
482 B. B. SHABARINATH, P. MURALIDHAR, A STREAMING DATAFLOW ACCELERATOR FOR SPARSE SVM KERNEL . . .

A Streaming Dataflow Accelerator for Sparse SVM Kernel
Computation in Hyperspectral Image Classification

B. B. SHABARINATH 1,2, Pullakandam MURALIDHAR 1

1 Dept. of ECE, National Institute of Technology Warangal, Warangal, 506004 Warangal, India
2 Dept. of ECE, VNR Vignana Jyothi Institute of Engineering and Technology, 500090 Hyderabad, India

bbshabarinath@student.nitw.ac.in, pmurali@nitw.ac.in

Submitted April 9, 2025 / Accepted June 18, 2025 / Online first July 21, 2025

Abstract. Hyperspectral images (HSI) provide extensive
spectral information but their high dimensionality and re-
dundancy create substantial challenges for computation and
storage while increasing energy demands. The proposed so-
lution combines sparse dictionary learning with Field Pro-
grammable gate Array (FPGA)-accelerated Sparse matrix
vector multiplication (SpMV) operations and Support Vec-
tor Machine (SVM) training to tackle these issues. Spatial
patches and spectral blocks partition HSI to enable the ex-
traction of compact discriminative sparse features through
the use of a learned sub-dictionary. In contrast to deep learn-
ing frameworks which demand large training datasets and
generate significant computational overhead, the SVM-based
approach achieves efficient real-time training and adapta-
tion. The FPGA accelerator executes intensive SpMV oper-
ations through dynamic load balancing. We tested our ap-
proach with four varied HSI datasets gathered from aerial
and UAV systems as well as terrestrial platforms on the
PYNQ-Z2 board. Our design reaches classification accu-
racies between 98.65% and 99.95% across datasets includ-
ing Indian Pines,AVRIS-NG, Cubert-UAV, Cubert-Terrestrial
with per-pixel classification times below 7 𝜇s and inference
times up to 36× faster than optimized software baselines
which remain under typical sensor acquisition times. The
strategy requires less than 0.24 W of on-chip power at max-
imum load which makes it ideal for deployment on satel-
lites or UAVs. The proposed method outperforms existing
FPGA-based SVM architectures in classification accuracy
and throughput while enabling on-device incremental learn-
ing which makes it ideal for analyzing hyperspectral images
in real-time.

Keywords
Hyperspectral image classification, support vector ma-
chine, sparse dictionary learning, sparse matrix-vector
multiplication, load balancing

1. Introduction
Hyperspectral imaging technology shows great poten-

tial for use in remote sensing as well as precision agricul-
ture, environmental monitoring, and defense because it col-
lects detailed spectral data across multiple narrow bands [1].
The detailed spectral resolution of the imagery provides pre-
cise identification of materials and deeper understanding of
scenes. While HSI’s capabilities make it a powerful tool,
these same features lead to substantial computational and
practical challenges which need to be addressed. The high-
dimensional structure of HSI data generates massive infor-
mation volumes which create severe memory restrictions and
demand higher computational power during processing [2].

High redundancy in spectral and spatial dimen-
sions makes conventional algorithms inefficient and time-
consuming. Current HSI classification approaches
mostly emphasize inference processes instead of training
stages [3–5]. Deep learning-based frameworks drive many
modern solutions which achieve quick classification follow-
ing pre-training of their models. Inference-focused systems
achieve high accuracy results but fail to provide the neces-
sary flexibility for real-time system adaptation. Dynamic
environments face significant limitations when models can-
not be updated quickly enough to adapt to changing spec-
tral signatures or newly emerging classes. Traditional GPU-
based methods have high energy demands which prevent
their use in resource-limited environments like edge devices
in mobile or remote applications [3], [4]. Support Vector
Machines (SVMs) offer a solution that combines reduced
complexity with enhanced flexibility [6], [7]. The need for
less training data combined with efficient optimization and
hardware acceleration capabilities allows SVMs to support
quick retraining while minimizing power usage. Through
Field Programmable Gate Array (FPGA)-based acceleration
SVMs achieve competitive classification performance and
higher adaptability and efficiency which makes them opti-
mal for real-time HSI processing in changing scenarios [8].
The fundamental complexity of SVM training creates essen-
tial difficulties for HSI classification. The iterative SVM
optimization process demands significant computational re-

DOI: 10.13164/re.2025.0482

RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 483

sources because it requires calculating kernel matrix entries
for numerous high-dimensional feature vectors. Feature ex-
traction in many existing systems operates through static dic-
tionaries that simplify data representation but often fail to
identify the most distinctive data features. Sparse represen-
tation techniques have become a focus in research because
they enable better use of HSI data redundancy to achieve both
more accurate and computationally efficient results.

The current difficulties necessitate an integrated solu-
tion that allows for both precise inference and rapid adap-
tive training. The system needs to process high-dimensional
data while updating in response to new datasets in real time
and maintain energy efficiency for embedded devices. Our
research introduces an innovative framework that integrates
sparse dictionary learning for effective HSI feature extraction
with an SVM training process accelerated by FPGA hard-
ware. Our approach takes advantage of FPGA hardware’s
reconfigurable properties to handle computationally demand-
ing sparse matrix-vector multiplication (SpMV) operations
instead of using traditional GPU or CPU-based solutions.
The system maintains ideal resource usage through dynamic
load balancing in its FPGA architecture which handles the
changing processing demands of HSI applications.

Our integrated system surpasses current methods by al-
lowing embedded devices to perform complete training oper-
ations so they can adapt models continuously and make real-
time updates which inference-only systems currently lack.
The developed framework boosts processing speed and en-
ergy efficiency while enabling stronger and more adaptable
hyperspectral image classification under practical constraints.
Overall, this study primarily aims to provide the following
contributions:

• A sparse representation method for HSI is developed
that exploits both spectral and spatial redundancies
through partitioning HSI into spectral blocks and spatial
groups which transforms high-dimensional optimiza-
tion into smaller solvable sub-problems to both lower
computational complexity and improve classification
accuracy.

• A parallel architecture for SpMV on FPGA platforms
features dynamic load balancing to improve resource
utilization efficiency and reduce overall energy con-
sumption.

• A comprehensive SVM training capability for embed-
ded systems has been established by combining dictio-
nary learning with sparse coding and FPGA-powered
SpMV to support adaptive re-training and real-time
model updates beyond standard inference functions.
The integration of AXI DMA into hardware/software
co-design demonstrates superior throughput perfor-
mance and latency reduction for SVM training com-
pared to direct DDR access.

The structure of this paper continues with the follow-
ing sections. The second section discusses related research
in sparse representation techniques and FPGA-accelerated
computing approaches. Section 3 explains the proposed
dataflow-based methodology. The accelerator design, hard-
ware/software partitioning and system integration process is
detailed in Sec. 4. Section 5 showcases experimental out-
comes. Section 6 ends with a summary of findings and
explores future research directions.

2. Related Works
HSI classification continues to draw significant research

attention because of the abundant spectral data present in
these images but faces major hurdles in acquisition and pro-
cessing because of their high dimensional nature and in-
herent data redundancy. HSIs suffer from limited spatial
resolution which leads to spectral mixing that is typically
represented through the Linear Mixture Model [9]. Tradi-
tional techniques mainly used neural networks for pixel-level
spectral classification while utilizing dimension reduction
or band selection approaches to handle the curse of dimen-
sionality [10, 11]. The separate processing of individual
pixels in these methods ignores essential spatial correla-
tions which reduces their overall classification accuracy. Re-
cent research efforts have implemented spatial feature extrac-
tion methods including Local Binary Patterns [12], wavelet
transforms [13], and morphological profiles [14] to improve
the capture of contextual information. Deep learning sys-
tems [15], [16] demonstrate effective performance through
simultaneous modeling of spectral and spatial features. This
comes at the cost of requiring extensive computational re-
sources and large training datasets which limits their prac-
ticality for real-time applications and environments with re-
stricted resources.

Sparse Representation (SR) serves as a powerful frame-
work for HSI processing by overcoming the difficulties pre-
sented by extensive spectral data dimensions and data redun-
dancies [17]. The learning process creates a dictionary using
information from hyperspectral data. This dictionary func-
tions as a matrix which uses its columns as atoms. Atoms
function as vectors that represent distinct spectral features
found in the data. The SR algorithm represents each pixel
spectrum as a linear combination of a subset of dictionary
atoms. Multiple SR techniques in hyperspectral image pro-
cessing operate with predefined dictionaries that originate
from spectral libraries or training data [18], [19]. Peng
et al. [20] created a dictionary together with their spatial
neighbors then improved it into a locally adaptive dictio-
nary by choosing atoms that showed the highest correlation
for each test set. Fixed dictionaries require minimal com-
putational resources to operate but their performance de-
pends heavily on training data selection and external spec-
tral libraries may need further calibration. Researchers
now focus on deriving optimal dictionaries straight from
data sets [21–23] which leads to higher computational ex-

484 B. B. SHABARINATH, P. MURALIDHAR, A STREAMING DATAFLOW ACCELERATOR FOR SPARSE SVM KERNEL . . .

penses [24]. Former approaches emphasized spectral infor-
mation but overlooked spatial correlations between neigh-
boring pixels [25], [26]. Various research has started over-
coming this issue through spatial pixel grouping with tech-
niques like non-overlapping square patches [21], Laplacian
constraints [27], and sliding window methods [28] to create
a uniform sparsity pattern. Techniques include more dynamic
methods like super-pixel segmentation to identify homoge-
neous regions as shown in research [29], [30]. Although
progress has been made advancements in utilizing both spec-
tral and spatial redundancies still pose challenges together
while the large dimensionality of HSIs maintains the compu-
tational difficulty for spectral reconstruction optimization.

The combination of sparse dictionary representations
and SVM classifiers improves accuracy by offering discrim-
inative feature vectors well-suited to SVM decision bound-
aries. Nevertheless, the computational constraint persists
more or less in the SpMV operations intrinsic in the SVM
classification step, particularly during computation on sparse
coefficient vectors in real-time. FPGAs, due to their capa-
bility for parallel computation, have a very viable solution
to overcome computational constraints in sparse data oper-
ations. In particular, FPGA architectures are significantly
well-suited to speed up SpMV computations, facilitate paral-
lel processing with low latency, and significantly improve
power efficiency. However, hardware-based-only designs
may fail to leverage the flexibility and programmability of
current-day embedded processing systems to the fullest ex-
tent, instigating hardware-software co-design as a very ap-
pealing and feasible solution. The hyperspectral classifica-
tion FPGA-based hardware accelerator [3] is plagued with
issues such as high DSP block dependence and assumptions
of ideal data conditions that cannot accommodate real latency
and memory conditions. Although the composite kernel [4]
enhances the classification accuracy, it raises the computa-
tional complexity, and the latter might require approxima-
tions to accommodate real-time requirements on FPGA. The
real-time accelerator [5] is bounded by its limitations that are
mainly caused by over-reliance on DSP resources, scalability
problems when classes or data are intricate in nature, accu-
racy trade-offs with fixed kernel choices, inflexible adapta-
tion to spectral bands, and ideal conditions’ assumptions that
overlook actual data transfer delays.

The proposed approach introduces a new hardware-
software co-design strategy for hyperspectral image classifi-
cation using sparse dictionary learning and FPGA-hardware
accelerated SpMV within an SVM classification pipeline.The
integration allows for the creation of compact discriminative
features that take advantage of both spectral and spatial redun-
dancies. By splitting computation tasks smartly performing
computationally heavy SpMV tasks in hardware specialized
FPGA chips with dynamic load balancing and the rest of
the classification tasks in software the new strategy takes
the advantages of both hardware acceleration and software
programmability.

3. Proposed Methodology
The novel approach employs sparse dictionary learn-

ing, dynamic load balancing, and FPGA-accelerated SpMV
to tackle the computationally demanding task of HSI clas-
sification as depicted in Algorithm 1. In our system, an
HSI cube H ∈ R𝐻×𝑊×𝑆 of height 𝐻, width𝑊 , and 𝑆 spectral
bands is initially split into spatial patches and spectral blocks.
The spatial patches, referred to as 𝑆𝐺𝑖 ∈ R𝑚×𝑚×𝑆 for 𝑖 =
1, 2, . . . , 𝐺 , are formed by dividing the image into non-
overlapping𝑚×𝑚-sized regions. Each patch is subsequently
split along the spectral dimension into 𝐵 equal blocks, with
each spectral block 𝑆𝐺𝑖 𝑗 ∈ R𝑚×𝑚×

𝑆
𝐵 covering a different

subset of the spectral bands. This division decreases the
data’s dimensionality, making dictionary learning more man-
ageable. The second operation is to build a training matrix
Ys ∈ R

𝑆
𝐵
×(𝐵·𝑁) by vectorizing all the blocks of spectra ex-

tracted from the patches, where 𝑁 is the number of pixels (or
patches) involved. The objective is to learn a sub-dictionary
D ∈ R 𝑆

𝐵
×𝑘 such that the spectral blocks are represented

sparsely. This is formulated as an optimization problem:

min
𝐷,𝑋s

1
2
∥Ys − D𝑋s∥2𝐹 + 𝜆𝑅(𝑋s) (1)

therein, 𝑋s represents the sparse coefficients, 𝜆 is the sparsity
regularization parameter, and 𝑅(·) is a sparsity-inducing reg-
ularization function typically being the 𝑙1-norm. The follow-
ing dictionary D compresses the most discriminative features
of spectra simultaneously and suppresses redundancy. In or-
der to further improve discrimination, each spectral block 𝑗

is examined by calculating its variance𝜎2
𝑗
. A block is labeled

as "active" when its variance is larger than a given threshold
𝑇 ; otherwise, it is labeled as inactive. This selection is indi-
cated in a diagonal selection matrix W ∈ {0, 1}𝐵×𝐵 so that
𝑊 𝑗 𝑗 = 1 for active blocks and 𝑊 𝑗 𝑗 = 0 otherwise. The se-
lective method guarantees that only the most discriminating
spectral blocks are used for the sparse representation.

We determine the threshold 𝑇 for active spectral blocks
by performing cross-validation on validation subsets from
each dataset. High spectral variance blocks need to be main-
tained because they hold the majority of discriminative fea-
tures essential for classification. When 𝑇 is set to a low
value the system processes additional spectral blocks which
enhances classification accuracy but demands more compu-
tational resources. With a high 𝑇 value the system actively
removes less informative bands which simplifies the process
but risks a decrease in accuracy. Our experiments deter-
mined the optimal 𝑇 value by finding a balance between
performance and resource efficiency which varied slightly
across datasets due to their unique spectral characteristics.

Sparse coding is applied to each active spectral block
for each spatial patch 𝑆𝐺𝑖 . The problem solved for each
block is expressed by

RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 485

𝑋𝑖 𝑗 = arg min
𝑋

1
2
𝑆𝐺𝑖 𝑗 − D𝑋

2
𝐹
+ 𝜆𝑅(𝑋) (2)

and the resultant sparse coefficient vectors 𝑋𝑖 𝑗 are concate-
nated to create the global feature vector 𝑋𝑖 of the patch.

The final training matrix is formed by merging all fea-
ture vectors from the sparse modeling process in a row-wise
manner. The matrix undergoes conversion to Compressed
Sparse Row (CSR) format which enables efficient storage
and processing by removing zero entries as shown in Fig. 1.

The transformation of a training matrix into CSR format
captures only the non-zero elements of the sparse matrix to
decrease memory requirements and enhance computational
performance.The CSR format excels with sparse matrices by
minimizing storage needs and maximizing memory access
efficiency but remains unsuitable for non-sparse matrices.
Dense feature representations might suffer more from CSR
indexing overhead than they gain in benefits. Our system
switches back to a basic dense matrix format and avoids CSR
encoding when required to keep throughput stable. The pro-
posed architecture maintains its efficiency across various data
densities due to its adaptive capabilities.

The process requires three arrays: val contains non-zero
matrix values while col_idx holds the indices of correspond-
ing columns and row_ptr indicates the start of each row in
val. The CSR format avoids storing zero entries to allow
quick matrix-vector computations. The CSR representation
of sparse coefficients offers substantial resource savings in
hyperspectral image classification which makes it ideal for
real-time embedded system applications including FPGAs
and low-power processors.

The sparse matrix form a compact and discriminative
feature representation of the hyperspectral data, which are
then employed as inputs to the SVM classifier. SVM train-
ing is sped up with FPGA-based SpMV. Labeled feature
pairs {𝑋𝑖 , 𝑦𝑖} (with 𝑦𝑖 as class labels) are input to an SVM
solver [31]. The kernel computations 𝐾 (𝑋𝑖 , 𝑋 𝑗) used in
SVM training are recast as SpMV operations and transferred
to an FPGA. The FPGA implementation uses a parallel ar-
chitecture with dynamic load-balancing that keeps execution
queues and redistributes tasks across available processing
units to achieve high hardware utilization and low latency.

After the SVM has converged, the model parameters
(𝛼∗, 𝑏∗) are then retrieved. For classification, test patches
are processed similarly 𝑋𝑖 sparse coefficients are retrieved,
and the decision function 𝑓 (𝑋𝑖) =

∑︁
𝑗

𝛼 𝑗𝐾 (𝑋𝑖 , 𝑋 𝑗) + 𝑏∗ is

calculated using FPGA-accelerated SpMV, with final class
labels produced. This whole solution not only facilitates ef-
ficient training on embedded hardware but also dynamically
adjusts to new data, allowing real-time re-training capabili-
ties not typically found in the current inference-only-based
systems.

Algorithm 1. FPGA-accelerated HSI classification.
Input: Hyperspectral cube H ∈ Rℎ×𝑊×𝑆 , label map 𝐿, parameters: 𝑚, 𝐵,
𝑘, 𝜆, 𝑇
Output: Trained SVM model (𝛼∗, 𝑏∗) , class labels { �̂�𝑖 }

1: Partition H into 𝐺 spatial patches 𝑆𝐺𝑖 ∈ R𝑚×𝑚×𝑆
2: for 𝑖 = 1 to 𝐺 do
3: Divide 𝑆𝐺𝑖 into 𝐵 spectral blocks 𝑆𝐺𝑖 𝑗 ∈ R𝑚×𝑚×

𝑆
𝐵

4: end for
5: Form training matrix Ys by vectorizing all spectral blocks

6: Train dictionary D ∈ R
𝑆
𝐵
×𝑘 :

7: minD,𝑋s
1
2 ∥𝑌s − D𝑋s ∥2𝐹 + 𝜆𝑅 (𝑋s)

8: for each spectral block 𝑗 do
9: Compute variance 𝜎2

𝑗

10: if 𝜎2
𝑗
< 𝑇 then

11: Mark block 𝑗 as inactive
12: end if
13: end for
14: Construct diagonal selection matrix W ∈ {0, 1}𝐵×𝐵
15: for each patch 𝑆𝐺𝑖 do
16: for each active block 𝑗 do
17: Solve sparse coding:
18: 𝑋𝑖 𝑗 = arg min𝑋 1

2 ∥𝑆𝐺𝑖 𝑗 − D𝑋∥2
𝐹
+ 𝜆𝑅 (𝑋)

19: end for
20: Concatenate 𝑋𝑖 𝑗 to form feature vector 𝑋𝑖

21: end for
22: Collect labeled training pairs {𝑋𝑖 , 𝑦𝑖 }
23: Initialize SVM solver with kernel 𝐾 (·, ·)
24: while not converged do
25: Identify kernel evaluations 𝐾 (𝑋𝑖 , 𝑋 𝑗)
26: Map kernel evaluations to SpMV form
27: Offload SpMV tasks to FPGA
28: Perform dynamic load-balancing:
29: Monitor queues, redistribute tasks to idle threads
30: Retrieve results and update 𝛼, gradients
31: end while
32: for all test patches 𝑆𝐺𝑖 do
33: Compute sparse feature 𝑋𝑖 as above
34: Evaluate decision function:
35: 𝑓 (𝑋𝑖) =

∑︁
𝑗

𝛼𝑗𝐾 (𝑋𝑖 , 𝑋 𝑗) + 𝑏∗

36: Offload kernel computation to FPGA
37: Assign label: �̂�𝑖 = sign(𝑓 (𝑋𝑖))
38: end for
39: return (𝛼∗, 𝑏∗) and predicted labels { �̂�𝑖 }

Fig. 1. (a) Example training matrix; (b) Sparse representation
using Compressed Sparse Row (CSR) format.

486 B. B. SHABARINATH, P. MURALIDHAR, A STREAMING DATAFLOW ACCELERATOR FOR SPARSE SVM KERNEL . . .

4. SpMV Accelerator

4.1 Architecture Overview
Figure 2 displays the architecture design and dataflow

of the proposed SpMV accelerator architecture. The system
has multiple processing elements (PEs) functioning concur-
rently with a shared task dispatcher for dynamic load balanc-
ing along with on-chip vector caches and dedicated memory
interfaces for matrix values and indices.

The accelerator uses the CSR data format and includes
specialized hardware blocks for fast data retrieval and paral-
lel processing. The design architecture diagram illustrates
multiple parallel PEs each equipped to execute multiply-
accumulate operations specifically for SpMV. Key compo-
nents include:

• Off-chip Memory Interfaces: The non-zero data (𝑛𝑧) is
delivered to all PEs at the same time through indepen-
dent DDR memory ports assigned for matrix values and
column indices. Every port maintains a width of 64 to
128 bits to support high-bandwidth burst transmissions.
The dual-port system enables simultaneous streaming
of CSR values and col_idx arrays to the PEs. The row
pointer array (row_ptr) occupies less space and can thus
be kept on-chip or loaded during burst operations.

• BRAM Cache: Storing input dense vector x in on-chip
BRAM buffers reduces the random access frequency to
DRAM. The complete vector or its portions are trans-
ferred to a multi-bank BRAM cache during the pre-
computation phase. The system enables multiple PEs
to access x elements quickly in parallel which prevents
the need for repeated off-chip memory reads. Multiple
banks partition the cache to enable parallel reads by
each PE from different vector elements without causing
contention. When the vector size exceeds the on-chip
capacity the design loads segments of x into the chip
and reuses them across multiple blocks of rows.

• Processing Elements (PEs): A pipelined unit called
each PE processes individual rows one at a time. The PE
accesses an uninterrupted section of values and col_idx
arrays spanning row_ptr[r] to row_ptr[r+1]–1 to multi-
ply each value by the matching x element. The products
undergo accumulation into a partial sum dedicated to
their row. The dedicated adder and multiplier units
(single or double precision floating-point) with local
registers for accumulation are available to every PE.
Partitioning the matrix by rows allows each process-
ing element to manage a dynamic subset of rows while
utilizing parallelism on independent rows.

• Task Dispatcher (Dynamic Load Balancer): This new
dynamic load balancing unit distributes rows to process-
ing elements during operation to balance the workload.
The dispatcher keeps a global task queue of row indices

instead of statically assigning specific rows for com-
putation to each PE. Once a PE completes its current
row and becomes available, the dispatcher assigns it the
next row index from the queue. The system guaran-
tees that all PEs have tasks to process even when some
rows contain significantly more non-zero elements than
others.

• Output Accumulation: Every PE stores its finished cal-
culation (one row’s dot-product) into the output vector
y. The absence of cross-PE reduction results from each
PE being responsible for a complete row. The system
can store results in an on-chip buffer or send them di-
rectly to DDR memory. The results are first stored in
an output buffer within BRAM before being moved to
DDR memory in burst transfers. Our design prevents
random writes and enables coalesced memory access
patterns for the result vector. Data is written back ei-
ther as each row finishes or in bulk when all PEs have
completed their tasks. The CSR generates one value for
each row which means that write activity remains low
when compared to read activity.

The accelerator functions as a streaming dataflow en-
gine where the row dispatcher sends row indices to PEs and
each PE fetches matrix values and indices for its row through
burst reads from DDR and then sends out its results. The
matrix data’s memory access pattern remains highly sequen-
tial since it reads contiguous values and col_index subarrays
which enables optimal DDR burst efficiency. On-chip dual-
ported memory allows vector x to service access requests in
a single cycle when it is accessed in quasi-random order based
on col_index. This design strategy maintains computational
unit activity by executing memory operations alongside com-
putation through pipelined streaming techniques. The system
mitigates SpMV’s memory-bound limitations through multi-
ple memory ports and on-chip caching that effectively reach
theoretical bandwidth thresholds.

Fig. 2. Proposed SpMV accelerator architecture.

RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 487

4.2 HLS Kernel Implementation
The HLS C++ kernel pseudocode for the SpMV acceler-

ator is shown in Algorithm 2 as a simple representation. The
code requires that the CSR arrays (row_ptr, col_idx, values)
along with the input/output vectors connect through AXI-
stream or memory-mapped interfaces. Multiple PE consumer
processes fetch row indices from a task queue to achieve
load balancing.

The HLS stream taskQueue stores row indices while
the input vector is preloaded into the BRAM-stored local
array x_local. The producer loop populates the queue with
all row indices from 0 through nrows–1 before appending
–1 tokens to indicate completion to each PE. We use loop
unrolling to generate PE_COUNT parallel consumer tasks
which instantiate multiple copies of the original computa-
tion loop. The processing engine (PE) enters a while-loop
to retrieve the next row index from taskQueue. If the in-
dex is –1 it breaks out (all tasks done); otherwise it pro-
cesses that row: The process begins by reading the point-
ers that mark the beginning and end of a row followed by
iterating through each nonzero element performing multi-
plication and accumulation. The inner row_loop executes
one multiply-add operation per clock cycle after the pipeline
becomes full due to full pipelining. Each processing el-
ement achieves a computation rate of one nonzero opera-
tion per clock cycle after initial overhead for loop setup.

Algorithm 2. Parallel SpMV kernel (PE-based).
Inputs: 𝑛𝑟𝑜𝑤𝑠, 𝑛𝑐𝑜𝑙𝑠, 𝑛𝑧, 𝑟𝑜𝑤_𝑝𝑡𝑟 [], 𝑐𝑜𝑙_𝑖𝑑𝑥 [], 𝑣𝑎𝑙𝑢𝑒𝑠[], 𝑥 []
Output: y[] -resulting output vector after SpMV

Step 1: Prefetch Vector x into On-Chip Memory
for 𝑗 ← 0 to 𝑛𝑐𝑜𝑙𝑠 − 1 do
𝑥_𝑙𝑜𝑐𝑎𝑙 [𝑗] ← 𝑥 [𝑗]

end for
Step 2: Populate Task Queue with Row Indices
for 𝑟 ← 0 to 𝑛𝑟𝑜𝑤𝑠 − 1 do
𝑡𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑟)

end for
Step 3: Add Termination Tokens for Each PE
for 𝑝 ← 0 to 𝑃𝐸_𝐶𝑂𝑈𝑁𝑇 − 1 do
𝑡𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (−1)

end for
Step 4: Parallel Processing by PEs
for all processing elements 𝑝 in parallel do

while TRUE do
𝑟𝑜𝑤 ← 𝑡𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
if 𝑟𝑜𝑤 == −1 then

break
end if
𝑠𝑢𝑚← 0
𝑠𝑡𝑎𝑟𝑡 ← 𝑟𝑜𝑤_𝑝𝑡𝑟 [𝑟𝑜𝑤]
𝑒𝑛𝑑 ← 𝑟𝑜𝑤_𝑝𝑡𝑟 [𝑟𝑜𝑤 + 1]
for 𝑗 ← 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 − 1 do
𝑐𝑜𝑙 ← 𝑐𝑜𝑙_𝑖𝑑𝑥 [𝑗]
𝑣𝑎𝑙 ← 𝑣𝑎𝑙𝑢𝑒𝑠[𝑗]
𝑠𝑢𝑚← 𝑠𝑢𝑚 + 𝑣𝑎𝑙 × 𝑥_𝑙𝑜𝑐𝑎𝑙 [𝑐𝑜𝑙]

end for
𝑦 [𝑟𝑜𝑤] ← 𝑠𝑢𝑚

end while
end for

The sum result is then stored in y[row]. PEs work inde-
pendently on unique rows without requiring explicit syn-
chronization because the hardware stream ensures each row
assignment happens just once.

We enhance SpMV performance on Artix-7 FPGAs us-
ing techniques such as loop pipelining with II=1 and loop
unrolling along with dataflow streaming and burst mem-
ory transfers combined with memory partitioning double
buffering and custom precision. The process of pipelin-
ing innermost loops reaches full capacity of the multiplier-
adder pipeline with every cycle. PEs achieve thread-level
parallelism along with dataflow techniques that synchronize
producer-consumer loops for uninterrupted streaming. AXI4
bursts handle row-wise contiguous data efficiently. BRAM
partitioning enables multiple PEs to read vector x data at
the same time. The use of double buffering effectively
conceals transfer delay when working with large vectors.
Floating-point designs tailored for DSP applications meet
necessary constraints by operating at feasible frequencies
from 100 MHz to 150 MHz. These optimizations work cu-
mulatively to maintain PE activity and boost system effi-
ciency during memory-bound operations.

4.3 Dynamic Load Balancing
The dynamic load balancing Algorithm 3 proposed for

FPGA-based SpMV manages computational workload by
adaptively distributing tasks across parallel PEs.

The initial distribution of matrix rows to PEs utilizes
non-zero counts to establish an approximate balance in work-
load distribution. The algorithm assesses each PEs workload
during execution by tracking processed non-zeros or execu-
tion time and calculates the workload average for all PEs.

The algorithm redistributes the lightest row(s) from
the overloaded PE to the least-loaded PE when the work-
load of any PE surpasses the average load by a prede-
fined threshold chosen by the user. The workload balanc-
ing process repeats until every workload meets acceptable
performance standards. The method achieves low overhead

Algorithm 3. Dynamic load balancing for SpMV.
Inputs: 𝑁 rows, 𝑃 processing elements (PE), 𝑅𝑜𝑤_𝑛𝑧 [𝑁],

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑇ℎ) , 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

1. Initialize: Evenly distribute rows to PEs based on 𝑅𝑜𝑤_𝑛𝑛𝑧
2. Perform SpMV computation in parallel across PEs
3. For every 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 iterations:

a. Monitor workload per PE
b. Compute 𝐴𝑣𝑔𝐿𝑜𝑎𝑑 ← ∑

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠/𝑃
c. For each PE:

i. If 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑃𝐸) > 𝐴𝑣𝑔𝐿𝑜𝑎𝑑 × (1 + 𝑇ℎ):
While 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑃𝐸) > 𝐴𝑣𝑔𝐿𝑜𝑎𝑑 × (1 + 𝑇ℎ):

Identify smallest row in overloaded PE
Identify least-loaded PE
Move smallest row to least-loaded PE
Update workloads accordingly

4. Repeat steps 2-3 until computation is complete

488 B. B. SHABARINATH, P. MURALIDHAR, A STREAMING DATAFLOW ACCELERATOR FOR SPARSE SVM KERNEL . . .

Fig. 3. Hardware/software co-design with direct DDR access.

Fig. 4. Hardware/software co-design with AXI DMA integration.

by initiating re-balancing when required and concentrating
on inexpensive row transfers which leads to better hardware
utilization and fewer idle cycles. For matrices with highly
irregular sparsity patterns this method demonstrates superior
results compared to static partitioning by delivering higher
performance and improved energy efficiency.

4.4 Hardware/Software Co-Design
The design of the hardware/software codesign system

uses a Zynq-7000 Processing System (PS) which connects
to a custom spmv_kernel Intellectual Property (IP) core as
shown in Fig. 3.

The spmv_kernel uses gmem0 and gmem1 AXI mas-
ter interfaces to connect to external DDR memory through
an AXI SmartConnect for accelerating sparse matrix-vector
multiplication. The system uses specialized interfaces for
fast data movement between large matrix/vector datasets
which reduces processing demands on the PS. The kernel
uses an AXI-Lite slave implementation for its ap_ctrl inter-
face which connects to one of the PS general-purpose master
ports. Through this connection the PS can configure and
control the kernel by writing to control registers and starting

the processing tasks. An AXI Interconnect block facilitates
correct routing and address mapping between multiple AXI
interfaces and keeps the design synchronized by correctly
applying clock and reset signals. The system architecture
efficiently separates control and data paths to deliver high
performance throughput and optimized hardware-software
integration for intense computational tasks.

The modified block design combines AXI DMA en-
gines with the Zynq PS and custom spmv_kernel IP to de-
liver improved data transfer performance over the previous
design is shown in Fig. 4. This architecture uses AXI DMA
blocks to move data in bulk between DDR memory and
the spmv_kernel which results in diminished processor load
while boosting concurrency levels. The DMA engines op-
erate through direct memory access which enables them to
handle large data buffers in DDR memory while simulta-
neously processing incoming and outgoing streams by the
spmv_kernel. The AXI SmartConnect creates connections
between multiple master and slave interfaces while maintain-
ing proper address mapping and optimizing data flow. The
architecture includes an AXI Timer module that measures
performance metrics for DMA transfers and kernel execu-
tion with high precision.

RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 489

The updated design shifts data transfer responsibilities
to specialized hardware engines which lets the processing
system handle additional tasks unlike the previous version
where the spmv_kernel directly accessed DDR using its own
AXI master ports. This architectural change results in su-
perior system throughput and responsiveness especially for
compute-demanding tasks such as sparse matrix-vector mul-
tiplication. AXI DMA module integration serves as an essen-
tial strategy for optimizing hardware-software collaboration
and gaining high-performance acceleration.

5. Experimental Results
Our extensive experimental assessment of the SVM

learning strategy was performed on the PYNQ-Z2 platform
as shown in Fig. 5 that integrates the ZYNQ-7000 System on
Chip with an ARM Cortex-A9 processor alongside an Artix-7
FPGA and 512 MB of DDR3 memory. Users can control
hardware accelerators with Python and C++ through Jupyter
notebooks because this platform enables hybrid CPU-FPGA
execution. We selected the best hyperparameters for the MC-
SVM model by using grid search and implemented fixed-
point arithmetic to achieve efficient FPGA performance.

5.1 HSI Datasets
The proposed SVM learning strategy was tested on

the ZYNQ SoC with four benchmark hyperspectral image
datasets acquired through aerial imaging, UAV operations
and terrestrial acquisitions as shown in Tab. 1. The datasets
used in our study consist of subsets from Indian Pines [32]
and AVIRIS-NG [33], which were captured by AVIRIS sen-
sors and two additional datasets [34], [35] captured using
Cubert UHD 185 sensors with one mounted on a UAV and

another on a tripod. The datasets exhibit unique spectral
ranges and class distributions which enable extensive evalu-
ation of classification performance under different scenarios.
All datasets used a consistent 30%–70% train-test split for
conducting experiments.

5.2 Sparse Representation
Figure 6 visualizes dictionary atoms found through

a dataset patch from Indian Pines showing spectral signa-
tures created by our dictionary learning technique. Every
line represents an individual learned atom which displays its

Fig. 5. Implementing SVM learning strategy on PYNQ-Z2.

Dataset Platform Classes Spectral
bands Dimension

Indian Pines Ariel 5 220 145×145
AVIRIS-NG Ariel 5 351 400×565
Cubert-UAV UAV 3 139 1000×1000

Cubert-Terrestrial Terrestrial 3 139 1000×1000

Tab. 1. HSI datasets.

Fig. 6. Learned dictionary atoms for Indian Pines dataset.

490 B. B. SHABARINATH, P. MURALIDHAR, A STREAMING DATAFLOW ACCELERATOR FOR SPARSE SVM KERNEL . . .

distinct spectral signature. Spectral band indices are plotted
on the x-axis and atom values are shown on the y-axis. The
red shading between bands 20 and 40 marks an area with
high discriminative power whereas the blue shading from
bands 120 to 140 shows a region of lower discriminative
strength. The analysis of these intervals demonstrates that
specific spectral bands hold more valuable data for classi-
fication while showcasing the advantage of pinpointing and
concentrating on discriminative spectral blocks. Thus, clas-
sification efficiency is enhanced.

Fig. 7. Evaluating hardware/software co-design strategies.

5.3 Performance of Co-design Strategies
The study evaluated two distinct designs for accelerating

SPMV computations during SVM training for hyperspectral
image classification on a Zynq SoC platform. A comparative
radar chart analysis in Fig. 7 shows that AXI DMA Integra-
tion design surpasses Direct DDR Access design across cru-
cial performance indicators. Data throughput improved from
100 MB/s to 160 MB/s while processor overhead dropped
significantly from 30% to 15%. Despite a slight increase in
FPGA logic use from 40% to 45% and a small increase in
power consumption from 0.028 W to 0.24 W the AXI DMA
design shows better overall performance improvements in
data handling and processing efficiency.

The processor overhead (%) measurement involves cal-
culating the portion of processor cycles used by control oper-
ations compared to total cycles and power consumption (W)
measurement relies on Xilinx Vivado Power Analyzer tool
which used simulation-based techniques to capture realistic
switching activity.

5.4 Inference Accuracy Assessment
Four HSI datasets served as evaluation benchmarks for

testing the proposed SVM learning strategy on the PYNQ-
Z2 platform. We evaluated inference and per-class accura-
cies through the ratio of correctly classified pixels. Table 2
demonstrates that the system obtained excellent classification
accuracy for each dataset. The demonstrated results confirm
that the hardware-accelerated SVM classifier functions reli-
ably and is appropriate for real-time HSI applications.

5.5 Real-Time Performance Assessment
We implemented the new SVM learning strategy on the

ZYNQ-7000 SoC where the Artix-7 FPGA served to speed
up demanding SVM operations. The spmv_kernel IP block
underwent HLS optimization to match dataset requirements
based on pixel dimensionality and class count. The increase
in resource consumption directly correlated with both fea-
ture dimensionality and the number of classes as depicted
in Tab. 3. The operating frequencies mentioned here rep-
resent post place-and-route (implementation) values derived
from Vivado tools. The design used multiple optimization

Indian Pines AVIRIS-NG Cubert-UAV Cubert-Terrestrial

Classes Per-class
accuracy [%] Classes Per-class

accuracy [%] Classes Per-class
accuracy [%] Classes Per-class

accuracy [%]
Alfalfa 99.89 Water 99.65 Tomato 99.98 Pipe 95.78

Corn-notill 97.65 Soil 99.78 Eggplant 99.92 Cabbage 99.85
Soybean-mintill 93.56 Building 95.32 Cabbage 99.94 Soil 99.68

Wheat 98.79 Road 95.45 NA NA NA NA
Woods 97.98 Vegetation 99.86 NA NA NA NA

Inference
accuracy [%] 98.65 Inference

accuracy [%] 98.92 Inference
accuracy [%] 99.95 Inference

accuracy [%] 99.84

Tab. 2. Per-class accuracy and inference accuracy obtained using proposed learning strategy on ZYNQ SoC for HSI classification.

RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 491

Resources Available Indian Pines
utilization

AVIRIS-NG
utilization

Cubert-UAV
utilization

Cubert-Terrestrial
utilization

LUTs 53200 34780 (65.38%) 34780 (65.38%) 43456 (81.68%) 43456 (81.68%)
Flip-Flops 106400 34613 (32.53%) 34613 (32.53%) 48562 (45.64%) 48562 (45.64%)
BRAMs 140 136 (96.79%) 136 (96.79%) 131 (93.57%) 131 (93.57%)
DSPs 220 124 (56.36%) 124 (56.36%) 29 (13.18%) 29 (13.18%)

Maximum operating
frequency [MHz] – 177.36 177.36 198.46 198.46

Tab. 3. Resource utilization for SVM learning strategy on ZYNQ SoC for HSI classification.

HSI datasets Latency [μs] Throughput Inference period Power
[Watts]Learning Classification Pixel vectors

per second
Data rate

[MB/s]
Software

[s]
Accelerator

[s] Speedup

Indian Pines 5.54 1.26 147059 129 1.144 0.026 44 0.172
AVIRIS-NG 6.76 2.14 112359 158 12.98 0.483 26.87 0.238
Cubert-UAV 4.69 0.75 183823 102 27.36 0.75 36.48 0.028

Cubert-Terrestrial 4.69 0.75 183823 102 27.36 0.75 36.48 0.028

Tab. 4. Performance metrics of the proposed incremental strategy on the ZYNQ SoC for HSI classification.

Method FPGA
Device Accuracy Throughput Latency Power Training

ability

[3] Artix-7 ~73.8% ~9k pixels/s (single)
~54k pixels/s (6-core)

0.66 ms/pixel (single)
0.11 ms/pixel (6-core) - No

[4] Kintex-7 ~98.0% 1.3 Mpixels/s - - No
[5] Artix-7 ~98.9% ~100k pixels/s 3.45 μs/pixel ~0.3 W No

Proposed Artix-7 ~98.65% ~147k pixels/s 5.54 μs (learning)
1.26 μs (classification) 0.172 W Yes

Tab. 5. Comparison of FPGA-based hyperspectral image classification methods for Indian Pines dataset.

strategies to obtain timing closure and control routing con-
gestion during periods of extensive resource utilization. The
introduction of numerous pipeline stages throughout PEs suc-
cessfully minimized the length of critical paths. The imple-
mentation of streaming interfaces to organize data minimized
internal congestion by improving data handling efficiency.
Classification latency reached 𝑟 + 10 clock cycles and learn-
ing latency reached 𝑟 + 792 clock cycles which resulted in
6.8 μs and 8.9 μs respectively as shown in Tab. 4. These
latencies were significantly below prior work sensor dwell
times of 15.6–31.5 μs [36], [37].

The system achieved up to 183,823 pixel vectors per
second and data rates above 150 MBPS which varied based
on the dataset complexity. Our hardware-accelerated MC-
SVM employs parallel PEs to concurrently run compute in-
tensive SpMV unlike software implementations where SVM
classifiers work sequentially. Parallel processing elements
enabled the system to achieve an average speed improvement
of 36 times compared to the standard software baseline on an
ARM Cortex-A9 (650 MHz) processor. The AVIRIS-NG im-
age with dimensions 400×565 achieved classification within
0.483 seconds which falls significantly below the sensor’s
3.5-second acquisition time thereby demonstrating real-time
performance capability. Power consumption stayed below
0.24 W for all configurations due to the number of pro-
cessing elements used, pipeline depth, and kernel complex-
ity. Power consumption measurements were collected with

Xilinx Vivado Power Analyzer tool which used simulation-
based techniques to capture realistic switching activity. The
system implementation utilized optimized fixed-point arith-
metic to effectively decrease DSP and logic usage overhead.
Dual-port BRAM caches minimized off-chip memory ac-
cesses which led to a substantial reduction in dynamic power
consumption. The efficient allocation of resources resulted
in fewer idle cycles and less total energy usage. The ex-
perimental findings support the deployment of the design
on power-constrained and latency-critical platforms such as
UAVs, satellites and terrestrial imaging systems.

5.6 Comparison with State-of-the-Art
The classification of the Indian Pines dataset evalu-

ates four FPGA-based methodologies in Tab. 5. Tajiri and
Maruyama [4] achieved impressive throughput with their
Kintex-7 device reaching 1.3 Mpixels/s but their work lacks
detailed latency information. Gyaneshwar and Nidama-
nuri [5] provide superior accuracy levels (98.9%) together
with reasonable throughput (100k pixels/s) while avoiding
any on-chip training processes. Martins et al. Martins et
al. [3] demonstrate a scalable FPGA design through Zynq-
7000 devices yet attain an accuracy level of approximately
73.8%. The proposed solution achieves around 98.65% accu-
racy with a throughput of up to 180k pixels/s while keeping
the on-chip power consumption below 0.24 W. The system
uses on-chip learning to allow real-time model adaptation

492 B. B. SHABARINATH, P. MURALIDHAR, A STREAMING DATAFLOW ACCELERATOR FOR SPARSE SVM KERNEL . . .

Fig. 8. Indian Pines: (a) Reference sample map; (b) Classifica-
tion map.

without needing external retraining which makes it perfect
for dynamic environments. The system minimizes data trans-
fer overhead while improving classification accuracy and
increases autonomous functioning in edge computing de-
ployments with strict power and latency needs like UAVs
and satellites.

Spatial distribution patterns of Alfalfa, Corn-notill,
Soybean-mintill, Wheat, and Woods classes throughout the
Indian Pines dataset are shown in the Fig. 8. The classi-
fication process targets only specific pixels associated with
selected classes while masking all other areas to background.
The use of different color segments demonstrates precise
predictions that match ground truth boundaries for each spe-
cific region. The selective classification method maintains
spatial context and minimizes computational requirements.
Through visualization analysis the proposed model achieves
high classification accuracy for specific classes and demon-
strates strong spatial domain generalization which makes it
ideal for real-time hyperspectral applications in resource-
restricted environments.

6. Conclusions
The paper presents a new hyperspectral image classifi-

cation framework which combines sparse dictionary learning
with SVM training alongside FPGA-accelerated SpMV op-
erations. Our method divides images into spatial patches and
spectral blocks to learn compact sub-dictionaries that enable
discriminative sparse feature extraction. The dynamic FPGA
architecture with load-balancing capabilities speeds up SVM
kernel evaluations which allows complete SVM training on
embedded devices. Experimental results indicate that our
system delivers better classification accuracy together with
faster processing times and improved energy efficiency than
existing systems. Upcoming research directions will target
the development of advanced compression methods while
working on fixed-point arithmetic and adaptive block for-
mation technology and exploring expansion possibilities to
multi-FPGA platforms. The framework shows outstanding
capabilities in scalability along with robustness and efficiency
performance.

References

[1] PATHAK, D. K., KALITA, S. K., BHATTACHARYA, D. K. et al.
Hyperspectral image classification using support vector machine: a
spectral spatial feature based approach. Evolutionary Intelligence,
2022, vol. 15, p. 1809–1823. DOI: 10.1007/s12065-021-00591-0

[2] MACIAS, R., BERNABE, S., BASCONES, D. et al. FPGA im-
plementation of a hardware optimized automatic target detection
and classification algorithm for hyperspectral image analysis. IEEE
Geoscience and Remote Sensing Letters, 2022, vol. 19, p. 1–5.
DOI: 10.1109/LGRS.2022.3189109

[3] MARTINS, L. A., VIEL, F., SEMAN, L. O. et al. A real-time SVM-
based hardware accelerator for hyperspectral images classification in
FPGA. Microprocessors and Microsystems, 2024, vol. 104, p. 1–13.
DOI: 10.1016/j.micpro.2023.104998

[4] TAJIRI, K., MARUYAMA, T. FPGA acceleration of a composite ker-
nel SVM for hyperspectral image classification. IEEE Access, 2023,
vol. 11, p. 214–226. DOI: 10.1109/ACCESS.2022.3230066

[5] GYANESHWAR, D., NIDAMANURI, R. R. A real-time FPGA
accelerated stream processing for hyperspectral image classifica-
tion. Geocarto International, 2022, vol. 37, no. 1, p. 52–69.
DOI: 10.1080/10106049.2020.1713231

[6] SHENMING, Q., XIANG, L., ZHIHUA, G. et al. A new
hyperspectral image classification method based on spatial-
spectral features. Scientific Reports, 2022, vol. 12, p. 1–15.
DOI: 10.1038/s41598-022-05422-5

[7] KAUL, A., RAINA, S. Support vector machine versus convolutional
neural network for hyperspectral image classification: a systematic
review. Concurrency and Computation: Practice and Experience,
2022, vol. 34, p. 1–35. DOI: 10.1002/cpe.6945

[8] ZHENG, Z., ZHONG, Y., MA, A. et al. FPGA: Fast patch-free global
learning framework for fully end-to-end hyperspectral image classifi-
cation. IEEE Transactions on Geoscience and Remote Sensing, 2020,
vol. 58, no. 8, p. 5612–5626. DOI: 10.1109/TGRS.2020.2967821

[9] NASCIMENTO, J., MARTIN, G. Nonlinear spectral unmixing.
Chapter in: AMIGO, J. M. (ed.). Data Handling in Science and Tech-
nology, Elsevier, 2019, vol. 32, p. 151–166. ISBN: 9780444639776.
DOI: 10.1016/B978-0-444-63977-6.00008-0

[10] RATLE, F., CAMPS-VALLS, G., WESTON, J. et al. Semisupervised
neural networks for efficient hyperspectral image classification. IEEE
Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 5,
p. 2271–2282. DOI: 10.1109/TGRS.2009.2037898

[11] FU, H., et al. A novel band selection and spatial noise reduc-
tion method for hyperspectral image classification. IEEE Transac-
tions on Geoscience and Remote Sensing, 2022, vol. 60, p. 1–13.
DOI: 10.1109/TGRS.2022.3189015

[12] LI, F., WANG, J., LAN, R., et al. Hyperspectral image classifica-
tion using multi-feature fusion. Optics & Laser Technology, 2019,
vol. 110, p. 176–183. DOI: 10.1016/j.optlastec.2018.08.044

[13] FENG, S., ITOH, Y., PARENTE, M., et al. Hyperspectral band se-
lection from statistical wavelet models. IEEE Transactions on Geo-
science and Remote Sensing, 2017, vol. 55, no. 4, p. 2111–2123.
DOI: 10.1109/TGRS.2016.2636850

[14] KUMAR, B., DIKSHIT, O. Hyperspectral image classification based
on morphological profiles and decision fusion. International Jour-
nal of Remote Sensing, 2017, vol. 38, no. 20, p. 5830–5854.
DOI: 10.1080/01431161.2017.1348636

RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025 493

[15] BHATTI, U. A., YU, Z., CHANUSSOT, J., et al. Local
similarity-based spatial–spectral fusion hyperspectral image clas-
sification with deep CNN and Gabor filtering. IEEE Transac-
tions on Geoscience and Remote Sensing, 2022, vol. 60, p. 1–15.
DOI: 10.1109/TGRS.2021.3090410

[16] MEI, S., LI, X., LIU, X., et al. Hyperspectral image classification us-
ing attention-based bidirectional long short-term memory network.
IEEE Transactions on Geoscience and Remote Sensing, 2022, vol. 60,
p. 1–12. DOI: 10.1109/TGRS.2021.3102034

[17] WANG, H., CELIK, T. Sparse representation-based hyperspectral im-
age classification. Signal, Image and Video Processing, 2018, vol. 12,
p. 1009–1017. DOI: 10.1007/s11760-018-1249-1

[18] IORDACHE, M.-D., BIOUCAS-DIAS, J. M., PLAZA, A. Sparse
unmixing of hyperspectral data. IEEE Transactions on Geoscience
and Remote Sensing, 2011, vol. 49, no. 6, p. 2014–2039.
DOI: 10.1109/TGRS.2010.2098413

[19] CHEN, Y., NASRABADI, N. M., TRAN, T. D. Hyperspectral im-
age classification using dictionary-based sparse representation. IEEE
Transactions on Geoscience and Remote Sensing, 2011, vol. 49,
no. 10, p. 3973–3985. DOI: 10.1109/TGRS.2011.2129595

[20] PENG, J., JIANG, X., CHEN, N., et al. Local adaptive joint sparse
representation for hyperspectral image classification. Neurocomput-
ing, 2019, vol. 334, p. 239–248. DOI: 10.1016/j.neucom.2019.01.034

[21] SOLTANI-FARANI, A., RABIEE, H. R., HOSSEINI, S. A. Spatial-
aware dictionary learning for hyperspectral image classification. IEEE
Transactions on Geoscience and Remote Sensing, 2015, vol. 53, no. 1,
p. 527–541. DOI: 10.1109/TGRS.2014.2325067

[22] FU, W., LI, S., FANG, L., et al. Contextual online dictionary learning
for hyperspectral image classification. IEEE Transactions on Geo-
science and Remote Sensing, 2018, vol. 56, no. 3, p. 1336–1347.
DOI: 10.1109/TGRS.2017.2761893

[23] XIE, M., JI, Z., ZHANG, G., et al. Mutually exclusive-
KSVD: Learning a discriminative dictionary for hyperspectral im-
age classification. Neurocomputing, 2018, vol. 315, p. 177–189.
DOI: 10.1016/j.neucom.2018.07.015

[24] CASTRODAD, A., VASILESCU, M., SAPIRO, G., et al. Learning
discriminative sparse representations for modeling, classification, and
reconstruction of hyperspectral imagery. IEEE Transactions on Geo-
science and Remote Sensing, 2011, vol. 49, no. 11, p. 4263–4281.
DOI: 10.1109/TGRS.2011.2159265

[25] CAMPS-VALLS, G., BRUZZONE, L. Kernel-based methods for
hyperspectral image classification. IEEE Transactions on Geo-
science and Remote Sensing, 2005, vol. 43, no. 6, p. 1351–1362.
DOI: 10.1109/TGRS.2005.846154

[26] MELGANI, F., BRUZZONE, L. Classification of hyperspectral re-
mote sensing images with support vector machines. IEEE Trans-
actions on Geoscience and Remote Sensing, 2004, vol. 42, no. 8,
p. 1778–1790. DOI: 10.1109/TGRS.2004.831865

[27] GAO, S., TSANG, I. W.-H., CHIA, L.-T. Laplacian sparse coding,
hypergraph Laplacian sparse coding, and applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2013, vol. 35,
no. 1, p. 92–104. DOI: 10.1109/TPAMI.2012.63

[28] HUANG, J., HUANG, T., DENG, L., et al. Joint-sparse-blocks and
low-rank representation for hyperspectral unmixing. IEEE Trans-
actions on Geoscience and Remote Sensing, 2019, vol. 57, no. 4,
p. 2419–2438. DOI: 10.1109/TGRS.2018.2873326

[29] FU, W., LI, S., FANG, L., et al. Hyperspectral image classification via
shape-adaptive joint sparse representation. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2015,
vol. 9, no. 2, p. 556–567. DOI: 10.1109/JSTARS.2015.2477364

[30] HE, Z., LIU, L., DENG, R., et al. Low-rank group inspired dictionary
learning for hyperspectral image classification. Signal Processing,
2016, vol. 120, p. 209–221. DOI: 10.1016/j.sigpro.2015.09.004

[31] CHANG, C.-C., LIN, C.-J. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2011, vol. 2, no. 3, p. 1–27. DOI: 10.1145/1961189.1961199

[32] BAUMGARDNER, M. F., BIEHL, L. L., LANDGREBE, D. A. 220
Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 In-
dian Pine Test Site 3. Purdue University Research Repository, 2015.
DOI: 10.4231/R7RX991C

[33] BHATTACHARYA, B. K., JAIN, S., PARIHAR, J. S., et al.
An overview of AVIRIS-NG airborne hyperspectral science campaign
over India. Current Science, 2019, vol. 116, no. 7, p. 1082–1088.
DOI: 10.18520/CS/V116/I7/1082-1088

[34] ASTOR, T., DAYANANDA, S., NAUTIYAL, S., et al. Veg-
etable crop biomass estimation using hyperspectral and RGB
3D UAV data. Agronomy, 2020, vol. 10, no. 10, p. 1–19.
DOI: 10.3390/agronomy10101600

[35] SARMA, A. S., NIDAMANURI, R. R. Active learning-enhanced
plant-level crop mapping with drone hyperspectral imaging and evo-
lutionary computing. In Proceedings of the Workshop on Hyper-
spectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS). Athens (Greece), 2023, p. 1–5. DOI: 10.1109/WHIS-
PERS61460.2023.10430799

[36] WU, Z., LIU, J., PLAZA, A., et al. GPU implementation of compos-
ite kernels for hyperspectral image classification. IEEE Geoscience
and Remote Sensing Letters, 2015, vol. 12, no. 9, p. 1973–1977.
DOI: 10.1109/LGRS.2015.2441631

[37] THORPE, A. K., ROBERTS, D. A., FRANKLIN, J., et al. Map-
ping methane concentrations from a controlled release experiment
using the next generation airborne visible/infrared imaging spectrom-
eter (AVIRIS-NG). Remote Sensing of Environment, 2016, vol. 179,
p. 104–115. DOI: 10.1016/j.rse.2016.03.032

About the Authors . . .

B. B. SHABARINATH graduated from SASTRA Univer-
sity, Thanjavur, India, with a B. Tech in Electronics and
Communication Engineering in 2009, and from AMITY Uni-
versity, Noida, India, with an M. Tech in Embedded Systems
Technology in 2013. Presently engaged in the pursuit of
a Ph.D. at the National Institute of Technology Warangal, he
also holds the position of Assistant Professor at the VNR
Vignana Jyothi Institute of Engineering and Technology in
Hyderabad. His research interests include developing hard-
ware accelerators for Machine Learning Algorithms.

Pullakandam MURALIDHAR received B.Tech in Elec-
tronics and Communication Engineering and M.Tech degree
in Electronic Instrumentation from National Institute of Tech-
nology, Warangal, India, in 1993 and 2004 respectively. Then
he has received his Ph.D. degree from NIT Warangal. He
joined Apollo Computing Labs Hyderabad in 1994 where he
was engaged in design and development of high-speed dig-
ital circuits. He joined NIT Warangal in 1997. Since then
he has been working in the ECE Department, NIT Warangal.
His research interests include design of Embedded Systems
and VLSI Architectures for Machine Learning and Video
Processing Systems.

