
RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 429 

DOI: 10.13164/re.2025.0429  

An Enhanced Noise Removal-based SAR Image 

Recognition using DnCNN and Wavelet Transform 

Youngdoo CHOI 1, Geunhwan KIM 2, Bong-seok KIM 3, Sangdong KIM 3 

1 Dept. of Electronics and Control Engineering, ROK Navy Academy, Jungwon-ro, Changwon-si, Republic of Korea 
2 Dept. of Electronic Engineering, Changwon National University (CWNU), Changwon, Republic of Korea 

3 Division of Automotive Technology, DGIST, 333 Techno Jungang-daero, Daegu, Republic of Korea 

chododo78@navy.ac.kr,  kimgw200@changwon.ac.kr, {remnant, kimsd728}@dgist.ac.kr 

Submitted October 31, 2024 / Accepted March 27, 2025 / Online first June 16, 2025 

 

Abstract. This paper presents an enhanced method for 

noise removal and target detection in Synthetic Aperture 

Radar (SAR) images using a Denoising Convolutional 

Neural Network (DnCNN) combined with wavelet trans-

form. Unlike conventional method, the proposed frame-

work focuses on remove the Speckle Noise through residu-

al learning and wavelet transform. The DnCNN 

architecture, consisting of 29 layers, efficiently removes 

noise while preserving high-frequency image features. The 

integration of wavelet transform further enhances noise 

removal and feature preservation. Experimental results 

demonstrate that the recognition rate of the proposed 

method improves by about 94% compared to original 

method under 10 dB Speckle Noise conditions. This method 

outperforms conventional algorithm in SAR image pro-

cessing, making it highly suitable for applications in noisy 

environments. 
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1. Introduction 

The Navy is using various technologies to monitor the 

marine environment and maintain marine safety. Among 

them, the Synthetic Aperture Radar (SAR) technology is 

being used as an important tool for detecting and analyzing 

marine conditions in real time among them [1]. The SAR 

radar can monitor the marine environment, coastal bounda-

ries, naval facilities, and activities. It can also monitor 

maritime traffic and detect maritime transactions or pirate 

activities and can be used in lifesaving operations in the 

event of a disaster or accident. In military operations, the 

SAR radar also plays a key role. It monitors the location 

and movement of the enemy and detects the activities of 

the enemy, which helps in strategic decision-making. Un-

like other sensors, the SAR radar has the advantage to use 

it even in dark conditions or severe weather, and thus in-

creases high demand in all military including the Navy. 

The operating principle of the SAR radar operates by 

transmitting electromagnetic waves to receive the signal 

reflected from the target of interest, and to reconstruct the 

image of the target. SAR radar systems are generally wide-

ly used as they are mounted on moving platforms such as 

aircraft or spacecraft [1]. The generation of noises such as 

Gaussian noise and speckle noise due to various reasons 

such as maximum distance makes it difficult to obtain 

clean images from SAR radars. In particular, noise is gen-

erated by system noise of radar and is recognized as a ma-

jor problem in image radar systems [2]. In particular, 

Gaussian noise in SAR image radar images was removed 

through digital filters or wavelet conversion because distri-

bution was difficult to predict [3], [4]. However, conven-

tional filters are difficult to remove complex noise patterns, 

and noise cannot be effectively removed.  

Recently, deep learning-based SAR image recognition 

has attracted attention, and in particular, improvements in 

noise cancellation techniques are playing an important role 

in improving recognition performance [5]. Effective noise 

cancellation is crucial, as SAR images inherently contain 

significant noise. Among the conventional deep learning-

based noise cancellation techniques, noise cancellation 

convolutional neural networks (DnCNN) [6] and Pix2Pix 

[7], [8] have been widely used. However, these techniques 

show limitations in effectively removing complex noise 

patterns while maintaining structural details of SAR images. 

To address this, this paper focuses on a noise cancel-

lation technique that combines DnCNN and wavelet trans-

form. By combining the strengths of the two methods, the 

technique achieves superior noise cancellation performance 

compared to conventional techniques. Experimental results 

show that the proposed technique outperforms the state-of-

the-art (SOTA) method, Pix2Pix, in terms of PSNR and 

SSIM, while maintaining important image features while 

showing improved noise suppression. 

After denoising, the next step is SAR image recogni-

tion. Vision Transformer (ViT) has shown high perfor-
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mance on many recognition tasks such as Residual Neural 

Network (ResNet) or Visual Geometry Group (VGG) [9], 

but due to its nature relying on large datasets, it is not ef-

fective for SAR image analysis with a few labeled data. On 

the other hand, CNN-based recognition models are demon-

strated to be able to identify SAR targets more robustly and 

efficiently even in a few data environments. 

Therefore, this paper proposes a deep learning-based 

SAR recognition algorithm that integrates a CNN-based 

recognition model with a noise removal technique combin-

ing DnCNN and wavelet transform. Our approach is opti-

mized for SAR image classification and low data SAR 

applications. Experimental results demonstrate that the 

proposed method not only achieves superior noise cancel-

lation performance over SOTA method, but also improves 

SAR image recognition accuracy, demonstrating its poten-

tial in real-world SAR analysis applications. 

Specifically, the main contributions of this paper are 

as follows. First, we propose a novel hybrid denoising 

approach that combines the strengths of DnCNN and 

wavelet transform, effectively integrating deep learning 

and signal processing techniques. Second, we demonstrate 

that our method outperforms conventional SOTA tech-

niques such as Pix2Pix in terms of PSNR, SSIM, macro-

average F1-score, and target recognition accuracy. Third, 

we show that the proposed framework maintains high per-

formance even in low-SNR environments, making it espe-

cially practical for SAR applications. 

The rest of this paper is organized as follows: Sec-

tion 2 describes the proposed noise removal method, com-

bining DnCNN and wavelet transform, and explains its 

advantages over conventional techniques. Section 3 pre-

sents the experimental setup, dataset details, and perfor-

mance evaluation, comparing our approach with SOTA 

methods such as Pix2Pix. Section 4 discusses the results, 

including PSNR and SSIM metrics, and highlights the 

impact of our method on SAR image recognition. Finally, 

Section 5 provides the conclusions. 

2. A Method to Enhance Image Recog-

nition Based on Noise Removal for 

Navy SAR Radar 

The SAR radar is a sensor that provides 2D image da-

ta using electromagnetic waves. The electromagnetic 

waves from the radar transmitter generate a radar image 

through the reception signal reflected from the target of 

interest. This signal is greatly affected by noise for various 

reasons such as maximum distance. Through this issue, the 

SAR radar recognition rate decreases. To improve this 

problem, the received radar image reduces the effect of 

noise through the DnCNN and wavelet transform.  

2.1 DnCNN 

The DnCNN technique used in this paper transforms 

the CNN network to fit image denoising and removes noise 

based on residual learning. Residual learning is a method 

of learning the residual, the difference between the input 

and output of a deep learning network. The DnCNN is 

trained to predict only noise from the output to the noisy 

input image. With the residual results obtained through this 

method, the DnCNN removes noise from the input image. 

First, a ground truth image X is obtained, and then an Addi-

tive White Gaussian Noise (AWGN) noise is added to 

generate a noise image Y. A noise image Y is prepared as 

the input of the CNN network, and noise N, which is the 

image pair, is prepared as the output. In the training stage, 

the noise removal ability is optimized by adjusting the 

weight of the network using the training data composed of 

the image pair of noise image Y and noise N. It mainly uses 

a backpropagation algorithm, and an optimization algo-

rithm is used to minimize the loss function. The learned 

DnCNN is tested by applying a new input image. Noise 

prediction is performed on the input image and an image 

with noise removed is generated by subtracting it from the 

original image. 

The DnCNN method for residual learning uses the 

CNN method in Fig. 1. The SAR image noise is modeled 

as speckle noise in (1), which is multiplicative in nature 

and can be expressed as: 

 2

s s s,   ~ (1, ),q p n n N      (1) 

 
slog( ),  log( ) log( ).q q q p n       (2) 

Here, p represents the clean SAR image, q means the noisy 

SAR image and ns is a multiplicative noise term with 

a mean of 1 and variance s
2. Speckle noise degrade image 

quality due to the coherent nature of SAR imaging systems. 

To solve this problem, the DnCNN employs residual learn-

ing to isolate and predict the noise component: 

 ( ; ),R q      (3) 

 ˆˆ ˆ ˆ, exp( )p q p p      .    (4) 

Here, R(q;) represents the output of the DnCNN network, 

 means the trainable parameters of the DnCNN network, 

p̂ is the restored log-domain SAR image and p̂ is the final 

restored SAR image.  

This process ensures that the DnCNN can effectively 

remove speckle noise for SAR target recognition. The 

DnCNN structure consists of D layers, where D = 29. Each 

layer performs the following operations. The first convolu-

tion layer extracts feature from the input SAR image such 

 
1 1 1 1ReLU(Conv ( ; , ))F q W b  (5) 

where Conv1 is the first convolution layer, W1 is weight 

and b1 is bias. In intermediate layers, the batch normaliza-

tion and ReLU activation is used for 

 
1ReLU(BN(Conv ( ; , )))k k k k kF F W b  (6) 

where k = 2,…, D – 1 and BN means batch normalization 

layer. The final layer predicts the residual noise component 
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ω̂ is represented by 

 
1

ˆ Conv ( ; , )D D D DF W b 
  . (7) 

These operations enable the DnCNN to focus on removing 

the noise for the SAR image. 

Specifically, in the first layer, 64 feature maps are 

generated using 64 filters with a size of 3 × 3 × c, and then 

the ReLU activation function is used as nonlinearity. Here, 

c represents the number of image channels, c = 1 for black 

 

Fig. 1. The proposed structure. 
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Layer Details Size 

Input SAR images 1 ⅹ 128 ⅹ 128 

Conv_1 32 feature maps, kernel size = 3, ReLU 32 ⅹ 128 ⅹ 128 

Pool_1 Max pooling, kernel size = 2 32 ⅹ 64 ⅹ 64 

Conv_2 64 feature maps, kernel size = 3, ReLU 64 ⅹ 64 ⅹ 64 

Pool_2 Max pooling, kernel size=2 64 ⅹ 32 ⅹ 32 

Fc_3 ReLU 1 ⅹ 512 

Fc_4 Dimension of CNN latent vector = 128 1 ⅹ 128 

Output Num. of class = 8 1 ⅹ 8 

(a) U-net encoder 

Layer Details Size 

Fc_4_dec Dimension of CNN latent vector = 128 1 ⅹ 512 

Fc_3_dec ReLU 64 ⅹ 32 ⅹ 32 

Pool_2_dec Max pooling, kernel size = 2 64 ⅹ 64 ⅹ 64 

Conv_2_dec 64 feature maps, kernel size = 3, ReLU 32 ⅹ 64 ⅹ 64 

Pool_1_dec Max pooling, kernel size = 2 32 ⅹ 128 ⅹ 128 

Conv_1_dec 32 feature maps, kernel size = 3, ReLU 1 ⅹ 128 ⅹ 128 

(b) U-net decoder  

Tab. 1. Architecture of U-net based CNN. 

and white images and c = 3 for color images. In the second 

to (D – 1), 64 filters with a size of 3 × 3 × 64 are used, and 

batch normalization is added between the convolution and 

the ReLU. In the last layer, c filters with a size of 3 × 3 × 64 

are used to reconstruct the output. In this paper, the number 

of network layers D was set to 29. This utilized the results 

that the DnCNN noise removal network showed optimal 

performance in 20 to 30 layers in [6]. Therefore, it was 

determined that 29 layers provide sufficient learning capac-

ity and provide a balance point to prevent overfitting. 

2.2 Wavelet Transform 

Wavelet transform is the method to decompose an ar-

bitrary signal into functions defined as wavelets. Unlike 

Fourier transform decomposes a signal using cosine and 

sine functions that vibrate infinitely as basis functions, 

wavelet transform uses a function that has a limited vibra-

tion time as the basis function. It is widely used to remove 

noise by utilizing this wavelet transform [10]. To remove 

the noise of the radar signal in Fig. 1, first, we need to set 

the level M and threshold values for wavelet transforming 

the signal after receiving the radar signal. The signal gen-

erated by wavelet transform is processed through the low 

pass filter and the high pass filter. We apply a thresholding 

technique that processes the result as zero for values lower 

than or equal to threshold. In this stage, the soft threshold 

was chosen because of its ability to gently suppress noise 

while maintaining critical high-frequency details. A global 

threshold approach was used at all levels to balance 

computational efficiency and performance. After that, the 

 
(a) Original SAR data 

 
(b) Noise-based SAR data 

 
(c) The proposed SAR data 

Fig. 2. Effect of noise removal through the proposed 

structure. 

noise-removed wavelet transform result restores the signal 

through the inverse wavelet transform. As a result, the 

noise-removed radar signal is obtained. Compared to the 

conventional wavelet transform-only method mentioned in 

[4], the proposed approach combines the strengths of deep 

learning-based residual learning (DnCNN) and wavelet-

based denoising. While wavelet transform effectively re-

moves noise in the frequency domain, it struggles with 

complex spatial patterns.  

The serial application of the DnCNN and the wavelet 

transform is designed to combine their respective strengths. 

The DnCNN removes the most of speckle noise while 



RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 433 

 

preserving critical high-frequency features through residual 

learning. Subsequently, the wavelet transform removes 

residual noise by removing the residual signal from the 

high-frequency band. For this reason, when the order of the 

steps is reversed or the steps are omitted, i.e., only wavelet 

transform, the performance is degraded in Figs. 3 and 4. In 

addition, the single DnCNN is difficult to remove residual 

noise on a fine scale, and only wavelet transform cannot 

effectively handle spatially dispersed noise.  

2.3 U-Net Based CNN 

The target is detected using a deep learning CNN 

model on the SAR image data from which noise has been 

removed. This CNN is based on U-net architecture [11], 

[12]. U-net is characterized by a U-shaped architecture that 

consists of a contracting path for feature extraction 

(encoder) followed by an expansive path for precise locali-

zation (decoder) as depicted in Fig. 1. 

The encoder processes the input image and extracts 

features by using repeated stacks of convolutional layers 

with max pooling operations. Pooling operations reduce 

the spatial resolution of the image while capturing higher-

level features. Each stack typically increases the number of 

filters, allowing for learning more complex features. We 

have a total of three levels of radar. The decoder aims to 

recover the spatial resolution while preserving the ex-

tracted features by using upsampling operations (like 

transposed convolution) to increase the resolution. Each 

upsampling step combines the upsampled feature map with 

a corresponding feature map from the contracting path (via 

skip connections). Skip connections directly provide de-

tailed information from the earlier stages, helping the de-

coder accurately localize features. The final output is 

a reconstructed SAR image with noise removed, and the 

architecture allows for end-to-end learning for both classi-

fication and image reconstruction. This CNN-based ap-

proach effectively captures both spatial and hierarchical 

features, which are critical for accurate SAR target detec-

tion and noise removal. Table 1 shows the architecture of 

U-net based CNN. Figure 2 shows the effect of noise re-

moval through the proposed structure. 

3. Experimental Results 

3.1 Quantitative Performance Analysis 

In this section, the results of the proposed model for 

the multi-class classification of SAR image radars are pre-

sented. The SAR data used the USA MSTAR data and the 

data obtained using 8 688 SAR images of 8 targets in the 

test set are utilized. For the simulation, the dataset was 

divided into 5 173 training sets, 1 778, and 1 737 test sets. 

When N = 16, the confusion matrix for the proposed model 

is shown in Fig. 3. The wavelet transform’s level is set to 

6. The test set is composed of 8 types including 2S1, 

BRDM-2, BTR-60 and D7, SLICY, T62, ZIL131, and 

ZSU-23-4. The SNR is set to 10 dB and reflects a noise 

condition that occur in the real environment and is a crite-

rion frequently used in SAR image processing. This setting 

is used as a standardized method for evaluating the perfor-

mance of models at a noise level and is considered an ap-

propriate evaluation index considering the characteristics 

of SAR images in particular. The experiments were con-

ducted using a high-performance computing system for 

efficient SAR image processing. Specifically, the system 

was equipped with an Intel Core i9-13900K CPU, 64 GB 

of DDR5 RAM, and an NVIDIA RTX 3090 GPU with 

24 GB of VRAM, running on Windows 11. The software 

environment included Python 3.8 and PyTorch 1.12, with 

CUDA 11.3 utilized for GPU acceleration. 

In Fig. 3(a), the average recognition rate of the origi-

nal data is over 99.5%. Original SAR data refers to clean 

SAR images without added noise, obtained from the 

MSTAR dataset. This value represents the average of the 

recognition rates for each target type. When the SNR of the 

speckle noise in Fig. 3(b) is 10 dB, the average recognition 

rate of the confusion matrix decreased to approximately 

94%, showing the impact of noise on the recognition per-

formance. In Fig. 3(b), the noise-based SAR data refers to 

SAR images with speckle noise added at an SNR level of 

10 dB. In Fig. 3(c), the confusion matrix of the wavelet 

transform-based method shows a performance degradation 

to approximately 81.6%. This indicates that wavelet trans-

form alone is not effective in improving noise in SAR data. 

In Fig. 3(d), the reversed structure’s average recognition 

rate is about 88.6%. The reversed structure refers to apply-

ing the wavelet transform first, followed by the DnCNN. 

However, as shown in Fig. 3(e), the proposed struc-

ture improves the recognition rate to about 96%, demon-

strating its effectiveness in reducing the influence of speck-

le noise and achieving a recognition rate close to that of the 

original data. In Fig. 3(e), the proposed SAR data refers to 

the denoised images produced by the proposed DnCNN 

and wavelet transform framework. 

To provide a more comprehensive evaluation beyond 

recognition accuracy, we additionally computed the macro-

average F1-score for each experimental condition. The F1-

score reflects the harmonic mean of precision and recall 

and serves as a balanced metric to assess classification 

performance, especially in multi-class settings. The com-

puted macro-average F1-scores for each method of U-net 

based CNN are as follows: 0.991 for the original SAR data, 

0.868 for the noise-based SAR data, 0.789 for the wavelet 

transform-based SAR data, 0.841 for the reversed struc-

ture’s SAR data, and 0.953 for the proposed SAR data. 

These results demonstrate that the proposed denoising and 

recognition framework significantly improves classifica-

tion performance under noisy conditions, outperforming 

conventional and baseline methods in terms of both recog-

nition accuracy and F1-score. 

For comparison of the proposed model, the confusion 

matrix for the ViT model is shown in Fig. 4. The ViT is 
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a transformer-based model proposed by [13] that applies 

self-attention mechanisms to image patches. For compari-

son purposes, we used a conventional ViT model with 

standard configurations, including patch size, transformer 

layers, and attention heads. The results of ViT were ob-

tained using the same SAR dataset under identical noise 

conditions to ensure a fair comparison. Figure 4(a) shows 

 
(a) Original SAR data 

 
(b) Noise-based SAR data 

 
(c) Wavelet transform-based SAR data 

 
(d) Reversed structure’s SAR data 

 
(e) The proposed SAR data 

Fig. 3. U-net based CNN’s confusion matrix. 

that the average recognition rate of the original data not 

affected by noise in the ViT model is about 91% or more. 

When the SNR of the noise in Fig. 4(b) is 10 dB, the aver-

age recognition rate of the confusion matrix decreases to 

about 58%. In Fig. 4(c), the confusion matrix of the wave-

let transform-based method shows some improvement in 

performance to approximately 78.2%. This indicates that 

wavelet transform alone improves noise in SAR data but is 

still not sufficiently effective. In Fig. 4(d), the reversed 

structure’s average recognition rate is about 87.4%. How-

ever, the average recognition rate of the network confusion 

matrix in Fig. 4(e) to which the proposed structure is ap-

plied has improved to about 92.4%. 

The computed macro-average F1-scores for each 

method of the ViT model are as follows: 0.910 for the 

original SAR data, 0.567 for the noise-based SAR data, 

0.765 for the wavelet transform-based SAR data, 0.859 for 

the reversed structure’s SAR data, and 0.921 for the pro-

posed SAR data. Moreover, the CNN-based model 

achieves better performance than the ViT-based model, 

particularly in cases with limited training data. 

In addition to analyzing the confusion matrix, we 

evaluate the performance of the proposed noise cancella-
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tion method using standard metrics such as peak signal-to-

noise ratio (PSNR) and structural similarity index meas-

urement (SSIM). As shown in Tab. 2, we confirm that the 

proposed method is superior to wavelet transformation-

based noise cancellation via PSNR and SSIM. These re-

sults show that the combination of the DnCNN and wavelet 

transform-based noise cancellation effectively suppresses 

 
(a) Original SAR data 

 
(b) Noise-based SAR data 

 
(c) Wavelet transform-based SAR data 

 
(d) Reversed structure’s SAR data 

 
(e) Conventional DnCNN, wavelet transform and ViT’s SAR data 

Fig. 4. Conventional ViT confusion matrix. 

 

Method PSNR (dB) SSIM 

No method 11.64 0.86 

Wavelet transform [4] 14.10 0.83 

Pix2Pix [7] 14.31 0.74 

Reversed structure 15.54 0.84 

Proposed method 16.88 0.89 

Tab. 2. Performance evaluation of denoising methods using 

PSNR and SSIM metrics. 

noise while preserving the structural details of the image. 

Significant improvements in the PSNR and SSIM indicate 

that the proposed method maintains more effectively simi-

larity to the original image compared to other methods 

including SOTA. 

3.2 Complexity Analysis 

The computational complexity of the proposed meth-

od is influenced by the 29-layer DnCNN architecture and 

the wavelet transform. While the DnCNN provides effec-

tive noise removal through residual learning, its layer-by-

layer operations involve convolution, ReLU activation, and 
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batch normalization, contributing to a complexity of  

 2 2

in out( )O L K C C N      (8) 

where L denotes the number of layers, K represents the 

filter size, and N is the size of a side of an image. Cin and 

Cout indicate the input and output channels, respectively. 

The wavelet transform adds an additional computational 

load with a complexity of  

 2( ).O N   (9) 

For real-time SAR processing, the proposed method 

consists of 29-layer DnCNN and wavelet transforms, using 

(8) and (9) on a hardware platform with 1 TFLOPS pro-

cessing to achieve a computational time of approximately 

1.825 ms per 128 × 128 pixels of SAR image frame. This 

corresponds to a processing speed of over 500 frames per 

second, far exceeding the requirement of 30 frames per 

second for real-time tasks. Therefore, the proposed method 

is suitable for real-time SAR image processing applica-

tions. 

3.3 Impact of Training Epochs on Model 

Performance 

To further analyze the training and validation perfor-

mance, we evaluated the effect of different training and test 

epochs on model convergence and performance. As shown 

in Fig. 5, increasing the epoch number initially improves 

generalization. And beyond a certain point in time, the 

model is optimized for the training data, stabilizing the 

performance of the test set. This observation indicates the 

importance of selecting the optimal epochs for training and 

conducting appropriate training and validation. Further 

details regarding the implementation of the proposed algo-

rithm, including the source code and mathematical model-

ing, can be provided by the authors upon reasonable re-

quest. 

4. Conclusions 

In this paper, the DnCNN and wavelet transform-

based CNN recognition enhancement method for SAR 

radar was proposed. Through the proposed structure, in 

which the DnCNN algorithm, wavelet transform, and CNN 

are combined, the phenomenon of noise effects due to 

maximum distance or hardware limitations was effectively 

addressed. When the speckle noise level was set at 10 dB, 

the recognition performance was significantly improved, 

approaching the original SAR data’s performance. Unlike 

ViT, which performs well with large-scale datasets, CNN 

is highly efficient even with smaller datasets, making them 

more suitable for SAR data, which often lacks the volume 

of labeled data required for ViT model. When using CNN, 

the average recognition rate of the original SAR data de-

creased from 99.5% to 94% in the presence of noise. How-

ever, applying the proposed CNN-based structure improves 

 

Fig. 5. Training and validation loss curve. 

the recognition rate to 96%. Additionally, the method 

achieved a PSNR improvement from 2.2 dB to 7.4 dB and 

an SSIM enhancement from 0.3751 to 0.4416, indicating 

significant improvements in image quality. When using 

CNN, the macro-average F1-score decreased from 0.991 to 

0.868 in the presence of noise. However, applying the 

proposed CNN-based structure improved the F1-score to 

0.953. This demonstrates that CNNs, with their ability to 

handle noise effectively and their efficiency with limited 

data, are better suited for SAR radar applications where 

data volume is often constrained. Through this, the pro-

posed model is expected to be a practical solution to effec-

tively solve the noise problem frequently encountered in 

SAR radars, while also being more efficient for smaller 

datasets compared to ViT. 
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