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Abstract. Hyperspectral image (HSI) classification faces
significant challenges due to the high cost of acquiring la-
beled samples. To mitigate this, we propose SSCF-Net,
a novel self-supervised learning driven cross-domain fea-
ture fusion Network. SSCF-Net uniquely leverages read-
ily available labeled natural images (source domain) to
aid HSI (target domain) classification by transfer learn-
ing. Specifically, we employ rotation-based self-supervision
in the source domain to learn transferable features, which
are then transferred to the HSI domain. Within SSCF-Net,
we effectively fuse local and global features: local features
are extracted by a jointly trained module combining VGG
and two-dimensional long short-term memory networks (TD-
LSTM) networks, while global features capturing long-range
dependencies are learned via a Transformer model. Cru-
cially, in the HSI domain, we further employ contrastive
learning as a self-supervised strategy to maximally utilize
the limited labeled data. Extensive experiments on three
benchmark HSI datasets (Salinas, Indian Pines, WHU-Hi-
LongKou) demonstrate that SSCF-Net significantly outper-
forms existing methods, validating its effectiveness in ad-
dressing the label scarcity problem. The code is available at
https://github.com/6pangbo/SSCF-Net.

Keywords
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1. Introduction
Hyperspectral image (HSI), acquired by airborne sen-

sors, captures three-dimensional data containing rich spa-
tial and spectral information across numerous contiguous
wavelengths. This detailed reflectance signature enables
precise identification of materials, making hyperspectral im-
age classification (HSIC) a critical task with diverse appli-
cations. However, the complexity of land cover distributions
makes acquiring sufficient labeled samples costly and time-
consuming, posing a major challenge to effective classifica-
tion [1].

Early HSIC research relied on algorithms like Support
Vector Machine [2], Random Forest [3], and Neural Net-
works [4]. The advent of deep learning has revolutionized the
field, with methods such as Stacked Autoencoders [5], Deep
Belief Networks [6] and particularly Convolutional Neural
Networks (CNN) demonstrating substantial improvements.
CNN is widely used due to its powerful feature extraction
ability [7]. Chen et al. [8] pioneered their use for extracting
regularized deep features in HSIC. Considering the different
structural scales in HSI, Ye et al. [9] proposed a lightweight
multi-scale CNN, and Zhang et al. [10] constructed a multi-
scale dense network to extract fusing features at different
scales. Fang et al. [11] proposed FDEGCNet, which allows
the CNN to dynamically focus on important features and
capture cross-dimensional context. Currently, the graph con-
volutional network (GCN) treats the image pixels as graph
nodes connected by edges representing spatial relationships,
performing convolution directly on the graph structure to
capture the interactions of the nodes. Ding et al. [12] pro-
posed a diversity connection GCN to improve graph structure
quality, while Liu et al. [13] proposed a comparison GCN
with skip connection to solve the problem that the potentially
important information is submerged in the iterative convo-
lutional process. Additionally, other deep learning-based
methods are also attempting to classify images, including Re-
current Neural Networks (RNN) [14] and Long Short-Term
Memory (LSTM) [15].

While CNNs are powerful for local patterns, they of-
ten struggle with long-range dependencies. Transformer,
built on self-attention mechanisms, addresses this limita-
tion by globally weighting feature importance. Relevant
researches in recent years include that Sun et al. [16] pro-
posed a spectral-spatial tokenization Transformer for HSIC,
while Mei et al. [17] proposed a hierarchical Transformer us-
ing local spatial-spectral attention. Although Vision Trans-
former (ViT) has shown some potential in image classifica-
tion tasks [18], its performance is limited when dealing with
large-scale datasets due to the lack of hierarchical feature
extraction capability. To address this issue, Swin Trans-
former was introduced [19]. It combines local window self-
attention and hierarchical feature representation to improve
the processing ability for high-resolution images. Recog-
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nizing the complementary strengths of CNNs (local detail)
and Transformers (global context), recent research focuses
on hybrid CNN-Transformer architectures. Qi et al. [20]
proposed a method called global-local 3-D convolutional
Transformer network. This network innovatively embed-
ded three-dimensional convolution into a dual-branch Trans-
former structure to capture local-global correlation in spec-
tral and spatial domains. Feng et al. [21] proposed a hybrid
network based on multiple vision architectures-based hybrid
network for HSIC. The framework consisted of a joint CNN
and Transformer structure. It also included a GCN, which
realized the integration of different methods and aimed to
capture various types of feature information.

Despite these advances, a fundamental challenge per-
sists: deep learning models typically demand large labeled
datasets, which are scarce and costly to obtain for HSI. To
alleviate this label dependency (only 1 to 5 labeled sam-
ples for training), researchers have turned to self-supervised
learning [22]. Self-supervised learning leverages the intrin-
sic properties of data to learn effective feature representa-
tions before formal supervised learning. In HSIC, self-
supervised learning aids in understanding data complexity
and handling high-dimensional data. Bai et al. [23] pro-
posed a hyperspectral classification method using masked
self-supervised pretraining, which enables effective model
training across datasets. Cao et al. [24] proposed an effi-
cient hybrid self-supervised learning method that fully inte-
grates the generative-based method and the contrastive-based
method, and achieved high stability and strong reliability.
Ye et al. [25] introduced a novel unsupervised approach
called self-supervised learning with the multiscale densely
connected network to make full use of unlabeled samples
for HSIC. He et al. [26] trained the model by randomly
masking image blocks and reconstructing them. The self-
supervised learning model was then trained by minimizing
the difference between the reconstructed data and the input
data. Zhou et al. [27] proposed a new HSIC method called
masked spectral-spatial feature prediction. This method help
Transformer understand the complex spectral-spatial struc-
ture of unmarked HSI and further improve the classification
performance.

Few-shot learning (FSL) [28] has emerged as another
key solution for label dependency. Currently, many FSL-
based HSIC methods focus on transferring meta-knowledge
within HSI data. Li et al. [29] addressed both FSL and
domain adaptation issues within an integrated framework re-
sistant to domain shift. Wang et al. [30] enhanced model
classification ability by learning transferable spatial struc-
ture and texture information from natural images. Zhang
et al. [31] combined FSL with graph-based domain align-
ment and proposed a cross-domain FSL framework based
on graph information aggregation. An FSL classification
framework based on self-supervised learning is proposed by
Li et al. [32], which integrated a spatial-spectral feature ex-
traction network to achieve good classification results. Xiao
et al. [33] developed an embedding feature extractor based on

neural architecture search, which aggregated heterogeneous
and homogeneous source data with a multi-source learning
framework. Qin et al. [34] employed an orthogonal low-rank
feature disentanglement method, which allowed the model to
implicitly focus on the inherent knowledge.

Despite advances in FSL for HSIC, significant chal-
lenges persist under extreme label scarcity. Current meth-
ods predominantly rely on CNN for spatial-spectral fusion,
largely overlooking the potential of Transformer architec-
tures [30]. Moreover, the scarcity and high cost of obtaining
labeled hyperspectral data severely limit model training [35].
Crucially, existing cross-domain approaches often struggle
to adequately bridge the significant domain shift between the
labeled images (source domain) and HSIs (target domain), re-
sulting in compromised classification accuracy on the target
data [29], [31].

To address these challenges-leveraging underutilized
Transformers, maximizing labeled data, and bridging the
domain gap, the Self-Supervised Learning Driven Cross-
domain Feature fusion Network (SSCF-Net) is proposed.
Our core strategy is to fully exploit abundant labeled nat-
ural images to boost HSIC under label scarcity, facilitated by
tailored self-supervision in both domains. SSCF-Net oper-
ates on two synergistic paths: Source domain: We leverage
a combination of VGG and two-dimensional LSTM (TD-
LSTM). The goal of this combination is to take advantage of
the powerful feature extraction capability of VGG for natu-
ral images and the sequence modeling ability of TD-LSTM.
This collaborative approach generates weight transfers that
are then used to improve performance. Target Domain: We
design a novel hybrid branch integrating a local feature ex-
tractor (VGG-based) and a global context encoder based on
Swin Transformer. This architecture uniquely combines the
complementary strengths of CNNs for local patterns and
Transformers for long-range dependencies within HSIs. Self-
supervised learning is pivotal to our approach, enhancing
feature robustness and mitigating the source-target domain
discrepancy. Self-supervised learning in source domain:
Natural images are augmented via rotation transformations,
with rotation prediction as the pretext task. This encourages
learning orientation-invariant features beneficial for diverse
object appearances in HSIs. Self-supervised learning in tar-
get domain: Gaussian noise is added to HSI patches. The
denoising task helps the model learn robust representations
invariant to common sensor noise and environmental varia-
tions. Our principal contributions are:

• We introduce SSCF-Net, a novel framework integrating
cross-domain knowledge transfer and dual-domain self-
supervised learning to tackle HSIC under severe label
constraints.

• In the source domain, a combination of VGG and TD-
LSTM is designed for processing natural images. The
VGG extracts features from natural images, which are
then processed by TD-LSTM to capture contextual re-
lationships. This method of feature extraction and se-
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Fig. 1. The overall framework of the source domain.

quence modeling is transferred to hyperspectral data,
which can effectively improve classification accuracy
under conditions of scarce labels.

• In the target domain, a local-global feature extraction
branch (LGFEB) is designed. LGFEB consists of three
modules: local feature extraction, global feature extrac-
tion and feature fusion. This design utilizes the general
features learned from the source domain. It also deeply
explores the detailed and global information in the tar-
get domain, which achieves comprehensive learning of
HSI data.

• Self-supervised strategies are used in both natural im-
ages and HSIs. Natural images are augmented with
rotation transformations, while HSIs are added with
random Gaussian noise. The former improves general-
ization ability to different perspectives, while the latter
simulates sensor noise and environmental variations.
This helps the model learn subtle differences.

The remainder of this paper is organized as follows.
Section 2 presents a detailed overview of the proposed
method. Section 3 describes the experimental datasets and
results. Section 4 provides the conclusion of the study.

2. SSCF-Net for HSI
SSCF-Net consists of three core modules: the feature

extraction module for the source domain, the LGFEB for the
target domain, and the local-global feature fusion module.

2.1 Feature Extraction Module of the Source
Domain
Due to complex spectral characteristics and high-

dimensional structure, the process of annotating HSIs is more
time-consuming and challenging than natural images. In
contrast, natural images offer abundant labeled data. Thus,
a feature extraction module for the source domain is designed.
Figure 1 shows the overall framework of the source domain.

Fig. 2. TD-LSTM methodology framework.

First, the general features of the source domain are ex-
tracted through the VGG module. Then, operations such
as 2D convolution, batch normalization, max pooling and
full connection are applied to further process the features.
Among them, the size of the 2D convolution kernel is 3×3
and the number of convolution kernel is set as 512. A batch
normalization layer is added after the 2D convolutional layer,
which not only effectively mitigates the vanishing gradient
problem but also enhances the generalization ability of the
model. Gaussian Error Linear Units (GELU) is an activa-
tion function commonly used in neural networks. It is based
on Gaussian error function and helps to improve the conver-
gence speed and performance of the training process. The
2D convolutional layer, batch normalization layer, and GELU
activation function together form a basic unit. This unit is fol-
lowed by a 2×2 max pooling layer to address the problem of
redundancy. Finally, a full connection layer with 100 neurons
is used to convert the feature maps into feature vectors.

On this basis, TD-LSTM network is proposed, which
effectively handles the temporal dependencies in sequential
data. When features vectors are flattened or arranged in a spe-
cific sequence, TD-LSTM processes information in both for-
ward and backward directions to capture dependencies and
contextual information. By combining VGG and TD-LSTM,
the feature extraction ability of CNNs and the sequence mod-
eling capability of LSTMs can be effectively leveraged. The
TD-LSTM module is shown in Fig. 2.
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The TD-LSTM consists of LSTM blocks and linear lay-
ers. The feature vectors generated by the full connection are
sent into multiple LSTM units, as shown in [1] and [2] in
the figure. These two layers of LSTM model the forward
and backward correlations of features vectors Oc, generating
corresponding feature vector O[1] and O[2] . Then, these two
feature vectors are further concatenated into a linear layer for
feature connection. Finally, the concatenated feature vectors
are passed to the softmax layer for classification. Thus, the
computation process of the TD-LSTM module is represented
by the following formula:

O = Linear
(
Con

(
O[1] ,O[2]

))
(1)

where Con (·) denotes the concatenation of two feature vec-
tors, and Linear (·) represents the linear layer, [1] denotes the
forward RNN ,[2] denotes the backward RNN, O[1] and O[2]

represent the outputs of the hidden layer. The output of the
hidden layer is represented as follows:

𝑠 (𝑡 ) = 𝑔
(𝑡 )
f 𝑠 (𝑡−1) + 𝑔

(𝑡 )
i 𝛿s

(
𝑊ℎ (𝑡−1)

)
+𝑈𝑋 (𝑡 ) + 𝑏, (2)

ℎ (𝑡 ) = 𝑔
(𝑡 )
o 𝛿h

(
𝑠 (𝑡 )

)
, (3)

𝑔
(𝑡 )
i = 𝐹s

(
𝑊iℎ

(𝑡−1) +𝑈i𝑋
(𝑡 ) + 𝑏i

)
, (4)

𝑔
(𝑡 )
f = 𝐹s

(
𝑊fℎ

(𝑡−1) +𝑈f𝑋
(𝑡 ) + 𝑏f

)
, (5)

𝑔
(𝑡 )
o = 𝐹s

(
𝑊oℎ

(𝑡−1) +𝑈o𝑋
(𝑡 ) + 𝑏o

)
(6)

where i, f, and o represent the input gate, forget gate, and
output gate of the LSTM unit, respectively, h represents the
system state, both 𝛿s and 𝛿h are activation functions for the

system state and the hidden layer state, with the tanh activa-
tion function, b is the bias coefficient, g is the gating unit, W
and U are weight coefficients, and 𝐹s is the sigmoid function.

2.2 LGFEB of the Target Domain
CNN is renowned for its strength in extracting fine-

grained local features. In contrast, the Transformer archi-
tecture excels at capturing long-range global dependencies
via its self-attention mechanism. Fusing these complemen-
tary strengths presents a significant challenge in effectively
mining and integrating discriminative feature information.
To address this, we design the LGFEB that synergistically
combines the capabilities of CNN and Transformer to com-
prehensively model both local details and global contexts.
The overall framework of the proposed model is illustrated
in Fig. 3.

2.2.1The Local Feature Extraction Module of the Target
Domain
To better represent and understand the details in the

image, a local feature extraction module for the target do-
main is designed. A mapping layer is employed to address
the issue of different channel numbers between the source
domain and the target domain. Specifically, cubes of size
33×33×𝐵 (where 𝐵 is the number of bands) are extracted
from HSI and mapped to an image cube with 3 channels, that
is, an 33×33×3 small cube. The weights from the first seven
layers of the VGG and TD-LSTM models, trained on the
source domain, are transferred to the local convolution layer
in the target domain. Then, local features are extracted by
a 2D convolutional, batch normalization, GELU activation
function, max pooling layer, and full connection layers. The
size of the 2D convolution kernel is 3 × 3 and the number of

Fig. 3. The overall framework of the target domain.
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the 2D convolution kernel is 512. Following the 2D convolu-
tion layer is the batch normalization layer, GELU activation
functions, and max pooling. The size of the max pooling
layer is 2 × 2, so as to deal with the problem of redundancy.
Finally, an full connection layer with 100 neurons is added
to generate feature vectors.

2.2.2The Global Feature Extraction Module of the Target
Domain
To fully capture the characteristics of HSI, a Swin Trans-

former is employed as the core algorithm for global feature
extraction. The Swin Transformer is a computer vision model
based on the ViT architecture. It introduces a sliding window
mechanism that restricts the attention mechanism to a fixed
window size, enabling the model to effectively learn features
across different windows. The self-attention calculation for-
mula for each divided window is:

𝑧𝑙 = W−MSA
(
LN

(
𝑧𝑙−1

))
+MSA

(
LN

(
𝑧𝑙−1

))
+ 𝑧𝑙−1, (7)

𝑧𝑙+1 = SW − MSA
(
LN

(
𝑧𝑙
))

+ MSA
(
LN

(
𝑧𝑙
))

+ 𝑧𝑙 . (8)

In this stage, the input feature 𝑧𝑙−1 undergoes layer normal-
ization (LN), window multi-head self-attention (W-MSA),
and a residual layer to obtain 𝑧𝑙 . After passing through LN
and multilayer perceptron (MLP), it enters the second block
of the multi-head self-attention shifted window (SW-MSA).
Two successive Swin Transformer blocks are shown in Fig. 4.

The self-attention calculation formula for each partition
window is as follows:

Attention (Q,K,V) = Softmax
(
QKT
√
𝑑

)
V (9)

here V represents the relative positional encoding of Q and K.
The dot product of Q and K indicates similarity, and a mask
matrix is obtained through softmax normalization, with val-
ues ranging from 0 to 1. This mask matrix is multiplied by
V to obtain the weighted V features. The HSI is sent into the
Swin Transformer network, which efficiently processes HSIs
and excels in global feature extraction.

Fig. 4. Two successive Swin Transformer blocks.

2.2.3The Feature Fusion Module for the Target Domain
The local-global feature fusion module is designed to

fully utilize the local features and global features of HSI.
The upper branch processes features through full connection
layers, GELU activation functions, and a dropout layer. The
unit number of full connection layer is set to 64. In addition,
few-shot learning is performed by comparing the similarity
between samples based on the corresponding feature vectors.
The lower branch includes a dropout layer, GELU activation
functions, full connection layers and batch normalization lay-
ers. Finally, contrastive self-supervised learning is achieved
by evaluating the relationships between samples through their
feature embeddings. The unit number of the second full con-
nection layer is the class number of the HSI dataset. Through
the collaboration of these two branches, the model can com-
prehensively consider local details and global context.

2.3 FSL
2.3.1FSL in Source Domain

In the source domain, 𝑁s classes are randomly selected
from source domain 𝐷s. For each selected class, K labeled
samples are randomly chosen to form the support set 𝑆s.
Then, C samples are randomly selected from each class to
form the query set 𝑄s. Throughout this, it is guaranteed that
there is no overlap between the samples in the support set
and those in the query set. The sample 𝑥

que
s in the query set

belonging to class m can be calculated as:

𝑃

(
𝑦

que, 𝑗
s = 𝑚 | 𝑥que, 𝑗

s ∈ 𝑄s

)
=

exp
(
−𝑑

(
𝐹𝜃

(
𝑥

que, 𝑗
s

)
, 𝑐𝑚

))
∑𝑁s

𝑚=1 exp
(
−𝑑

(
𝐹𝜃

(
𝑥

que, 𝑗
s

)
, 𝑐𝑚

)) (10)

where 𝑐𝑚 represents the embedded feature of the m-th class
in the support set, and 𝑑 (·) is a function of Euclidean dis-
tance, 𝑥que, 𝑗

s and 𝑦
que, 𝑗
s represent the j-th sample in the query

set and its corresponding label, respectively, and 𝑁s is the
number of classes.

2.3.2FSL in Target Domain
In the target domain, FSL is applied to the HSI data 𝐷l

to extract discriminative features and individual knowledge
to improve few-shot classification performance. First, classes
𝑁t are randomly selected from 𝐷l. Then, K labeled samples
are selected from each class as the support set, and C sam-
ples are selected from the remaining samples in each class
as the query set. To make the probability distribution of the
predicted sample as close as possible to the probability dis-
tribution of the real sample, the cross-entropy loss function
is used. The formula is as follows:

𝐻 (𝑝, 𝑞) = −
𝑛∑︁
𝑖=1

𝑝 (𝑥𝑖) log (𝑞 (𝑥𝑖)) (11)
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here 𝑝 (𝑥𝑖) represents the true distribution of the sample,
and 𝑞 (𝑥𝑖) represents the distribution predicted by the model.
Therefore, the training loss for each training set is:

𝐿fsl
t = −

∑︁
𝐸𝑆t ,𝑄t

[
log 𝑝

(
𝑦

que
t = 𝑛 | 𝑥que

t , 𝜂
) ]

(12)

here 𝑆t is the support set generated by 𝐷l, 𝑄t is the query set
generated by 𝐷l, and 𝜂 is the parameter for feature extraction.

2.4 Self-supervised Learning
2.4.1Self-supervised Learning in Source Domain

Self-supervised learning on the source domain aims
to increase the model’s diversity. This approach facilitates
improved adaptation to various sample transformations and
enhances the capacity to extract local features in the target
domain. The images in the source domain are rotated with
the transformation angle chosen as 𝑅 = {90◦, 180◦, 270◦}.
The transformed image and the original image form a sam-
ple pair, which is sent to the feature extraction module of
the source domain. The self-supervised loss for the source
domain can be represented as:

𝐿
gt
s (𝐷s; 𝜙, 𝜃) = −𝐸𝑥s 𝐷s

[ ∑︁
∀𝑟∈𝑅

log 𝑅𝑟
𝜙

(
𝐹𝜃

(
𝑥𝑟s

) ) ]
(13)

where 𝑥𝑟s represents the sample pair formed by the rotation
transformation of the original image 𝑥s, 𝐹𝜃

(
𝑥𝑟s

)
represents

the features extracted from the rotated image, 𝑅𝑟
𝜙
(·) is the

predicted score for rotation r.

2.4.2Self-supervised Learning in Target Domain
Self-supervised learning in the target domain can extract

high-quality and class-invariant features, so as to improve the
classification accuracy in the target domain. First, a sample is
selected and copied from 𝐷l. Gaussian noise [30] is added to
generate a noise-enhanced sample. Then, the original sam-
ple and the noise-added sample form a sample pair, which
is passed to the global feature extraction network to extract
the corresponding features. Afterwards, dropout is applied
to both feature sets. Due to the randomness of dropout, two
augmented matrices are obtained. The final output of self-
supervised learning is two class distributions 𝑧

cl,1
t and 𝑧

cl,2
t ,

and the self-supervised loss function is [36].

𝐿cl
t

(
𝑧cl

t , 𝑧
cl,2
t ; 𝛾

)
=

1
2

(
𝐿

(
𝑧

cl,1
t | | 𝑧cl,2

t

)
+ 𝐿

(
𝑧

cl,2
t | | 𝑧cl,1

t

))
(14)

where:

𝐿

(
𝑧

cl,1
t | | 𝑧cl,2

t

)
=

1
𝐵

𝐵∑︁
𝑖=1

𝐷k1

(
𝑧

cl,𝑖,1
t | | 𝑧cl,𝑖,2

t

)
+ 1
𝐵

𝐵∑︁
𝑖=1

[
H

(
𝑧

cl,𝑖,1
t

)
− H

(
1
𝐵

𝐵∑︁
𝑖=1

𝑧
cl,𝑖,1
t

)]
.

(15)

In the above equation, 𝐷k1 (·| |·) represents the Kullback-
Leibler divergence between two probability distributions. It
is an asymmetric measure of the difference between two dis-
tributions and commonly used to evaluate the information
loss of one distribution relative to another. H (·) represents
the entropy of a specific probability distribution, B is the batch
size, and 𝛾 is the spectral space feature extraction parameter.
The first component is referred to as the consistency term.
By minimizing the consistency term, it ensures that different
feature predictions from the same sample remain consistent.
The second term is the sharpness term. For this term, the
output distribution is regularized by minimizing the class
distribution entropy for each sample. This process enhances
the certainty of the output distribution and facilitates the as-
signment of distinct categories to each sample. As a result,
features of the same class become more compact, improv-
ing feature discriminability. The third term is the diversity
term. For this term, the entropy of the average distribution
between different samples is maximized. This encourages
the predictions of different samples to be distributed across
new classes, which prevents the network from assigning all
images to the same class.

Thus, the loss for the source or target domain can be
represented as:

𝐿total = 𝐿fsl + 𝐿ssl (16)

here 𝐿fsl represents the loss for FSL in the source or target
domain, and 𝐿ssl represents the loss for self-supervised learn-
ing in the source or target domain, 𝐿total represents the total
loss for the source or target domain.

3. Experiment Results and Analysis

3.1 Experimental Dataset
To evaluate the performance of SSCF-Net, mini-

ImageNet [30] with a large amount of labeled data is selected
as the source domain dataset. Three HSI datasets are used as
target domain datasets, including Salinas (SA), Indian Pines
(IP), and WHU-Hi-LongKou (LK) [37]. The number of
labled samples per class are reported in Tab. 1. Figures 5–7
show the pseudocolor images and ground truth maps of SA,
IP and LK.

The SA dataset was derived from the agricultural re-
gion of Salinas Valley in California, USA, which contains
rich spectral information and is suitable for land cover classi-
fication tasks. The dataset includes 224 spectral bands, with
204 bands retained after discarding water absorption bands.
The wavelength range spans from 400 nm to 2500 nm. The
image size is 512 × 217 pixels, with a spatial resolution of
3.7 m. It includes 16 different land cover classes and provides
high-detail ground truth information.
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Datasets SA IP LK
Class Name Number Name Number Name Number

1 Brocoli-green-weeds-1 2009 Alfalfa 46 Corn 34511
2 Brocoli-green-weeds-2 3726 Corn-notill 1428 Cotton 8374
3 Fallow 1976 Corn-mintill 830 Sesame 3031
4 Fallow-rough-plow 1394 Corn 237 Broad-leaf soybean 63212
5 Fallow-smooth 2678 Grass-pasture 483 Narrow-leaf soybean 4151
6 Stubble 3959 Grass-tree 730 Rice 11854
7 Celery 3579 Grass-pasture-mowed 28 Water 67056
8 Grapes-untrained 11271 Hay-windrowed 478 Roads and houses 7124
9 Soil-vinyard-develop 6203 Oats 20 Mixed weed 5229
10 Corn senesced green weeds 3278 Soybean-notill 972
11 Lettuce romaine-4wk 1068 Soybean-mintill 2455
12 Lettuce romaine-5wk 1927 Soybean-clean 593
13 Lettuce romaine-6wk 916 Wheat 205
14 Lettuce romaine-7wk 1070 Woods 1265
15 Vinyard untrained 7268 Buildings-Grass-Trees 386
16 Vinyard vertical trellis 1807 Stone-Steel-Towers 93

Total 54129 Total 10249 Total 204542

Tab. 1. Number of samples per class for three datasets.

Fig. 5. Pseudocolor image and ground-truth map of SA. (a) Pseu-
docolor image of SA; (b) Ground-truth map of SA.

Fig. 6. Pseudocolor image and ground-truth map of IP. (a) Pseu-
docolor image of IP; (b) Ground-truth map of IP.

Fig. 7. Pseudocolor image and ground-truth map of LK. (a)
Pseudocolor image of LK; (b) Ground-truth map of LK.

The IP dataset was collected from the agricultural area
of Indian Pines in Indiana, USA. It includes a 145 × 145
pixel image, which provides hyperspectral data and corre-
sponding ground truth labels. The dataset covers multiple
bands from 400 nm to 2500 nm, with 200 spectral bands in
total. It contains 16 different land cover classes, and the spa-
tial resolution is 20 meters, which is suitable for fine-grained
land cover analysis.

The LK dataset was captured from the LongKou re-
gion in Wuhan, Hubei Province, China, covering both urban
and rural environments. The dataset includes 270 spectral
bands, with a wavelength range from 400 nm to 2500 nm.
The image size is 550 × 400 pixels and contains 9 land cover
classes. The spatial resolution is 0.463 m, which can capture
the ground information with rich details.

3.2 Experimental Setup
The configuration used in the experiment is an i7-

10700F (3.7 GHz), 32 GB RAM, and an Nvidia GeForce
RTX3060. The open-source software framework is PyTorch.
For mini-ImageNet dataset, the number of episodes is set to
1500. For datasets from the target domain, it is set to 1000.
The model is optimized by Adam optimizer with a learning
rate of 0.001. The classification performance of the methods
is evaluated by four metrics: 𝐹1 score (𝐹1), overall accuracy
(OA), average accuracy (AA), and kappa coefficient (Kappa).

The 𝐹1 combines precision and recall to evaluate perfor-
mance of the model. By accounting for both false positives
and false negatives, it provides an effective metric for assess-
ing the ability of the algorithm to capture class-specific de-
tails and distinguish between different land cover categories.
𝐹1 can be calculated using the following formula, as derived
from [38].

precision =
TP

TP + FP
, (17)
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recall =
TP

TP + FN
, (18)

F1 = 2 × precision × recall
precision + recall

(19)

where TP, FP, TN, and FN stand for true positive, false posi-
tive, true negative, and false negative, respectively.

To evaluate the performance of SSCF-Net, SSCF-Net is
compared with SpectralFormer [39], SSFTT [16], Gia-CFSL
[31], DCFSL [29], HFSL [30], FSCF-SSL [32], HCFSL-
NAS [33], and FDFSL [34]. For all comparison methods, 5
labeled samples per class are selected from the target domain
dataset. The experiments are repeated 10 times to reduce
randomness.

• The SpectralFormer, a Transformer-based backbone,
enhances HSIC by learning spectral sequences, using
cross-layer skip connections for improved feature ex-
traction.

• The SSFTT systematically combines CNN network and
Transformer structure to exploit spectral-spatial infor-
mation in the HSI, with a Gaussian weighted feature
tokenizer module making the samples more separable.

• The Gia-CFSL combines few-shot learning and domain
alignment to address domain shift issues in cross-scene
HSIC, improving performance with nonlocal relation-
ship aggregation and graph-based alignment.

• The DCFSL is a method that addresses few-shot learn-
ing and domain adaptation in HSIC, using adversarial
strategies to overcome domain shift and improve per-
formance on target classes.

• The HFSL is a method for HSIC using few labeled
samples, leveraging knowledge transfer from mini-
ImageNet and a spectral-spatial fusion network to im-
prove performance.

• The FSCF-SSL utilizes base class data from natural
images to improve classification accuracy on novel
HSI classes by transferring spatial meta-knowledge and
learning discriminative features from limited data.

• The HCFSL-NAS utilizes neural architecture search for
embedding feature extraction, multisource learning for
data aggregation, and a combined loss function to im-
prove classification performance with few labeled sam-
ples.

• The FDFSL employs feature disentanglement to reduce
source bias, a multiorder spectral interaction block for
data integration, and a self-distillation scheme to en-
hance feature diversity.

Compared with the above methods, SSCF-Net deeply
integrates the advantages of convolution in local feature ex-
traction with those of Swin Transformer in long-range de-
pendency for HSI. Under the condition of limited labeled
samples, with the help of self-supervised learning strategy,
the method in this paper successfully facilitates cross-domain
feature transfer between source and target domains.

3.3 Experimental Results
As shown in Tab. 2, on SA dataset, SSCF-Net outper-

forms other comparison methods. SSCF-Net performs ex-
cellently in 𝐹1, OA and Kappa. Compared with FSCF-SSL,
HCFSL-NAS, and FDFSL, 𝐹1 is improved by 0.79%, 1.11%,
and 2.06%, respectively. OA is improved by 0.54%, 2.76%,
and 1.68%, respectively. Kappa is improved by 0.6%, 3.04%,
and 1.87%, respectively. In AA, the top position is held by
FSCF-SSL, which effectively utilizes the spectral-spatial fea-
ture information in HSI. The SA dataset has a higher number
of bands, providing FSCF-SSL with more feature dimen-
sions. It allows for better discrimination between multiple
classes. This is particularly evident in the second class,
Broccoli-green-weeds-2, and the fifteenth class, Vineyard
untrained, where FSCF-SSL outperforms other methods.

From the data analysis in Tab. 3, SSCF-Net improves
OA and Kappa by 0.4% and 0.57%, respectively, compared
with the best cross-domain method, DCFSL, on the LK
dataset. In 𝐹1 and AA, SSCF-Net also outperforms the
best cross-domain method, FSCF-SSL, with improvements
of 1.04% and 0.99%. In addition, compared with the tradi-
tional deep learning method, SSCF-Net exhibits superior per-
formance across the three indicators of OA, AA and Kappa,
which are 4.41%, 8.8% and 5.72% higher than SSFTT, re-
spectively. These significant performance improvements val-
idate the effectiveness of SSCF-Net in cross-domain classi-
fication tasks. The outstanding performance of SSCF-Net
is attributed to its self-supervised learning approach, which
reduces the reliance on a large amount of labeled data. Addi-
tionally, the model improves its modeling ability in the target
domain by incorporating LGFEB.

As shown in Tab. 4, classification performance of the
SSCF-Net on the IP dataset is better than other compara-
tive methods. Although HFSL and FSCF-SSL perform well,
SSCF-Net outperforms FSCF-SSL and HFSL in 𝐹1 by 1.26%
and 2.26%, respectively; in OA by 0.74% and 2.01%, re-
spectively; in AA by 0.10% and 1.72%, respectively; and
in Kappa by 0.85% and 2.29%, respectively. In addition,
compared with other methods, SSCF-Net achieved the best
classification performance in eight classes, including Alfalfa,
Corn-mintill, Corn, Grass-pasture-mowed, Hay-windrowed,
Oats, Soybean-notill, and Soybean-mintill. Especially in the
more challenging Corn and Soybean-mintill classes, SSCF-
Net achieved classification accuracies of 93.25% and 76.20%,
outperforming other methods by at least 2.22% and 4.65%,
respectively. This highlights the exceptional performance of
SSCF-Net in fine-grained classification.
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Class Spectral Former SSFTT Gia-CFSL DCFSL HFSL FSCF-SSL HCFSL-NAS FDFSL OURS
1 66.75 78.31 98.77 99.69 98.56 99.96 98.05 99.20 96.06
2 55.78 69.92 99.54 99.73 96.31 97.69 99.97 98.68 93.83
3 72.72 73.34 88.26 93.46 94.34 95.77 95.99 87.14 95.89
4 89.48 91.02 99.20 99.65 99.39 99.73 98.84 98.93 98.86
5 82.49 82.20 90.42 91.66 97.17 97.13 90.72 89.70 93.69
6 86.19 93.12 99.12 99.44 98.88 99.44 99.89 99.19 97.96
7 75.28 87.08 98.39 98.49 93.45 95.20 99.82 99.20 99.27
8 49.71 63.39 76.33 75.14 77.45 79.59 67.78 80.13 83.24
9 87.04 94.61 99.201 99.78 99.55 99.56 99.72 98.03 98.84
10 72.56 70.89 83.71 84.47 91.02 94.52 85.54 83.21 90.68
11 83.84 90.85 97.47 98.62 98.63 98.95 96.82 96.71 97.06
12 83.49 86.30 99.17 99.47 97.21 99.22 99.40 99.42 95.41
13 87.17 88.69 97.75 99.29 98.21 99.64 98.00 97.15 97.87
14 87.65 88.08 97.79 98.66 96.78 97.15 98.61 98.93 99.52
15 72.50 75.49 74.16 75.85 66.21 80.16 87.83 81.27 85.38
16 48.24 87.93 90.08 90.42 94.63 95.46 85.54 92.98 95.08
𝐹1 68.46 69.17 90.80 91.89 91.38 91.48 91.16 90.21 92.27

OA 70.52 78.88 88.85 89.37 88.55 91.61 89.39 90.47 92.15
±3.21 ±3.24 ±2.25 ±2.14 ±1.38 ±1.69 ±1.29 ±1.54 ±0.79

AA 75.03 82.58 93.09 93.99 93.61 95.57 93.93 93.74 94.41
±3.20 ±2.66 ±1.39 ±1.08 ±1.31 ±1.34 ±0.78 ±1.42 ±0.77

Kappa 67.48 76.67 87.62 88.20 87.26 90.68 88.24 89.41 91.28
±3.48 ±3.54 ±2.49 ±2.35 ±1.54 ±1.88 ±1.42 ±1.71 ±0.87

Tab. 2. Classification performance [%] of different methods on SA dataset.

Class Spectral Former SSFTT Gia-CFSL DCFSL HFSL FSCF-SSL HCFSL-NAS FDFSL OURS
1 74.14 93.42 98.03 98.91 97.33 98.53 88.59 96.95 99.00
2 59.68 79.13 85.37 89.40 95.72 96.31 78.78 83.38 96.24
3 53.36 92.73 89.00 89.28 86.49 88.56 91.05 95.38 91.17
4 54.84 90.62 91.00 92.11 85.75 88.53 94.08 91.76 91.47
5 57.47 90.63 89.85 92.80 93.71 95.32 69.16 92.22 98.43
6 57.77 84.74 91.90 93.68 92.07 93.40 96.25 94.58 95.31
7 89.99 96.15 99.83 99.83 99.88 99.90 99.11 99.71 97.94
8 63.81 63.88 84.68 82.03 93.29 90.65 77.71 77.98 88.46
9 54.33 81.94 72.19 75.87 92.68 92.39 73.03 83.79 94.46
𝐹1 67.39 79.30 89.96 85.00 85.20 90.17 84.14 88.95 91.21

OA 70.34 90.97 94.16 94.98 93.74 94.87 92.67 94.45 95.38
±1.64 ±1.77 ±1.73 ±1.61 ±1.84 ±2.05 ±1.31 ±1.96 ±2.04

AA 62.84 85.92 89.09 90.43 92.99 93.73 85.31 90.64 94.72
±2.81 ±1.72 ±1.33 ±2.76 ±1.58 ±1.09 ±3.08 ±2.82 ±2.11

Kappa 62.99 88.30 92.39 93.45 91.90 93.35 90.40 92.78 94.02
±1.84 ±2.19 ±2.20 ±2.07 ±2.32 ±2.60 ±1.73 ±2.51 ±2.60

Tab. 3. Classification performance [%] of different methods on LK dataset.

3.4 Classification Result Visualization
To visually demonstrate the classification performance

of various methods with 5 labeled samples per class in the
target domain, the classification results on the IP dataset
are presented and compared with the ground truth labels.
The results are depicted in Figs. 8–10. The visual analysis
indicates that the classification map produced by the SSCF-
Net method demonstrates the highest degree of alignment
with the ground truth. Additionally, SSCF-Net shows the
least misclassification between categories compared with the
other methods. This suggests that the SSCF-Net approach
is more effective in distinguishing between different classes
and produces results that are closer to the actual distribution
of the data.

Fig. 8. Classification results of different methods on IP. (a) Spec-
tral Former, (b) SSFTT, (c) Gia-CFSL, (d) DCFSL, (e)
Ground truth, (f) HFSL, (g) FSCF-SSL, (h) HCFSL-
NAS, (i) FDFSL, f (j) OURS.
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Class Spectral Former SSFTT Gia-CFSL DCFSL HFSL FSCF-SSL HCFSL-NAS FDFSL OURS
1 94.15 95.37 91.71 95.85 99.51 100 96.34 96.59 100
2 29.46 45.29 45.11 41.88 57.89 62.30 43.65 51.69 56.88
3 27.83 35.50 48.13 47.96 66.38 65.38 40.15 68.48 69.82
4 46.59 86.25 78.28 79.53 88.88 89.27 91.03 89.27 93.25
5 40.10 54.12 73.26 71.76 71.15 76.78 80.67 75.04 73.94
6 44.90 45.34 83.23 84.72 75.06 81.83 81.94 85.14 83.19
7 96.96 97.39 99.57 99.13 100 100 99.57 99.13 100
8 61.10 88.99 88.52 83.70 99.66 97.57 84.80 78.37 99.96
9 99.33 98.00 99.33 99.33 100 100 98.67 99.33 100
10 44.44 46.69 60.64 60.94 67.68 61.49 70.47 61.80 72.70
11 40.76 41.83 61.64 59.47 71.55 71.29 69.05 61.56 76.20
12 34.06 46.58 44.88 46.68 66.11 67.65 54.61 53.59 65.95
13 72.15 85.45 98.60 97.95 98.75 99.10 99.10 97.95 97.04
14 77.02 75.33 78.32 84.71 90.95 93.99 92.56 86.76 87.20
15 61.68 72.86 70.45 68.45 91.94 97.87 60.39 83.18 90.71
16 90.23 89.43 98.75 98.64 94.20 96.14 98.64 97.39 95.63
𝐹1 41.09 43.00 63.62 65.40 73.36 74.36 73.03 71.81 75.62

OA 46.19 53.58 64.59 64.29 74.59 75.86 68.81 69.27 76.60
±1.75 ±3.66 ±4.02 ±2.76 ±3.03 ±4.15 ±2.23 ±2.46 ±2.52

AA 60.05 69.03 76.28 76.28 83.73 85.05 78.85 80.33 85.15
±1.00 ±2.35 ±2.20 ±1.24 ±2.45 ±2.42 ±1.34 ±1.61 ±1.87

Kappa 40.47 48.89 60.04 59.87 71.27 72.71 64.77 65.50 73.56
±1.65 ±3.76 ±4.25 ±2.82 ±3.38 ±4.55 ±2.45 ±2.55 ±2.78

Tab. 4. Classification performance [%] of different methods on IP dataset.

Fig. 9. Classification results of different methods on SA. (a)
Spectral Former, (b) SSFTT, (c) Gia-CFSL, (d) DCFSL,
(e) Ground truth, (f) HFSL, (g) FSCF-SSL, (h) HCFSL-
NAS, (i) FDFSL, (j) OURS.

Fig. 10. Classification results of different methods on LK. (a)
Spectral Former, (b) SSFTT, (c) Gia-CFSL, (d) DCFSL,
(e) Ground truth, (f) HFSL, (g) FSCF-SSL, (h) HCFSL-
NAS, (i) FDFSL, (j) OURS.

Datasets TD-LSTM RT,NA Transformer OA(%)

SA

× × ✓ 87.21
✓ × ✓ 87.65
× ✓ ✓ 89.86
✓ ✓ ✓ 92.15

IP

× × ✓ 65.49
✓ × ✓ 72.28
× ✓ ✓ 72.13
✓ ✓ ✓ 76.60

LK

× × ✓ 92.18
✓ × ✓ 92.88
× ✓ ✓ 93.08
✓ ✓ ✓ 95.38

Tab. 5. Ablation comparison of each module in OA [%].

3.5 Ablation Experiment
Ablation experiments are conducted by evaluating four

networks across two domains, further validating the effec-
tiveness of the proposed SSCF-Net in both the source and
target domains. The four networks are: 1) Network 1: Trans-
former, 2) Network 2: Transformer + TD-LSTM, 3) Network
3: Transformer + rotation transformation (RT) + noise ad-
dition (NA), and 4) Network 4: Transformer + TD-LSTM +
RT + NA.

As shown in Tab. 5, the classification performance on
the SA, IP, and LK datasets exhibited a progressive enhance-
ment. This result demonstrates the significant gain from the
three modules designed in HSIC tasks. Taking the SA dataset
as an example: In Network 1, the base model consists of the
Transformer for the target domain and the VGG network for
the source domain, with an overall accuracy of 87.21%. This
shows that relying only on these two modules is insufficient
for the HSIC task. In Network 2, the overall accuracy is
improved by 0.44% when the TD-LSTM module is added to
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Fig. 11. The OA of all methods under different numbers of labeled samples. (a) SA, (b) IP, (c) LK.

the VGG network of the source domain. It shows that the
addition of TD-LSTM enhances the transfer learning ability
from the source domain to the target domain. It also im-
proves the model’s capability to extract local features. In
Network 3, self-supervised learning is applied to both the
source and target domains without adding TD-LSTM to the
source domain. The OA increases by 2.65% compared with
the base model, which indicates that self-supervised learning
helps in recognizing subtle differences. This enhances the
generalization ability of HSI. In Network 4, the combination
of the above methods leads to an increase in overall accuracy
from 89.89% to 92.15%.

3.6 Experiments With Different Numbers of
Labeled Samples
To thoroughly evaluate the classification performance

of SSCF-Net, different numbers of labeled samples in the
target domain are utilized. Labeled samples from 1 to 5 per
class are randomly selected from each category for model
training and the remaining samples for testing. All classifi-
cation results are based on the average of 10 experiments. As
shown in Fig. 11, the OA of different methods under different
number of labeled samples is compared across the SA, IP, and
LK. The results show a positive trend in OA as the number of
labeled samples increases. SSCF-Net demonstrates remark-
able classification performance on the LK dataset, which
ranks among the top methods. For the SA and IP datasets,
when the number of labeled samples is less than 5, SSCF-
Net does not achieve optimal performance. The possible
reason is that SA and IP contain many fine-grained feature
categories, which increases the difficulty of the classification
task. Additionally, when the number of labeled training sam-
ples is small, the Transformer model used for global feature
extraction does not perform optimally. This limitation affects
the model’s ability to learn useful knowledge for target do-
main classification, which ultimately impacts classification
performance.

3.7 Complexity Analysis
To evaluate and demonstrate the computational effi-

ciency of the various methods, as shown in Tab.6, the compu-
tational complexity of the model is evaluated based on train-
ing time, testing time, floating point operations (FLOPs),
number of parameters and memory usage. For traditional
deep learning methods (SpectralFormer and SSFTT), the
training time only includes the time for training a single do-
main. In contrast, cross-domain FSL methods (Gia-CFSL,
DCFSL, HFSL, and FSCF-SSL) include source domain train-
ing, transfer time, and target domain training, leading to
higher computational costs but better classification perfor-
mance. Compared with other cross-domain methods, SSCF-
Net requires longer training time and testing time. This is
due to the fact that SSCF-Net introduces Swin Transformer
in the target domain, which is a module that has advantages
in extracting global contextual information, and is able to
better capture long-range dependencies in HSI through its
hierarchical structure. However, the advantage of this struc-
ture is also accompanied by an increase in the number of
FLOPs and parameters, which in turn leads to an increase in
training time and testing time. In addition, on the same hard-
ware platform (Nvidia GeForce RTX3060), based on GPU
memory usage, SSCF-Net ranks first in terms of memory
consumption among all methods.

3.8 2D Projection Features
To intuitively compare feature extraction performance,

we visualize high-dimensional features using t-distributed
Stochastic Neighbor Embedding (t-SNE) [34]. t-SNE is
a nonlinear manifold learning algorithm that preserves local
neighborhood structures in high-dimensional space by mini-
mizing the KL divergence between probability distributions.
This allows qualitative assessment of feature discriminability:
well-separated and compact clusters indicate robust feature
representation.
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Datasets Metric Spectral Former SSFTT Gia-CFSL DCFSL HFSL FSCF-SSL HCFSL-NAS FDFSL OURS

SA

Training time 12185.1 5892.7 9334.8 4487.7 5515.5 87659.7 74.9 1468.3 122543.1
Testing time 138.38 86.52 15.86 16.18 5.55 122.63 13.17 15.96 134.52

FLOPs 0.52 0.29 8.90 8.87 3.21 3.21 0.0030 0.83 10.28
#Params 0.16 0.04 2.21 0.17 3.31 3.31 0.06 0.18 30.80

Memory usage 4.77 2.94 6.05 3.40 3.63 4.43 3.44 3.80 7.65

IP

Training time 7117.6 1010.3 9065.4 4329.2 5561.2 9955.1 74.4 1328.9 26427.8
Testing time 10.87 5.07 2.94 3.04 4.42 4.65 2.52 2.39 10.10

FLOPs 0.51 0.29 8.90 8.87 3.21 3.21 0.0030 0.83 10.28
#Params 0.16 0.04 2.21 0.17 3.30 3.30 0.06 0.18 30.79

Memory usage 4.79 3.00 5.92 3.43 3.80 4.41 3.44 3.84 7.26

LK

Training time 9051.5 9976.1 3984.3 2914.4 5295.6 75177.2 74.2 1033.4 94332.8
Testing time 131.52 100.44 7.50 12.23 6.77 114.13 10.10 11.48 132.06

FLOPs 0.69 0.37 8.90 8.87 3.22 3.22 0.0036 0.83 10.28
#Params 0.16 0.04 2.21 0.12 3.41 3.41 0.07 0.18 30.89

Memory usage 4.11 2.66 5.86 3.22 3.21 4.26 2.75 3.86 7.76

Tab. 6. Training time [s], testing time [s], FLOPs [G], #Params [M] and memory usage comparison [GB].

Fig. 12. Projection feature visualization on different datasets. (a) Feature visualization of FDFSL in SA, (b) Feature visualization of HDFSL-NAS
in SA, (c) Feature visualization of SSCF-Net in SA, (d) Feature visualization of FDFSL in IP, (e) Feature visualization of HDFSL-NAS
in IP, (f) Feature visualization of SSCF-Net in IP, (g) Feature visualization of FDFSL in LK, (h) Feature visualization of HDFSL-NAS
in LK, (i) Feature visualization of SSCF-Net in LK.
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As shown in Fig. 12, three cross-domain FSL methods
(HCFSL-NAS, FDFSL, and SSCF-Net) are compared on SA,
IP and LK. Each color represents a specific class, with the
legend corresponding to the class indices listed in Tab.1. For
instance, on SA, Classes 7 (Celery) and 14 (Lettuce romaine-
7wk) are clearly separated in SSCF-Net, whereas they heavily
overlap in FDFSL and HCFSL-NAS. The results indicate that
SSCF-Net achieves the least feature category confusion and
shows the clearest classification boundaries.

4. Conclusion
In this paper, an innovative method SSCF-Net is pro-

posed. It aims to solve the problems of scarcity of labeled
samples in HSIC. The classification method combines cross-
domain feature transfer, self-supervised learning, and fea-
ture fusion technologies, which effectively transfer knowl-
edge from different domains. They also make full use of the
information from unlabeled data, which helps enhance the
model’s generalization ability. Through experimental vali-
dation on three hyperspectral datasets, the results show that
SSCF-Net significantly improves in terms of accuracy com-
pared with other comparative methods, especially in terms
of OA. On SA, IP and LK datasets, SSCF-Net outperforms
other state-of-the-art methods by 0.54%, 0.74% and 0.40%,
respectively. SSCF-Net demonstrates stronger effectiveness
than traditional methods and other few-shot learning meth-
ods.

Although the classification results on the three datasets
validate the effectiveness of SSCF-Net, the complexity ana-
lysis indicates certain limitations in terms of training and test-
ing time. In particular, the introduction of the self-attention
mechanism from the Transformer in the target domain has
created a bottleneck in computational complexity, leading to
relatively low inference efficiency.

To address this issue, future research will explore var-
ious optimization strategies to improve the inference effi-
ciency of the model. Lightweight network architectures, as
an effective solution, will be used to reduce the computational
load while maintaining high classification performance. Fur-
ther research directions also include leveraging hardware ac-
celeration technologies, such as customized hardware de-
sign and parallel computing capabilities of FPGA, which
can significantly enhance the acceleration efficiency of high-
complexity models.
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