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Abstract. The detection method, such as Newman-Pearson 

(NP) method, can provide an accurate prediction for the 

performance of target detection under all signal-to-noise ra-

tio regions. However, the performance limits of radar signal 

detection have not been extensively studied yet. In this pa-

per, we propose a novel detection method for unknown de-

terministic signals in radar system, which utilizes mutual in-

formation to characterize the uncertainty of the existence 

state of signal. The a posteriori probability density function 

of existence state of signal can be directly obtained via the 

Bayesian framework, ensuring that there is no loss of infor-

mation regarding to the target's existence state during the 

mutual information computation process. Numerical simu-

lations show that the proposed method exhibits superior de-

tection performance compared to the NP detection method. 
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1. Introduction 

Radar signal detection refers to determining whether 

the target exists in the observation interval, which is an im-

portant step in radar target detection field [1], [2]. When 

identifying whether there is a target signal in the observation 

interval, there are commonly two assumptions for the re-

ceived signal. Suppose H0, the received signal is the noise 

signal, suppose H1, the received signal is the sum of the tar-

get signal and the noise signal [3], [4]. When the target sig-

nal and noise signal have a known deterministic form, it ap-

pears suitable to use the matching filter [5]. When the target 

signal has an unknown deterministic form, a commonly used 

method is to treat the signal as a sample function of random 

process. 

For the target signal with a known deterministic form, 

researchers have proposed many valuable detection meth-

ods. In [6], a generalized likelihood ratio test spectrum sens-

ing scheme is proposed for detecting the presence of target 

signals. In [7], an exact solution for optimal detection of 

known signals in Gaussian noise through sparse sampling is 

presented using dynamic programming. Conversely, re-

search on target signals with unknown deterministic forms 

seems to be relatively sparse among scholars. In fact, under 

the assumption of Gaussian white noise, even if the form of 

the signal is unknown, the deterministic assumption suggests 

that the input of the signal is Gaussian distribution with 

a non-zero mean. Therefore, under the condition of lacking 

a priori information about the target signal form, it seems 

appropriate to utilize the energy of the signal to determine 

the presence of the target signal [8]. The energy detector ac-

cumulates the received signal energy over a specified obser-

vation time window and compares it to a predefined thresh-

old to determine target signal presence. The energy detection 

was first proposed for the scenario of detecting deterministic 

target signals transmitted over flat, band-limited Gaussian 

noise channels [9]. It should be emphasized that the detec-

tion statistic is the cumulative energy of the signal in the ob-

servation zone, which has nothing to do with the signal's 

shape. Therefore, energy detection method is a blind detec-

tion method, and it is suitable for any unknown deterministic 

target signals [10], [11]. 

It is assumed that the noise signal has a flat, band-lim-

ited power spectral density. When only the noise signal is 

present in the observation interval, through Nyquist sam-

pling, the energy of the noise signal can be approximated as 

the sum of squares of independent random variables with 

zero mean and equal variance. The sum follows a central chi-

square distribution. When unknown deterministic target sig-

nal is present in the observation interval, through Nyquist 

sampling, the energy can be approximated as the sum of 

squares of independent random variables. The sum follows 

a non-central chi-square distribution, where the parameter is 

equal to the total energy of the unknown deterministic target 

signal [9]. Many researchers have also carried out relevant 

verifications regarding to the approximation of signal en-

ergy. In [12], based on the Karhunen-Loeve expansion, 

an expression for the energy distribution is derived. Numer-

ical simulations demonstrate that the chi-square approxima-

tion is a good approximation, particularly for large time-

bandwidth product values. To further validate the feasibility 

of the approximation, Grenander proposes a new method 

that accurately calculates the energy distribution of Gaussian 
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noise in finite-time samples [13]. He compares the exact re-

sults of several values of time-bandwidth product with the 

chi-square approximation (in Sec. 4.4) and concludes that 

even for moderate time-bandwidth product values, the ap-

proximation holds quite well. 

It is common to assess the presence of a target signal in 

the received signal using the false alarm probability (PFA) 

and the detection probability (PD), such as the Neyman-

Pearson (NP) detection method. In radar target signal 

detection [14], the PD and PFA are shown as 

 
h

2 2

s n s n

D 02 2 2
exp d ,

2T

A A A AV
P I V

  

    
    

   
  (1) 

 
2

h

FA 2
exp

2

T
P



 
  

 
 (2) 

where Th represents the detection threshold value, AS repre-

sents the amplitude of signal, An represents the amplitude of 

noise, 2 represents the variance of noise, I0()represents the 

modified Bessel function of zero order. 

It is shown that two probabilities are directly dependent 

on the detection threshold value Th. Th is typically deter-

mined by experienced radar personnel based on their exper-

tise. Therefore, target detection always involves uncertainty, 

and theoretically, obtaining the optimal threshold is not pos-

sible. As shown in Fig. 1, it can be observed that the optimal 

threshold exhibits uncertainty, which should be set at 

a proper signal-to-noise ratio (SNR) value [14]. 

In [14], the mutual information is introduced to evalu-

ate the radar received signal. The optimal threshold level is 

determined by maximizing mutual information. Mutual in-

formation is introduced as an evaluation metric for radar tar-

get signal detection. However, mutual information can only 

be computed under the given p(v), PFA and PD ([14], 

p. 228), which leads to information loss in mutual infor-

mation. The reason is that giving PFA and calculating PFA 

can be seen as a hard decision on the target presence state, 

and hard decisions result in the loss of some signal infor-

mation [15]. 

 

Fig. 1. The relationship between the SNR and PFA under 

different PFA scenarios. 
 

Intact Form Abbreviated 

Information Theory IT 

Newman-Pearson NP 

Probability Density Function PDF 

Detection Probability PD 

False Alarm Probability PFA 

Receiver Operating Characteristic ROC 

Signal-to-Noise Ratio SNR 

Tab. 1.  Abbreviations list. 

This paper considers the energy detection problem of 

unknown deterministic target signal and then proposes an 

information theory (IT) method to obtain the maximum 

mutual information. The main contributions of this paper are 

as follows 

First, compared to NP detection methods, this paper 

presents the theoretical limits of mutual information. Then, 

other target detection algorithms, such as CenterNet and 

state-of-the-art model, can also leverage mutual information 

for evaluation, enabling a more comprehensive assessment 

of algorithm performance. Finally, the mutual information 

can serve as a novel evaluation metric, providing a bench-

mark for comparing various target detection algorithms or 

methods.  

The abbreviations used in the text can be found in 

Tab. 1. The remainder of this manuscript is organized as fol-

lows. In Sec. 2, the system model is briefly presented for un-

known deterministic radar signals. In Sec. 3, the mutual in-

formation for IT detection method is described. In Sec. 4, 

extensive simulation results are presented to demonstrate the 

performance of the IT detection method. Finally, conclu-

sions are drawn in Sec. 5. 

2. System Model 

The radar target signal detection problem is essentially 

a binary hypothesis problem. The output signal of the radar 

can be described as 
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where s means the scattering coefficient of the target signal, 

(t – ) represents the received unknown deterministic tar-

get signal. w(t) denotes complex Gaussian noise of a limited 

bandwidth B/2 with zero mean and variance 2. 

Substituting the existence state variable v into (1), the 

binary hypothesis problem can be uniformly written as 

      , 1, ,kz t vs t w t t T      (4) 

where v = 1 means that the output signal is target signal plus 

noise signal, and v = 0 means that the output signal is noise 

signal. 
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Applying a low-pass filter to the received signal, down-

convert the received signal to baseband, and then sample it 

at the Nyquist rate B. The sampling sequence can be written 

as 

 .
n n B n

z vs w
B B B


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Since the sample rate B is high enough and the target 

signal energy is assumed to be virtually totally contained in-

side the observation interval, no signal information should 

be lost [11]. Without loss of generality, the sampling se-

quence of received signal z(n) can be described as 

      , 1, ,z n vs n x w n n N     (6) 

where x = Bτ is the normalization time delay, N = TB repre-

sents the time-bandwidth product. w(n) is a zero-mean com-

plex Gaussian random variable with variance 2. 

The energy detection method computes the total energy 

over a designated window [16], [17], which is given as 
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Deriving an exact expression for the probability den-

sity function (PDF) of total energy r  is quite complex. 

Nonetheless, we can achieve a concise approximation. It can 

be assumed that a reasonable structure for the PDF is a chi-

square distribution, attributable to sampling theory [8]. 

Therefore, under the condition of a given target existence 

state variable, we derive the PDF of the output energy, which 

is written as 
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is hypergeometric function. 

2 2/   is the SNR.   is the target signal energy in 

observation interval. 

Equation (8) provides a unified form for energy detec-

tion of an unknown deterministic target signal, which is 

a new expression. When the output signal is the noise signal, 

the total energy r approximately follows a chi-squared dis-

tribution, and (8) is simplified as 
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When the output signal is target signal and noise signal, the 

total energy r approximately follows a non-central chi-

squared distribution, and (8) is simplified as 
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3. Mutual Information in Output 

Signal 

We first consider the a priori distribution p(v) of the 

target's presence. When the target existence state variable is 

v and the radar output energy is r, the joint PDF p(r, v) can 

be defined [14]. According to the definition of the entropy, 

the a priori entropy in the observation field is expressed as 
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where p(1) represents the a priori probability of the target 

signal's presence in the observation interval, with a range 

value of [0,1]. 

Figure 2 depicts the relationship between a priori en-

tropy and the a priori existence probability. It can be ob-

served that the a priori entropy is maximized when the 

a priori existence probability is 0.5. This is because when all 

possible outcomes are equally likely, the system's uncer-

tainty reaches its maximum, resulting in maximum entropy. 

On the other hand, when the a priori probability is 0 or 1, 

the a priori entropy is minimized. This is because the target 

state is already determined, leading to the least uncertainty 

in the system and minimum entropy. 

Next, we also need to consider the measurement of un-

certainty in the existence state contained in the output en-

ergy. The a posteriori PDF is a probability distribution of 

parameters obtained based on received data, which can pro-

vide an estimate of the most probable value of the existence 

state and their associated uncertainty. We derive a posteriori 

PDF of the target existence state, which is expressed as 
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Substituting (8) into (12), we have  

 

Fig. 2. The relationship between a priori entropy and signal 

existence probability. 
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where 
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The a posteriori entropy, as a measure of uncertainty 

in the a posteriori PDF, provides an evaluation of the target's 

existence status under the output signal is received. Similar 

to (11), which is written as 

      2log .
v

H v r p v r p v r   (15) 

Now, we calculate the mutual information. It is well 

known that mutual information I(r;v) quantifies the degree 

of dependence or information shared between two random 

variables. According to the definition of the mutual infor-

mation, it can be calculated as 

      ; .I r v H v H v r   (16) 

Substituting (11) and (15) into (16), we have  
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It is obvious that the target detection process is essen-

tially a process of getting information about the target exist-

ence state. Equation (17) represents the uncertainty of the 

existence state v under the given the output energy r condi-

tion. A superior detection method should be able to obtain 

more mutual information [18], [19]. This can have a greater 

impact on the results of target detection or recognition. We 

can evaluate performance of different detection methods via 

detection information. 

In addition, the PFA and PD are two decision probabil-

ities universal in radar target detection field. Therefore, we 

also derive the PFA and the PD of the IT detection method. 

The PFA is calculated as 
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The PD is calculated as 
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4. Results & Discussion 

4.1 NP Detection Method 

As mentioned in the introduction, the total energy of 

noise signal in the observation interval approximately fol-

lows a chi-squared distribution, while the total energy with 

target signal presence approximately follows a non-central 

chi-squared distribution. Non-central chi-squared tables are 

neither as widespread nor as convenient as central chi-

squared tables, necessitating the use of approximations in-

stead. According to the central limit theorem, as the degrees 

of freedom increase, the shape of the chi-squared distribu-

tion approaches that of a Gaussian distribution. This occurs 

because the distribution's peak becomes sharper and more 

concentrated around the mean, with increased symmetry. 

This approximation is particularly useful in practical appli-

cations, especially when dealing with large samples or com-

plex statistical analyses, as it allows for the use of Gaussian 

distribution properties to simplify calculations and deriva-

tions in high degrees of freedom scenarios. Meanwhile, 

Urkowitz also noted that the PDF of the detection statistic 

can be approximated using a Gaussian distribution when 

time-bandwidth product N is large [9]. 

Therefore, under the noise signal condition, the detec-

tion statistic is distributed as a Gaussian variate N(N2; N4) 

[16]. The PFA for NP detection method can be expressed as 
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where  
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Under the target signal condition, the detection statistic is 

distributed as a Gaussian variate N(N2 + ; N4 + 22). 

The PD for NP detection method can be expressed as 
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Then, the relationship between the PFA and the PD can be 

expressed as 
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Finally, the mutual information of the NP detection method 

is given by M. Kondo [14]. And it can be expressed as 
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where  
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4.2 Simulation Comparison 

This section provides numerical simulation data to val-

idate the performance of the IT detection method. All simu-

lations are conducted on MATLAB R2024 platform loaded 

on the computer. Use the randn function in MATLAB to 

generate random Gaussian noise. The observation interval N 

is set to 128. The  1p  is set to 0.5, 1e–3 and 1e–5.  

For the NP detection method, the mutual information 

can be calculated when p(v), PFA and PD is known [14]. For 

the IT detection method, the mutual information can be cal-

culated using (17) when p(v) is known. Figure 3 depicts the 

relationship between mutual information and the a priori ex-

istence probability. The mutual information significantly 

changes with the variation of the a priori existence probabil-

ity. Regardless of changes in the a priori existence probabil-

ity, the maximum mutual information consistently occurs at 

p(1) = 0.5, aligning with findings in the literature [14]. Sim-

ultaneously, it can be observed that the mutual information 

of the NP detection method is lower than that of the IT de-

tection method. 

It is generally considered that the existence probability 

of the target signal is unknown in the radar scene. For exam-

ple, in maritime surveillance, the probability of target ap-

pearance is higher in open seas or far-sea areas, while it is 

lower in near-shore or coastal areas. Therefore, the relation-

ship between detection information and the SNR is studied 

 

Fig. 3. The relationship between detection information and 

target existence probability. 

 
(a) p(1) = 0.5 

 
(b) p(1) = 1e–3 

 
(c) p(1) = 1e–5 

Fig. 4. The relationship between detection information and the 

SNR. 

in different radar application scenarios. The simulation re-

sults of the IT detection method and NP detection method 

are shown in Fig. 4. Figure 4 illustrates the simulation re-

sults for different distinct scenarios, which correspond to 

a high probability scenario of target presence and a low 

probability scenario of target presence, respectively. 

Note that in each scenario, the simulation results con-

sistently demonstrate the efficacy of the IT detection 

method. Simulation results lead to the inference that the IT 

detection method offers the theoretical detection limit for 

unknown deterministic radar target signal, whereas neither 

the NP detection method can achieve this theoretical limit. 
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Detection 

scenarios 
NP detection method IT detection method 

Time consumption (s) 

p(1) = 5e–1 0.105 0.073 

p(1) = 1e–3 0.107 0.084 

p(1) = 1e–5 0.122 0.109 

Tab. 2.  Comparison of calculation time. 

 

Fig. 5. The ROC for the IT detection method and the NP 

detection method. 

In addition, the computational cost is crucial for real-time 

radar applications. Table 2 presents the time consumption of 

the IT detection method and the NP detection method under 

the three detection scenarios. Compared with the NP detec-

tion method, it can be observed that the calculation time of 

the IT detection method is slightly shorter. 

Finally, we also provide the receiver operating charac-

teristic (ROC) curve for the IT detection method and the NP 

detection method. The PFA and PD of the IT detection 

method are calculated from (18) and (19), respectively. The 

PFA and PD of the NP detection method are calculated from 

(23). From Fig. 5, it can be seen that the NP detection 

method demonstrates superior performance compared with 

the IT detection method under the framework of the PFA  

and PD. 

5. Conclusion 

In this paper, the information theory method for un-

known deterministic target signal detection is proposed. The 

mutual information is introduced as a detection evaluation 

metrics for unknown deterministic radar target signal, which 

is defined as the mutual information between the received 

signal and the presence state of the target signal. The IT de-

tection method provides a theoretical detection mutual infor-

mation limit for unknown deterministic target signal. To val-

idate the performance of the IT detection method, we derive 

the NP detection method as a comparison. The results indi-

cate that the mutual information of the NP detection method 

is lower than the mutual information of the IT detection 

method. In future work, we intend to utilize the concept of 

mutual information to quantify the target detection perfor-

mance in various radar environments, such as, multi-source 

conditions (beyond single-source focal points) and the non-

Giannis noise (e.g., impulsive noise), aiming to translate 

existing theories into practical hardware implementations. 
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