3.  Comparison of the proposed model with state-of-the-art methods on BraTS 2020 data validation set. 
 

Model 
Dice (%) HD95 (mm) 

WT TC ET WT TC ET 

Fold1 90.12 85.33 83.74 3.683 4.117 4.026 

Fold2 90.52 84.96 83.24 3.174 5.332 4.167 

Fold3 89.78 85.12 84.63 5.086 5.231 5.675 

Fold4 91.06 86.32 84.08 4.342 3.473 3.752 

Fold5 90.77 86.92 85.12 3.657 3.778 3.769 

Ensemble 91.85 88.52 85.55 2.583 3.537 3.657 

Tab. 4.  Five-fold cross-validation results on BraTS 2021 benchmark dataset. 
 

Model 
Dice (%) HD95 (mm) 

WT TC ET WT TC ET 

Fold1 89.84 85.54 83.71 3.675 4.086 4.021 

Fold2 90.25 84.92 83.96 4.132 3.122 3.436 

Fold3 90.02 84.72 82.72 3.074 2.765 2.331 

Fold4 90.14 85.77 84.12 4.772 3.564 4.164 

Fold5 89.97 84.87 83.24 3.121 3.012 4.232 

Ensemble 90.63 87.16 84.31 2.976 2.433 2.104 

Tab. 5.  Five-fold cross-validation results on BraTS 2020 benchmark dataset. 

It can be seen from Tab. 2 and Tab. 3 that the proposed 

model demonstrates strong performance on both 

BraTS 2021 and BraTS 2020 validation sets, achieving high 

Dice scores and superior HD95 values across all tumor sub-

regions. On BraTS 2021, it outperforms methods such as 

Cao et al. [28], Liu et al. [29], and Zhou et al. [31], main-

taining a balanced segmentation accuracy with significantly 

lower HD95 values, indicating superior boundary precision. 

While Hou et al. [32] reported a slightly higher Dice score 

for WT, the proposed model achieved the lowest HD95 val-

ues, demonstrating improved boundary delineation. 

Similarly, on BraTS 2020, the model outperforms Magadza 

et al. [37], Pan et al. [40], and Gao et al. [43], achieving su-

perior HD95 values, which signifies more accurate tumor 

boundary segmentation. Although Yang et al. [39] reported 

the highest Dice scores, the proposed model effectively bal-

ances segmentation accuracy, computational efficiency, and 

boundary precision. 

The superior performance of the proposed model can 

be attributed to several architectural innovations. For in-

stance, the switching out of traditional 3D convolutions for 
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pseudo 3D convolutions which drastically decreases compu-

tational costs while maintaining volumetric context. The 

multiscale representation and segmentation precision is fur-

ther enhanced by the adaptive DMF unit. Feature aggrega-

tion is done in parallel with MF units which increases effi-

ciency while also maintaining a high degree of flexibility. 

The model is able to concentrate on more relevant areas of 

the tumor while expending far less energy due to the ECA 

feature weighting method. Lastly, the combination of Dice 

Loss and Boundary Loss widens the multi scale representa-

tion and performs exceedingly well by increasing the bound-

ary accuracy and lesion detection which explains the models 

advanced HD95 scores. Lastly, Tables 4 and 5 show the 

five-fold cross validation results which demonstrate the ef-

ficiency of the model on the BraTS 2021 and 2020. 

The five-fold cross-validation results presented in 

Tab. 4 and Tab. 5 demonstrate the consistent and reliable 

performance of the proposed model on the BraTS 2021 and 

BraTS 2020 datasets. The ensemble results consistently out-

performed the individual folds, with Dice scores higher than 

the average of the five folds and HD95 values lower than the 

average. For instance, on BraTS 2021, the ensemble Dice 

score for WT was 91.85% compared to an average of 

90.45% across the five folds, while the HD95 value for WT 

was reduced to 2.583 mm from an average of 3.988 mm. 

Similarly, on BraTS 2020, the ensemble results showed 

a Dice score improvement and reduced HD95 values, further 

confirming the robustness of the proposed approach. Ensem-

ble models always perform better due to the pooling of var-

ious fold predictions where the strengths are complementary 

so as to minimize the weaknesses of folds. 

The ensemble procedure was done by first computing 

the softmax probability maps for the separate models and 

then picking the maximum probability class for every voxel. 

In segmentation, noisy and conflicting predictions are prev-

alent. This form of integration actively enhances spatial con-

tiguity and reduces overlapping classifications. The ensem-

ble technique reduces the chances of overfitting by blending 

in predictions from different training subsets, thus enhanc-

ing performance. 

The efficiency and accuracy of the framework has been 

further corroborated as seen in Tabs. 6 and 7. An efficiency 

comparison of other models using parameters such as 

FLOPs, parameter number and inference time is done in 

Tab. 8, showing the efficiency of the suggested model rela-

tive to segmentation accuracy. 

The proposed model achieves significant improve-

ments over existing methods on the BraTS 2021 and 

BraTS 2020 validation datasets, which can be seen in 

Tabs. 6 and 7. On BraTS 2021, it achieved the highest Mean 

Dice scores and superior boundary precision, with 91.85% 
 

Model 
Mean Dice (%) Mean Sensitivity (%) Mean Specificity (%) Mean HD95 (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

3D U-Net [6] 88.53 86.73 82.23 90.23 86.17  82.05 99.85 99.72 99.67 6.23 9.73 9.67 

TransBTS [44] 88.75 85.51 83.42 90.31 84.17 82.33 99.87 99.68 99.85 5.73 9.82 5.44 

TransUNet [45] 89.23 83.31 81.54 92.66 85.73 84.76 99.82 99.77 99.62 6.10 7.43 9.14 

Swin UNETR [46] 91.05 88.11 84.63 94.32 89.56 87.45 99.87 99.82 99.72 6.42 7.17 9.76 

Proposed 91.85 88.52 85.55 94.88 90.76 89.56 99.95 99.72 99.97 2.58 3.53 3.65 

Tab. 6.  Comparison of segmentation results of different models on BraTS 2021. 
 

Model 
Mean Dice (%) Mean Sensitivity (%) Mean Specificity (%) Mean HD95 (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

3D U-Net [6] 87.76 83.22 80.21 90.21 85.42 81.77 99.81 99.72 99.85 5.17 9.33 9.45 

TransBTS[44] 88.10 86.22 82.23 91.78 89.34 85.75 99.87 99.84 99.81 4.97 9.06 8.41 

TransUNet[45] 88.66 84.54 80.22 92.77 89.32 82.86 99.92 99.86 99.81 6.67 8.13 9.42 

Swin UNETR [46] 91.10 86.51 83.17 94.32 88.67 87.76 99.95 99.87 99.87 5.63 6.25 7.34 

Proposed 90.63 87.16 84.31 94.88 90.86 89.66 99.94 99.89 99.97 3.37 5.98 4.52 

Tab. 7.  Comparison of segmentation results of different models on BraTS 2020. 

Model Parameters (M) FLOPs (G) 

3D U-Net [6] 16.21 1670 

VcaNet [40] 79.32 1140.67 

Swin UNETR [46] 61.98 394.84 

TransBTS [44] 32.99 333 

DResU-Net [47] 30.47 374.04 

HNF-Netv2 [48] 17.91 449.79 

DMFNet [19] 3.88 27.04 

LATUP-Net [36] 3.07 15.79 

Proposed 3.57 21.26 

Tab. 8.  Comparison of model efficiency in terms of FLOPs 

and parameters based on BraTS benchmark dataset.  

for WT and 88.52% for TC, along with lower HD95 values, 

such as 2.58 mm for WT. The model was able to sustain best 

scores like those of the Swin UNETR and TransBTS models 

for the methods like segmentation and boundary precision. 

In the same manner, it obtained strong segmentation perfor-

mance along with excellent boundary precision on BraTS 

2020, with HD95 values of 3.37 mm for WT and 5.98 mm 

for TC, indicating its ability to seamlessly shift between seg-

mentation and boundary separation metrics across datasets.  

It can be seen from Tab. 8 that the superior perfor-

mance of the provided model emanates from its new archi-

tecture. Pseudo-3D convolutions reduce computational 

overhead while retaining volumetric context for efficient 
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feature extraction. Adaptive DMF units are capable of build-

ing multi-scale features and MF units perform further feature 

weighting by fusion which is done adaptively. For efficient 

resource spending, ECA modules concentrate on the promi-

nent areas of feature weighting. Structured pruning and QAT 

result in a model which is super lightweight and optimized 

for boosted inference with INT8 precision while retaining 

accuracy. Dice and Boundary Loss functions increase seg-

mentation accuracy with exact boundary delineation, and re-

sult in the model having 3.57M parameters, 21.26 GFLOPs, 

and an inference time of 0.016 seconds per 3D volume on 

an NVIDIA RTX 3090 GPU. This makes the model appli-

cable for real-time clinical use.  

It is worth mentioning that LATUP-Net [36] which has 

3.07M parameters and 15.79 GFLOPS has higher inference 

latency at 212 milliseconds and renders lesser results on 

BraTS 2020. In the same breath, DMFNet [19] also has com-

paratively lower segmentation accuracy for ET and TC sub-

regions on BraTS 2018, despite improving to 3.88M param-

eters and 27.04 GFLOPS with an inference latency of 

0.019 seconds. On the contrary, the proposed model has en-

hanced segmentation accuracy on BraTS 2020. It shows that 

better balance between computational efficiency, inference 

speed, and accuracy can be achieved and maintained.  

4.6 Qualitative Analysis 

To facilitate a more intuitive comparison of segmenta-

tion performance, we present the visualization results of the 

competing methods alongside our proposed model on the 

BraTS 2021 and 2020 datasets, as shown in Fig. 6, and the 

3D segmentation results of our proposed model in Fig. 7. 

The output segmentation images from the proposed 

model differ substantially from other models as depicted in 

Fig. 6. TransUNet displays minor estimation errors together 

with incorrect prediction areas in the final rows of Fig. 6. 

A probable cause for this situation is the inability of these 

models to use completely the combined information which 

exists across various modalities during brain tumor segmen-

tation. The proposed model demonstrates superior segmen-

tation outcomes which lead to excellent WT and TC seg-

mentation results together with competitive ET 

segmentation results. The proposed improvements stem 

from two key elements that replace traditional 3D convolu-

tions with pseudo-3D convolutions to reduce computational 

expenses and maintain volumetric context and the imple-

mentation of Dice Loss and Boundary Loss for enhancing 

precision of edges and small lesion detection. 

In Fig. 7, the first two rows of 3D visualizations are 

from BraTS 2021 cases, including BraTS2021_00216, 

00266, 00336, 00789, 00816, and 01324. The third row, for 

comparison, is taken from BraTS 2020 cases, specifically 

BraTS20_Training_047, 053, and 338. The results illustrate 

the model’s ability to effectively segment WT, TC, and ET 

regions in 3D, leveraging volumetric context to enhance seg-

mentation quality. 

5. Conclusion and Future Directions 

The research findings demonstrate that the designed 

framework delivers superior brain tumor segmentation re-

sults with high efficiency across the BraTS 2021 and 2020 

datasets. Pseudo-3D convolutions, together with adaptive 

DMF units, MF units, ECA modules, and structured pruning, 

improve multi-scale representation, minimize computational 

load, and speed up inference to 0.016 seconds per 3D vol-

ume. The lightweight system architecture features 3.57M 

parameters and 21.26 GFLOPs while maintaining its perfor-

mance level for segmentation operations. QAT serves to im-

prove the model's performance by making it clinically appli-

cable quickly while maintaining precision in segmentation 

results. 

 

Fig. 6.  Visualization and comparison of segmentation results from various methods on the BraTS 2021 dataset. Overlay colors: Red for WT, 

green for TC, blue for ET. 
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Fig. 7.  3D segmentation results of some samples from the BraTS 2021 and 2020 datasets. Overlay colors: red for WT, green for TC, blue for ET. 

The BraTS domain-specific dataset restricts the evalu-

ation of this framework across various medical images, 

while its evaluation across different types of cases needs ad-

ditional research. The model maintains good accuracy levels 

while providing efficient performance; yet, its practical de-

ployment requires more attention to MRI variation and scan-

ner inconsistency issues. Upcoming research will solve the 

present constraints by performing diverse testing on wider 

datasets and implementing the approach in liver, knee, and 

cardiac imaging procedures. The functionality of generaliza-

tion will be optimized by applying domain adaptation meth-

ods and self-supervised learning procedures to enhance ro-

bustness. The framework demonstrates high potential for 

medical use in preoperative planning, radiotherapy treat-

ment, and automated diagnostic systems because of its effi-

cient segmentation performance. To support reproducible 

research, the mathematical model presented in this work, 

including the architectural framework and relevant 

formulations, has been made publicly available at 

https://github.com/Rahman768/RMM. 
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