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Abstract. This research presents a heuristic approach
for indoor localization using standard LoRa modules oper-
ating at 915 MHz. To overcome the challenges presented
by signal attenuation, multipath propagation, and environ-
mental variability, the proposed method combines Received
Signal Strength Indicator (RSSI) based distance estimation
with a path loss exponent tuned empirically for different envi-
ronments. A trilateration algorithm based on Ordinary Least
Squares (OLS) is employed to estimate target positions, and
performance is enhanced using filtering techniques such as
Median Filter (MF) and Moving Average Filter (MAF). Ad-
ditionally, two receiver geometries were analyzed to assess
the robustness of the proposed method under different ge-
ometric configurations. To complement the OLS estimator,
a Weighted Least Squares (WLS) method was also imple-
mented using a Gauss–Newton optimization approach. While
WLS shows promising results, further refinement of the co-
variance matrix 𝑸 is identified as a direction for future work.
These findings underscore the potential of the approach as
a low-cost, scalable solution for precise indoor localization
in complex environments. Experimental evaluations con-
ducted in various laboratory environments demonstrated that
the optimized parameters yield a substantial reduction in po-
sitioning error. Performance was quantified using Mean
Square Error (MSE), Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) metrics, with MSE values as
low as 0.2491 m in unfiltered scenarios, and as low as 0.07
m when applying MF and MAF with an appropriate window
size. A brief analysis of results shows that an MF and MAF
with window size 𝑊𝑛 = 7 provides consistently adequate
accuracy while keeping computational costs low.
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1. Introduction
Localization of objects in diverse environments, espe-

cially in healthcare, has been extensively studied and con-
tinues to grow in importance. Although this issue has been
addressed using different technologies, selecting the ideal
one remains challenging due to the diversity of physical
variables. Energy consumption, communication distance,
encryption and data storage, and environmental conditions
are key factors to consider when choosing a particular tech-
nology [1]. Some proposed technologies, such as Wire-
less Fidelity (WiFi), Bluetooth Low Energy (BLE), Radio
Frequency Identification (RFID), and, more recently, Long
Range (LoRa), are the most well-known for localizing or
tracking objects [2–4].

Although, LoRa is not commonly applicable for indoor
location, several works have been developed to incorporate
this technology in enclosed environments [5]. This task is
complicated due to diffraction, refraction, and reflection of
the transmitted signal, which are inherent to the natural prop-
agation phenomena [6–8]. In addition to this, the number
of objects can hinder the signal propagation and increase
location errors [9–11].

In spite of the disadvantages of artifacts in the trans-
mitted signal, the LoRa technology offers several strengths.
Summarizing, LoRa offers long-range, low-power, scalable,
and cost-effective communication. These advantages make
LoRa especially suited for large IoT networks, remote mon-
itoring, and environments where range and battery life are
critical [12–14]. While Bluetooth, WiFi, and RFID are bet-
ter for specific, short-range, high-bandwidth, or localized use
cases, LoRa excels in long-range, low-power, and wide-area
applications [15], [16].

The key to outperforming other technologies lies in the
fact that LoRa communication encodes data based on the
Chirp Spread Spectrum (CSS), where the frequency of the
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signal continuously changes. The CSS technique allows the
signal to spread over time, making it more resilient to noise
and interference [17], [18]. The ability to adjust the spreading
factor allows for a balance between range and data rate. LoRa
is thus able to achieve long-range, low-power communication
in different environments by utilizing chirp frequency shifts
to encode information efficiently.

Determining the path loss exponent in indoor environ-
ments presents several challenges due to the complex and
diverse nature of these spaces. The materials used in walls,
ceilings, and furniture such as glass, wood, metal, and con-
crete affect signal propagation differently [2, 19, 20]. For
instance, thicker walls or those made of denser materials like
concrete can significantly attenuate signals, while glass or
open partitions may have a lesser impact [21], [22]. Addition-
ally, indoor environments are dynamic, with people moving
and furniture being rearranged, introducing time dependent
variations in path loss. Multipath propagation further com-
plicates matters, as signals reflecting off surfaces can cause
constructive or destructive interference [23]. These phe-
nomena make it difficult to accurately measure the path loss
exponent and necessitate careful calibration.

Another major challenge is obtaining accurate Received
Signal Strength Indicator (RSSI) measurements. Hardware
variability, noise, and environmental factors can affect these
readings, making it difficult to derive consistent values for
the path loss exponent. Selecting an appropriate reference
distance and calibrating the reference path loss is critical, as
it forms the baseline for estimating signal attenuation. Fur-
thermore, shadowing effects caused by large or dense obsta-
cles introduce randomness, typically modeled as a Gaussian
variable, which further complicates the estimation process.
To address these challenges, various approaches have been
proposed. Site-specific calibration, involving detailed mea-
surements in the target environment, is often used to tune the
path loss exponent and other parameters.

In this work, we propose a heuristic approach for
a fast estimation of the path loss exponent to different en-
vironments. Our methodology leverages real time RSSI
measurements from standard 915 MHz LoRa modules and
applies a trilateration algorithm based on Ordinary Least
Squares enhanced by a median and a moving average fil-
ters to suppress measurement noise. To further boost ac-
curacy, we also implement a weighted least squares esti-
mator via a Gauss–Newton optimization, where the weight-
ing matrix is derived from an empirically tuned covariance
model 𝑄. Two distinct receiver geometries, one compact
and one widespread, are evaluated to assess robustness under
varying spatial configurations. By calibrating the path loss
exponent over a range of values and optimizing for minimal
mean square error between predicted and actual positions,
the approach adapts dynamically to various indoor condi-
tions, thereby enhancing localization accuracy and reliabil-
ity. For experimental tests, we selected a single LoRa signal
configuration with a fixed Spreading Factor (SF) and Band-
width (BW) to establish a consistent baseline for evaluating

the proposed localization method. This choice simplifies
the analysis by controlling signal characteristics, enabling
focused optimization of the path loss exponent and filtering
parameters. However, it is widely recognized that varying
SF and BW settings affect signal range, sensitivity, and noise
resilience, which may influence the accuracy of RSSI-based
distance estimates. It is worth mentioning that experimental
conditions were only partially controlled, as measurements
were conducted in indoor classrooms without regulating the
presence or movement of students and instructors to assess
the robustness of the system to human interference. This in-
tentional choice reflects realistic usage scenarios. However,
a more exhaustive analysis of the structural of the building
characteristics and installed equipment is required to fully
understand their impact on localization performance.

1.1 Related Works
Recent studies have explored various approaches to

RSSI-based localization using LoRa technology in indoor en-
vironments. For example, researchers have developed exper-
iments to evaluate the accuracy of RSSI-based indoor local-
ization, demonstrating significant reductions in localization
error by optimizing the calibration of path loss models and
leveraging advanced data processing techniques [2, 24–27].
These efforts underscore the potential of LoRa modules for
applications in environments such as laboratories, hospi-
tals, and smart homes, where precision is critical despite
challenges like multipath propagation and Non-Line-of-Sight
(NLOS) conditions [28–30]. However, these works propose
different combinations of measurements [28], modifications
to traditional algorithms [29], or the design of new devices
and mechanisms to extract additional data [30].

Machine Learning (ML) algorithms are increasingly
utilized in RSSI-based localization to improve accuracy by
addressing NLOS propagation and environmental variabil-
ity. For instance, Neural Networks (NNs) and Support Vec-
tor Machines (SVMs) have been applied to RSSI data for
fingerprinting and path loss modeling, demonstrating sig-
nificant improvements in localization precision compared to
traditional deterministic methods [31–33]. However, these
ML-based strategies have notable disadvantages. They often
require large datasets for training, which may not be fea-
sible in environments with limited measurements, such as
laboratories. Moreover, their performance can be compu-
tationally intensive, making real-time localization challeng-
ing in resource-constrained devices. The generalization of
ML models to different environments is another concern, as
models trained in one setting may not perform well in others
without extensive recalibration.

Our approach can be contrasted with recent RF based
occupancy systems. For example, in [34] uses Wi-Fi probe
requests as an RF fingerprint of the environment, they record
raw Wi-Fi signals and input them into deep neural networks
to detect occupancy and count people. Notably, their solution
relies on available Wi-Fi infrastructure and extensive training
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with real measurements. In contrast, our proposed method is
based on 915 MHz LoRa RSSI measurements and a simple
path loss model for trilateration. The method only requires
calibration of the path loss exponent and the application of
OLS or Weighted Least Squares (WLS) via Gauss–Newton
(GN), combined with either a Median Filter (MF) or a Mov-
ing Average Filter (MAF), to estimate the target location.
This avoids the need to build a full fingerprint database, in-
stead, the system adapts to a new setting by quickly adjusting
a small number of parameters.

The choice of 915 MHz LoRa (ISM band) was made for
several reasons. First, 915 MHz lies in the unlicensed ISM
band (902–928 MHz in Region 2), so no spectrum license is
required [35], [36]. This simplifies the deployment of many
devices across our laboratory environments. Second, the low
frequency of LoRa enables long-range communication and
effective building penetration. As a result, 915 MHz signals
travel significantly farther and pass through walls more effec-
tively than 2.4 GHz Wi-Fi signals [37]. Third, LoRa devices
are low power and inexpensive, making large-scale deploy-
ment feasible [38]. Finally, although the low bandwidth of
LoRa limits positioning accuracy to a few meters, its energy
and cost efficiency make it a practical choice for low-cost
indoor localization.

1.2 Contribution

• We analyzed the capacity of 915 MHz LoRa modules
to perform target localization in indoor environments
dedicated to electronic engineering laboratories. This
was done by measuring the RSSI and calculating the
mean square error between the predicted and actual tar-
get reference.

• We propose a new strategy to calculate the parameters
of the RSSI-based logarithmic path loss model, specifi-
cally the path loss exponent. This strategy bypasses the
traditional characterization of the RSSI measurements
between LoRa-based modules and the distance.

• We determined the impact of a constant-size window in
a median filter to improve location accuracy in indoor
environments with 915 MHz LoRa modules.

• We demonstrated how receiver geometry and estimator
weighting interact to further refine indoor localization
accuracy.

1.3 Organization
The organization of the rest of the document is as fol-

lows. The description of the problem, the technology used,
the path loss model, the trilateration algorithm, the OLS al-
gorithm, the statistical performance, and the programming
of the LoRa modules are described in Sec. 2. Section 3
presents experimental evaluations across multiple laboratory
scenarios, comparing receiver geometries, unfiltered and fil-

tered (MF/MAF) RSSI results, and OLS versus WLS per-
formance. The final conclusions, discusses limitations, and
proposes directions for future work are presented in Sec. 4.

2. Methodology to Lora Indoor
Localization
To achieve the localization of a particular object in an in-

door environment while avoiding traditional techniques that
rely on correlating RSSI with distance between devices, the
following summarized methodology is proposed. First, RSSI
measurements are recorded from LoRa receivers 𝑅𝑥𝑖 , see
Fig. 1. Next, the location of the object is estimated using
the trilateration algorithm combined with OLS by tuning the
path loss exponent. So, the Mean Square Error (MSE) is
then calculated to minimize the location error with respect
to a known reference point. To determine the true target lo-
cation, at least ten measurements were taken and averaged
using a commercial stainless steel tape measure, for which
the manufacturer specifies an error of 0.5 to 1 mm per meter.
The reference point was consistently taken from one corner
of the laboratory. This strategy provides fast tuning of the
path loss parameter, as it can vary depending on the envi-
ronment where the measurements are conducted. Now, it is
important to describe the basic concept for implementing this
methodology, which are described below.

2.1 LoRa Technology
The BastWAN development board is a compact, fully

assembled platform designed for rapid prototyping with
LoRa/LoRaWAN technology. It integrates a RAK4260
module featuring a 32-bit SAM L21 microcontroller based
on the Arm Cortex-M0+ architecture that runs up to
48 MHz, offering up to 256 KB of embedded Flash and
40 KB of SRAM. The SAM L21 is engineered for ultra-
low power consumption (< 35 μA/MHz) and provides
a rich set of peripherals including DMA, sleepwalking,
an event system, up to six flexible Serial Communication
Modules (SERCOMs), and up to eight timers–counters.

Fig. 1. Trilateration problem.
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Its design facilitates an easy and intuitive migration between
SAM L devices, with identical peripheral modules, compat-
ible code, and a linear address map. Also, ensuring com-
patibility with the SAM D family of general purpose MCUs.
Additionally, the board supports a wide frequency range from
862 to 1020 MHz, offers a high reception sensitivity of up
to –148 dBm, and allows a maximum transmission power of
20 dBm. With native USB support, a preloaded UF2 boot-
loader, and compatibility with popular environments like Ar-
duino and MakeCode, firmware updates and development are
straightforward [39], [40].

In addition to its robust wireless communication ca-
pabilities, BastWAN provides versatile hardware interfaces
including 20 I/O pins, multiple hardware peripherals (PWM,
Serial, I2C, SPI), six 12-bit analog inputs, and a 10-bit DAC
output. The board also integrates a LiPo charger, a crypto-
graphic authentication chip ATECC608A, and supports ex-
pansion for various sensors and actuators. Moreover, the
SAM L21 features a full-speed USB device and embedded
host, a 12-bit ADC with up to 20 channels, a dual–channel
12-bit DAC, three operational amplifiers, two analog com-
parators, a programmable logic block, and a Peripheral Touch
Controller (PTC) for hardware touch support [41]. Avail-
able in multiple package options (QFP, QFN, and WLCSP),
its open–source design and comprehensive feature set make
BastWAN an ideal solution for researchers and developers
working on low-power IoT applications and advanced LoRa-
based projects.

2.2 Path Loss Model
The path loss model is a fundamental concept in wire-

less communication used to estimate the loss of signal
strength as a function of distance between a transmitter and
receiver. For LoRa devices, the path loss model based on
RSSI measurements is typically described by the log-distance
path loss model, which is expressed as [6]:

𝑃𝐿 (𝑑) = 𝑃𝐿 (𝑑0) + 10𝑛 log10

(
𝑑

𝑑0

)
+ 𝑋𝜎 . (1)

where 𝑃𝐿 (𝑑) is expressed in dB, 𝑑 is the distance between
the transmitter and receiver in meters, 𝑃𝐿 (𝑑0) is the refer-
ence path loss at a close distance 𝑑0, typically 1 meter. Here,
𝑛 is the path loss exponent, which characterizes the rate at
which the signal attenuates with distance and depends on the
environment. 𝑋𝜎 is a random variable representing shadow
fading, usually modeled as a zero-mean Gaussian random
variable with standard deviation 𝜎.

Alternatively, the RSSI received at distance 𝑑 can be
written as:

𝑅𝑆𝑆𝐼 (𝑑) = 𝑃t − 𝑃𝐿 (𝑑) (2)

where 𝑃t is the transmit power of the device in dBm [6].

Returning to the topic of path loss exponent, this is
a key parameter in wireless communication models, which
varies significantly across different environments. In free-
space conditions, 𝑛 typically equals 2, representing ideal
propagation with no obstructions. However, in urban ar-
eas, 𝑛 ranges between 2.7 and 3.5 due to obstacles such as
buildings, vehicles, and other structures, which introduce
reflections and shadowing. In indoor environments, 𝑛 can
vary even more widely, ranging from 1.6 in open spaces to
over 6 in densely partitioned areas such as office buildings
or warehouses. These variations arise from the influence of
walls, furniture, floors, and ceilings, which cause reflection,
diffraction, and scattering of the signal [6].

2.3 Trilateration Algorithm
In this work, a basic trilateration algorithm is imple-

mented based on Ordinary Least Squares (OLS), with equa-
tions and theory derived from the work presented in [42].
Referring to Fig. 1, let 𝑛 indicate the total number of mea-
surements from all transmitters. We can define 𝜃 = (𝑥, 𝑦, 𝑧)
to represent the spatial coordinates of the target point. Now,
the location of the beacon where the 𝑖th measurement is
recorded is given by 𝑅𝑥𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), which is the exact
location of the transmitter. Thus, the true distance can be
expressed as:

𝑑𝑖 (𝜃) =
√︃
(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2. (3)

To ensure the location of transmitter, it is necessary to as-
sume there are sufficient beacons so that if 𝜃 ≠ 𝜃′, then there
exists at least one 𝑖 for which 𝑑𝑖 (𝜃) ≠ 𝑑𝑖 (𝜃′). The variable
𝑟𝑖 denotes the measured distance from the 𝑖th beacon to the
target point, and it can be defined as 𝑟𝑖 = 𝑑𝑖 (𝜃) + 𝜖𝑖 , where
the 𝜖𝑖 are independent, with E(𝜖𝑖) = 0 and var(𝜖𝑖) = 𝜎2.

Currently, the regression formulas:

𝑑𝑖 (𝜃) = E (𝑟𝑖 | 𝑥, 𝑦, 𝑧) (4)

=

√︃
(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2

are nonlinear with respect to the unknowns 𝑥, 𝑦, 𝑧. However,
it is possible to derive a linear regression equation, as illus-
trated below according to the linearization methods proposed
in [43], [44].

Let (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) represent the coordinates of an arbitrary
point in R3, referred to as the reference point. Now, for each
of the 𝑛 points (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), we can express:

𝑑𝑖 (𝜃)2 = (𝑥 − 𝑥𝑟 + 𝑥𝑟 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑟 + 𝑦𝑟 − 𝑦𝑖)2 + . . .

. . . (𝑧 − 𝑧𝑟 + 𝑧𝑟 − 𝑧𝑖)2 .

(5)

Then, the distance between the reference point and
the position of the beacon where the 𝑖th measurement was
recorded can be established as:
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𝑑𝑖𝑟 (𝜃) =
√︃
(𝑥𝑖 − 𝑥𝑟 )2 + (𝑦𝑖 − 𝑦𝑟 )2 + (𝑧𝑖 − 𝑧𝑟 )2. (6)

Let 𝑑𝑟 the distance between the reference point and the
target point (𝑥, 𝑦, 𝑧), defined as

𝑑𝑟 (𝜃) =
√︃
(𝑥 − 𝑥𝑟 )2 + (𝑦 − 𝑦𝑟 )2 + (𝑧 − 𝑧𝑟 )2. (7)

To organize the information in matrix form, expanding
and regrouping the terms in (5) yields:

2[(𝑥 − 𝑥𝑟 ) (𝑥𝑖 − 𝑥𝑟 ) + (𝑦 − 𝑦𝑟 ) (𝑦𝑖 − 𝑦𝑟 ) + . . .

(𝑧 − 𝑧𝑟 ) (𝑧𝑖 − 𝑧𝑟 )] = 𝑑𝑟 (𝜃)2 + 𝑑2
𝑖𝑟 − 𝑑𝑖 (𝜃)2.

(8)

So, the matrix X and the parameter vector 𝛃 can be
defined with (9) and (10), respectively.

X =


1 2(𝑥1 − 𝑥𝑟 ) 2(𝑦1 − 𝑦𝑟 ) 2(𝑧1 − 𝑧𝑟 )
1 2(𝑥2 − 𝑥𝑟 ) 2(𝑦2 − 𝑦𝑟 ) 2(𝑧2 − 𝑧𝑟 )
...

...
...

...

1 2(𝑥𝑛 − 𝑥𝑟 ) 2(𝑦𝑛 − 𝑦𝑟 ) 2(𝑧𝑛 − 𝑧𝑟 )


, (9)

𝛃 =


−𝑑𝑟 (𝜃)2 − 𝜎2

𝑥 − 𝑥𝑟
𝑦 − 𝑦𝑟
𝑧 − 𝑧𝑟

 . (10)

Let Y denote the vector whose 𝑖th component is 𝑌𝑖 ,
which can be defined as:

𝑌𝑖 = 𝑑2
𝑖𝑟 − 𝑟2

𝑖 . (11)

Given that 𝑑2
𝑖𝑟

are predetermined constants, and con-
sidering that E

(
𝑟2
𝑖
|𝑥, 𝑦, 𝑧

)
= 𝑑𝑖 (𝜃)2 + 𝜎2, it results in

E(𝑌𝑖) = 𝑑2
𝑖𝑟
− 𝑑𝑖 (𝜃)2 − 𝜎2. Therefore,

E (Y) = X𝛃 (12)

where the 𝑌𝑖 components are independent, and the next sta-
tistical relationships can be established

var(𝑌𝑖) = var(𝑟2
𝑖 ) = var

(
[𝑑𝑖 (𝜃) + 𝜖𝑖]2

)
= . . .

var
(
2𝑑𝑖 (𝜃)𝜖𝑖 + 𝜖2

𝑖

)
= 4𝑑𝑖 (𝜃)2𝜎2 + 4𝑑𝑖 (𝜃)𝜇3 + 𝜇4 + 𝜎4

(13)

where 𝜎2, 𝜇3, and 𝜇4 are the second, third, and fourth mo-
ments of the distribution of the 𝜖𝑖 , respectively.

The initial element of 𝛃 involves a non-linear function of
the components of 𝜃 = (𝑥, 𝑦, 𝑧), indicating that this might not
be a linear regression. Currently, we disregard this functional
relationship and consider the first element as an independent
parameter. Below, we outline a linear regression model that
yields the OLS estimator of 𝜃. Given that the variances of
the 𝑌𝑖 are not uniform, this estimator may not be optimal.

2.3.1The Ordinary Least Squares Estimator
To express the regression equation (12) in a linear form

with respect to the unknowns 𝑥, 𝑦, 𝑧, it is important to note
that the range of the columns of X is invariant to the refer-
ence point selected. Consequently, the value of X�̂� remains
unaffected by the reference point, implying that the estimates
𝑥, �̂�, and 𝑧 are also reference point independent. Therefore,
it is advisable to select 𝜃 = (𝑥, �̄�, 𝑧) as the reference point.
This choice renders the last three columns of X orthogonal
to the column of ones, allowing both the column of ones and
the initial component of (10) to be excluded from the model
without impacting the estimation of 𝜃 = (𝑥, 𝑦, 𝑧).

Let X∗ represent the matrix formed by the last three
columns of (9), and define Y∗ as Y plus the product of X∗
and 𝜃. So,

𝐸 (Y∗) = X∗𝜃, (14)

and the OLS estimator of 𝜃 can be computed as

𝜃 =

(
XT
∗X∗

)−1
XT
∗Y∗. (15)

Computational Complexity of OLS. In this subsection
we analyze the time and memory costs of the OLS-based
trilateration estimator defined in (14)–(15). Let 𝑚 =

number of receivers and 𝑑 = dim(𝜃), and recall that here
𝑚 = 3 and 𝑑 = 2. The design matrix X∗ is there-
fore of size 𝑚 × 𝑑. For fixed parameters 𝑚 = 3 and
𝑑 = 2, the dominant time cost arises from the formation
and solution of the normal equations in (15). In general,
𝑇 (𝑚, 𝑑) = 𝑂

(
𝑚 𝑑2 + 𝑑3) . Specializing to 𝑚 = 3, 𝑑 = 2

gives 𝑇 (3, 2) = 𝑂 (3 · 22 + 23) = 𝑂 (20) = 𝑂 (1). Because 𝑚

and 𝑑 are fixed and small, all these costs collapse to 𝑂 (1) in
practice.

With respect to the space complexity, storing X∗ re-
quires 𝑂 (𝑚 𝑑) entries, allocating memory for XT

∗X∗ and
its inverse requires 𝑂 (𝑑2), and intermediate vectors re-
quire 𝑂 (𝑑). Thus, 𝑆(𝑚, 𝑑) = 𝑂 (𝑚 𝑑 + 𝑑2), which yields
𝑆(3, 2) = 𝑂 (3 · 2 + 22) = 𝑂 (10) = 𝑂 (1). Because both 𝑚

and 𝑑 are fixed and small, memory requirements are negligi-
ble in practical implementations.

2.4 Metrics Performance
Since the proposed heuristic localization is based on the

MSE, it is necessary to define the equation as
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𝑀𝑆𝐸 =
1
𝑘

𝑘∑︁
𝑖=1

(
𝜃 − 𝜃𝑘

)2 (16)

=
1
𝑘

𝑘∑︁
𝑖=1

(𝑥 − 𝑥𝑘)2 + (𝑦 − �̂�𝑘)2 + (𝑧 − 𝑧𝑘)2 (17)

where 𝑘 is the number of measurements.

To complete the MSE, we also introduce the Root
Mean Square Error (RMSE) and the Mean Absolute Error
(MAE):

RMSE =
√

MSE =

√√√
1
𝑘

𝑘∑︁
𝑖=1

[
(𝑥 − 𝑥𝑖)2 + (𝑦 − �̂�𝑖)2

]
, (18)

MAE =
1
𝑘

𝑘∑︁
𝑖=1

√︃
(𝑥 − 𝑥𝑖)2 + (𝑦 − �̂�𝑖)2. (19)

An additional metric that can corroborate the results is
the Geometric Dilution of Precision (GDOP), which provides
information about the influence of the relative geometry of
the receivers on positioning accuracy. It is derived from the
system design of multilateration or trilateration, and can be
defined as in [45],

GDOP =

√︃
trace

(
(HTH)−1) (20)

where H is the design matrix, also known as the Jacobian of
the distances with respect to the position of receiver. This
expression indicates that GDOP is the square root of the trace
of the inverse of HTH, which reflects how the spatial config-
uration of receivers affects positioning accuracy. The GDOP
parameter is intended to be as low as possible, it is widely
accepted in the technical literature that a value below 2 is
an excellent geometry.

The purpose of these basic metrics is to establish the
known parameters based on the literature and to adjust them
in order to achieve optimal performance.

2.4.1LoRa Module Programming
The code of Arduino, described in Algorithm 1, demon-

strates a basic example of a LoRa transmitter, utilizing the
SPI and LoRa libraries to wirelessly send a sequence of in-
crementing numbers via the LoRa protocol. The code begins
with initialization, where serial communication is started for
debugging and monitoring, and specific GPIO pins are con-
figured for the LoRa module and built-in LED. The LoRa
module is then set up at a frequency of 915 MHz, with its
spreading factor and signal bandwidth configured to control
modulation and transmission quality.

For this test, the Spreading Factor (SF) was set to 7,
with a bandwidth of 125 kHz, a Coding Rate (CR) of 4/5, and
a transmission power of 17 dBm, approximately 50.12 mW.
In the main loop, the code transmits a packet containing the

Algorithm 1. LoRa transmitter code algorithm.

Input: LoRa module pins, transmission frequency, spreading factor,
bandwidth
Output: Periodic LoRa packets with incrementing counter

Require: LoRa module is properly connected and configured
Ensure: Transmissions occur without errors

Initialize SPI and LoRa libraries
Declare counter and set it to 0
Start serial communication at 9600 baud
print "LoRa Sender" to the serial monitor
Configure GPIO pins for the LoRa module and LED
Initialize LoRa module at 915 MHz
Configure LoRa spreading factor and signal bandwidth
loop

print Current counter to the serial monitor
Turn on the built-in LED
Begin a LoRa packet
Set switch pin to low
Add counter value to the packet
End LoRa packet transmission
Increment counter
Wait for 500 ms
Turn off the built-in LED
Wait for another 500 ms

end loop
return Success of transmission

Parameter Value
Operating frequency 915 MHz
Spreading Factor (SF) 7
Bandwidth (BW) 125 kHz
Coding Rate (CR) 4/5
Transmit power 17 dBm (≈50.12 mW)

Tab. 1. LoRa module configuration parameters.

current counter value, with a built-in LED indicating activity
during transmission. The counter increments with each loop
iteration, and delays are incorporated to pace the transmis-
sions. This code is ideal for testing LoRa communication,
verifying proper transmitter functionality, and debugging the
setup with both visual and serial feedback. The configuration
parameters can be summarized in the Tab. 1.

The LoRa Receiver Code, which is shown in Algo-
rithm 2, initializes the SPI and LoRa libraries, configures
the RF switch for receiving mode, and sets the LoRa mod-
ule with a frequency of 915 MHz, a SF of 7, and a signal
bandwidth of 125 kHz. The code continuously checks for
incoming packets and, upon detection, reads the data byte by
byte, appends it to a string, and prints the received message
along with its RSSI to the serial monitor. This ensures reli-
able reception and monitoring of LoRa transmissions while
handling data parsing and display efficiently. Also, in Algo-
rithm 2, it is possible to appreciate an infinite loop, which
is used as a safety mechanism to stop execution if LoRa ini-
tialization fails, preventing undefined behavior and notifying
the user to correct the issue. This ensures that the receivers
do not operate without a valid communication link, there by
maintaining system reliability.
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Algorithm 2. LoRa receiver code algorithm.

Input: LoRa module pins, receiving frequency, spreading factor, band-
width
Output: Received LoRa packets with signal strength (RSSI)

Require: LoRa module is properly connected and configured
Ensure: Received packets are displayed correctly on the serial monitor

Initialize SPI and LoRa libraries
Start serial communication at 9600 baud
print "LoRa Receiver" to the serial monitor
Set RF switch pin as OUTPUT
Set RF switch to HIGH (receiver mode)
Configure LoRa module pins: SS, RFM_RST, RFM_DIO0
Initialize LoRa module at 915 MHz
if LoRa initialization fails then

print "Starting LoRa failed!" to the serial monitor
Enter infinite loop

end if
Configure LoRa spreading factor to 7
Set LoRa signal bandwidth to 125 kHz
loop

Parse for incoming LoRa packets
if a packet is received then

Initialize empty string incoming
while LoRa has available data do

Read one byte and append to incoming
end while
Print incoming message to the serial monitor
Print RSSI value to the serial monitor
Print a tab separator \t
Print RSSI value again for clarity (optional)
Print a newline character

end if
end loop
return Successful packet reception and RSSI display

3. Results

3.1 Finding Path Loss Exponent
Aiming to find an optimal level for the path loss expo-

nent, several experiments in different scenes were realized
by tuning the value of 𝑛 in (1) and analyzing the MSE of
estimated position with respect to the true location of the
transmitter. According to the literature [6], [46], the path
loss exponent recommended for indoor environments ranges
from 𝑛 = 1.6 to 𝑛 = 1.8. However, in obstructed buildings,
it can achieve values between 𝑛 = 4 to 𝑛 = 6. For an ex-
haustive search, we propose to employ a range from 𝑛 = 2
to 𝑛 = 6 to find the minimal MSE, according to different
environments.

To carry out our studies, three different scenarios were
selected within the same building to evaluate wireless trans-
mission performance specifically under Line of Sight (LOS)
conditions in indoor environments. The indoor measure-
ments were conducted in Building B of the Engineering De-
partment at the Universidad Autónoma de Zacatecas, Jalpa
Campus, in Mexico. Here, RSSI levels were measured by
placing the transmitter (TX) and receiver (RX) modules on
worktables commonly used in these spaces, which allowed
positioning the modules at a height of 0.74 meters. This setup

Fig. 2. Mean error location evolution in meters by tuning the
path loss exponent 𝑛.

aimed to conduct experiments in a realistic, simple, and nat-
ural environment without the need for sophisticated mount-
ing equipment. During the measurements, environmental
factors, such as temperature and humidity, were considered
negligible, and there was minimal human movement in the
indoor spaces under study.

In Fig. 2, the evolution of the mean localization error is
shown when adjusting the value of the path loss exponent 𝑛
for the different scenes. The performance of errors is similar,
achieving the maximum error at 𝑛 = 2 and the minimum er-
ror at 𝑛 = 6. The minimal mean errors obtained in the Power
Electronics, Digital Electronics, and Network Laboratories
were 0.3842 m, 0.4419 m, and 0.9732 m, respectively.

From the path loss exponent tuning experiments, the
optimal exponent can be established as 𝑛 = 6 for all the
environments, aligning with literature values for obstructed
indoor environments. The fitted exponent minimize local-
ization error as shown in Fig. 2, with residual analysis indi-
cating log-normal shadowing assumptions hold reasonably
well within the tested range. Based on these results, it is
possible to analyze each scene individually with the path loss
that generates the minimum error.

3.2 Indoor A: Power Electronics Laboratory
The first set of measurements was conducted in the

Power Electronics Laboratory at the Jalpa Campus. The lab-
oratory has an approximate area of 80 square meters and is
constructed of concrete with brick walls painted white. The
ceiling is also made of concrete and painted in a light color.
Following the cardinal guidance, in the far-right corner, there
is power electronics equipment, including motors and gen-
erators, thyristor and IGBT transistor modules, three-phase
power supplies, cabinets with PLCs, and a conveyor belt is
also installed. The room has two windows, six computers,
and three rows of chairs and tables in the center. Another row
of tables is located at the back, directly in front of the room.
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Figure 3(a) shows the actual experimental environment
in the Power Electronics Laboratory, while Fig. 3(b) presents
its layout schematic. Due to free space and arrangement of
laboratory furniture, the TX was arbitrary located in coordi-
nates in 𝑥 = 3.88 m and 𝑦 = 4.87 m taken as origin reference
the southwest corner. Likewise, the receivers are placed at
(𝑥1 = 8.74, 𝑦1 = 1), (𝑥2 = 1, 𝑦2 = 1), and (𝑥3 = 1, 𝑦3 = 6.76),
for 𝑅𝑥1, 𝑅𝑥2, and 𝑅𝑥3, respectively. In Fig. 3(b), the black,
blue, and red points indicate the arbitrary positions where the
RX nodes were installed, while the TX node is represented
by a blue triangle indicating its placement. The blue circles
represent the location estimated based on 300 RSSI measure-
ments and the OLS algorithm. The gray dotted circles are
drawn by using the mean of RSSI measurements and com-
puting the distance with (3). The red cross shows the mean
of positions estimated of TX, showing that the position of
TX is located at center of the room.

The measurements taken for each receiver in the Elec-
tronic Power Laboratory are shown in Fig. 4. For Receiver 1
(𝑅𝑥1), the maximum and minimum values were –59 dBm and

(a)

(b)

Fig. 3. (a) Real environment in Power Electronics Laboratory;
(b) Estimation of transmitter location in Power Electron-
ics Laboratory.

–68 dBm, respectively, with a median of −66 dBm. For
Receiver 2 (𝑅𝑥2), the maximum value was –60 dBm, the
minimum was –71 dBm, and the median was −67 dBm. For
the third receiver (𝑅𝑥3), the highest, lowest, and median val-
ues were −59 dBm, −70 dBm, and −68 dBm, respectively.
Some peaks can be observed across the three receivers, which
might be caused by interference from other devices. How-
ever, a stable median is evident, enabling accurate location
approximation based on the trilateration algorithm.

Once the location of the Transmitter is estimated, MSE
with respect to the reference coordinates, which are well-
known, is calculated. The error for each measurement is
illustrated in Fig. 5. In this graph, some error values on
the order of 10−15 can be observed. This level of accu-
racy is achieved when the three Receiver measurements are
similar. For example, for the measurement 𝑘 = 43, the re-
ceivers 𝑅𝑥1, 𝑅𝑥2, and 𝑅𝑥3 each registered an RSSI value of
−67 dBm. Consequently, the MSE at 𝑘 = 43 in Fig. 5 was
1.2 × 10−15 m.

Fig. 4. RSSI levels of three receivers for 300 measurements in
Power Electronics Laboratory.

Fig. 5. Mean square error of estimated location in Power Elec-
tronics Laboratory.
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3.3 Indoor B: Network Laboratory
The second set of measurements was conducted in the

Network Laboratory at the Jalpa Campus. This room has the
same dimensions and construction materials as the previous
one, however, the furniture and equipment are different. Fol-
lowing the cardinal orientation, in the top-right corner near
𝑅𝑥1, there is a 48-port switch, routers, modems, a desktop
computer, and a wooden desk. In the center of the laboratory,
there are 8 networked computers connected with UTP cables
over wooden desks. In the bottom-left corner, near 𝑅𝑥3, there
are storage racks for tools and networking equipment.

Figures 6(a) and (b) depict the real experimental setup
and layout schematic in Network Laboratory, respectively.
Given the available open space and the arrangement of the
furniture, the transmitter (TX) was positioned arbitrarily at
coordinates 𝑥 = 3.89 m and 𝑦 = 4.87 m, using the southwest
corner as the origin. Similarly, the receivers were located at
(𝑥1 = 6.78, 𝑦1 = 1), (𝑥2 = 1, 𝑦2 = 1), and (𝑥3 = 1, 𝑦3 = 8.74)
meters for 𝑅𝑥1, 𝑅𝑥2, and 𝑅𝑥3, respectively. In Fig. 6(b), the
black, blue, and red markers denote the specific positions
where the RX nodes were deployed, while the TX node is
depicted by a blue triangle indicating its placement. The blue
circles represent the estimated positions based on 300 RSSI
measurements processed using the OLS algorithm. Addi-
tionally, gray dashed circles are shown, which were calcu-
lated using the average RSSI values and the distance formula
from (3). The red cross signifies the average of the estimated
TX positions, highlighting that the transmitter’s location is
approximately at the center of the room.

Figure 7 displays the data collected for each receiver in
the Network Laboratory, with a total of 300 measurements
taken for each receiver. For Receiver 1 (𝑅𝑥1), the signal
strength reached a maximum of –57 dBm and a minimum of
–81 dBm, with a median value of−74 dBm. Receiver 2 (𝑅𝑥2)
recorded a maximum of –58 dBm, a minimum of –72 dBm,
and a median of −65 dBm. Similarly, Receiver 3 (𝑅𝑥3) had
a peak value of −51 dBm, a minimum of −70 dBm, and
a median of −65 dBm. As observed in previous experiments,
peaks in the measurements of the three receivers are likely
caused by interference from other electronic devices. De-
spite these anomalies, the median values remain consistent,
allowing the trilateration algorithm to provide an accurate
estimation of location.

To analyze the estimated location of the transmitter 𝑇𝑥,
the MSE is calculated using the actual reference coordinates
of the transmitter. The error for each measurement is shown
in Fig. 8. The minimal error observed is 0.1401 m, while
the maximum error is 3.5373 m. The accuracy level in this
experiment is notably lower than that achieved in the Power
Electronics scene, likely due to the lack of synchronization
between RSSI measurements from the receivers. However,
the median location error is 0.8448 m, which is reasonable
and allows us to infer that the receiver is within the indoor
environment.

(a)

(b)

Fig. 6. (a) Real environment in Network Laboratory; (b) Estima-
tion of transmitter location in Network Laboratory.

Fig. 7. RSSI levels of three receivers for 300 measurements in
Network Laboratory.
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Fig. 8. MSE of estimated location in Network Laboratory.

3.4 Indoor C: Digital Electronics Laboratory
The third set of measurements was carried out in the

Digital Electronics Laboratory, located in the same build-
ing. This room shares the same dimensions and construction
materials as the previous one. Following the cardinal orien-
tation, laboratory tables equipped with desktop computers,
multimeters, power supplies, oscilloscopes, robotic kits, and
independent power sources are positioned along the east and
west walls near the windows. In the center of the laboratory,
there are 12 wooden desks with chairs. In the bottom-left
corner, near 𝑅𝑥3, storage racks are present for tools and elec-
tronic equipment. For this test, it is proposed to reduce the
measurements by a factor of five to verify the accuracy of
the location with fewer samples than in the previously de-
scribed experiment.

Figure 9(a) depicts the actual experimental setup in the
Digital Electronics Laboratory, while Fig. 9(b) illustrates the
corresponding layout schematic. The transmitter (𝑇𝑥) was
placed at coordinates 𝑥 = 4 m and 𝑦 = 4 m, with the southwest
corner acting as the origin. The receivers were positioned
as follows: 𝑅𝑥1 at (𝑥1 = 7.03, 𝑦1 = 1.5), 𝑅𝑥2 at (𝑥2 = 0.7,
𝑦2 = 1.5), and 𝑅𝑥3 at (𝑥3 = 1, 𝑦3 = 8.67) meters. In Fig. 9(b),
the black, blue, and red markers indicate the exact locations
of the RX nodes, while the TX node is represented by a blue
triangle to show its placement. The blue circles depict the
estimated positions, where the RSSI measurements were re-
duced to 𝑘 = 61 for processing using the OLS algorithm. As
in previous experiments, gray dashed circles are included,
calculated based on the mean RSSI values and the distance
formula from (3). The red cross represents the average of the
estimated TX positions, emphasizing that the transmitter is
located approximately at the center of the room.

Figure 10 presents the signal strength data gathered for
each receiver in the Digital Electronics Laboratory. In this
figure, 62 samples appear, the last one corresponds to the me-
dian of the samples. Receiver 1 (𝑅𝑥1) recorded a maximum
signal of –65 dBm, a minimum of –73 dBm, and a median

(a)

(b)

Fig. 9. (a) Real environment in Digital Laboratory; (b) Estima-
tion of transmitter location in Digital Laboratory.

Fig. 10. RSSI levels of three receivers for 61 measurements in
Digital Electronics Laboratory.

of −72 dBm. Similarly, Receiver 2 (𝑅𝑥2) reached a peak
of –64 dBm, a low of –74 dBm, and a median value of
−72 dBm. In contrast, Receiver 3 (𝑅𝑥3) had a maximum
strength of −70 dBm, a minimum of −79 dBm, and a me-
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dian of −76 dBm. Although occasional peaks were observed
in the measurements for the second and third receivers, the
trilateration algorithm was still able to provide an accurate
estimation of the location of the transmitter.

Figure 11 illustrates the MSE for each measurement
conducted in the Digital Electronics Laboratory to estimate
the transmitter’s position. The lowest error recorded was
0.1629 m, while the highest error reached 1.8165 m. Al-
though the accuracy in this experiment is lower than that
achieved in the Power Electronics setup, it surpasses the er-
ror levels observed in the Network Laboratory. Notably,
the median error was 0.5566 m, which is sufficient to con-
firm that the transmitter is positioned within the indoor
environment.

As a statistical criterion, confidence intervals were com-
puted from the RSSI measurements. In this study, 95% con-
fidence limits were obtained for each set of RSSI measure-
ments collected in three different laboratory environments.
In the Power Laboratory, the RSSI values ranged as fol-
lows 𝑅𝑥1 from –66.02 to –65.64 dBm, 𝑅𝑥2 from –67.10 to
–66.79 dBm, and 𝑅𝑥3 from –67.63 to –67.27 dBm. In the
Network Laboratory, the intervals were 𝑅𝑥1 from –69.36
to –68.91 dBm, 𝑅𝑥2 from –65.13 to –64.87 dBm, and 𝑅𝑥3
from –65.23 to –64.85 dBm. Finally, the Digital Labora-
tory showed 𝑅𝑥1 between –71.49 and –70.73 dBm, 𝑅𝑥2 be-
tween –72.11 and –71.23 dBm, and 𝑅𝑥3 between –76.28 and
–75.39 dBm. The average results indicate that RSSI measure-
ments were stronger in the Power and Network Laboratories
compared to the Digital Laboratory, suggesting potentially
greater signal attenuation or interference in the latter environ-
ment. The relatively narrow confidence intervals of all scenes
suggest good quality measurement. It is worth mentioning
that the outliers were not removed or given special treatment,
in order to preserve the signals in their original form before
applying any filtering stage. The computed GDOP values
are 1.2621 for the Power Laboratory, 1.3458 for the Network
Laboratory, and 1.2160 for the Digital Laboratory. These lev-
els indicate a favorable geometry of receivers in all locations,
supporting reliable positioning accuracy. Computed GDOP
values correlate strongly with measured localization errors,
validating GDOP as a predictive metric. In low GDOP con-
figurations, error dispersion decreases, supporting its use in
the strategic planning of receiver placement.

Specific analysis of environment revealed that the Power
Electronics Laboratory exhibited higher RSSI variability
probably due to metallic surfaces and equipment, while the
Network Laboratory showed increased interference from ac-
tive network devices. The Digital Electronics Laboratory,
with fewer reflectors, yielded more stable measurements. The
reduction in the number of measurement samples in the Dig-
ital Electronics Laboratory environment was proposed based
on the premise that a real-time localization system should be
able of estimating the position of a moving object or person
within an enclosed space. The decision to decrease the num-
ber of samples confirmed that localization error increases as
sample count decreases, however, the resulting error remains

within acceptable bounds. In particular, the estimated target
position remains sufficiently accurate to determine whether
it is located within the room boundaries.

To gain a broader understanding of how the number
of samples influences the localization error, a brief analysis
was conducted using the theoretical equation 𝜎/

√
𝑛, where

𝜎 and 𝑛 represents the standard deviation and the number
of samples, respectively. Additionally, a Monte Carlo sim-
ulation was performed using the standard deviation of the
measurements and 1000 trials under Gaussian noise condi-
tions, considering several sample window sizes 10, 30, 120,
300, and 600. Figure 12 presents the results of this ana-
lysis, highlighting latency measurements and the mean error
standard deviation of RSSI in dBm.

Here, the standard error of the mean for 300 samples is
given by the expression 𝜎/

√
300. It is noteworthy that even

when the measurement window is doubled, the improvement
in standard error is marginal, approximately 0.0338.
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Fig. 11. MSE of estimated location in Digital Electronics Labo-
ratory.

Fig. 12. Latency measurement versus mean error standard of
RSSI [dBm].
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3.5 Comparison by Filtered RSSI
Aiming to improve the accuracy of the location of trans-

mitter, it is proposed to implement a MF to process the RSSI
measurements. Due to the presence of peaks in RSSI mea-
surements caused by multipath propagation from devices, the
MF was chosen. The median filter is a non linear digital fil-
tering technique often used to remove noise from signals by
replacing each data point with the median value of its sur-
rounding neighbors [47]. An odd window size is essential
for the filter to ensure a defined median value, preserving im-
portant features like edges while effectively reducing noise.
Additionally, a performance comparison using a MAF [48]
was carried out to highlight differences in the estimated lo-
cation based on the metrics described in Sec. 2.4. The MAF
is theoretically preferred because of its robustness against
outliers and abrupt changes in signal amplitude.

To this stage, the window sizes 𝑊𝑛 of 1, 3, 5, 7, 11, 23,
29, and 41 were selected to evaluate the performance of both
MF and MAF over a range of smoothing intensities. The se-
lected window sizes follow a quasi–logarithmic progression,
allowing for efficient analysis of filtering effects at multi-
ple scales without exhaustive testing of all possible sizes.
Smaller windows are employed to retain fine details while
reducing high frequency noise, whereas larger windows are
used to assess the ability of filters to suppress trends and
low frequency components. The window size of 1 serves
as a baseline, representing the unfiltered signal for compar-
ative purposes. Table 2 presents the MSE for the various
proposed laboratories. Here, the symbols ↓ and ↑ highlight
the minimum and maximum error values, respectively.

In comparison with the results obtained without apply-
ing the MF and MAF, or with filters using a window size of
one, Table 2 demonstrates a reduction in error across all sce-
narios. For the Power Electronics Laboratory, an error reduc-
tion of 0.4655 m was achieved with window sizes𝑊𝑛 = 7 and
𝑊𝑛 = 11. While the MAF achieved its best error reduction of
1.0067 m when using a window size of 𝑊𝑛 = 41. Addition-
ally, the experiments conducted in the Network Laboratory
achieved the most significant improvement, with an error re-
duction of 2.1749 m for the MF using window sizes𝑊𝑛 = 23
and 𝑊𝑛 = 29. For the MAF, in the same environment, the
error decreased by 2.1953 m when using a window size of
𝑊𝑛 = 41. Furthermore, in the Digital Electronics Labora-
tory, an accuracy improvement of 0.4418 m and 1.0719 m
was observed for the MF with a window size of 𝑊𝑛 = 29,
and for the MAF with 𝑊𝑛 = 41, respectively.

Based on the results in Tab. 2, it is recommended to
employ a MF with a window size of 𝑊𝑛 = 7 for the experi-
ments described previously. This recommendation is based
on several factors. First, the error differences compared to
the best results for the three scenarios are 0 m, 0.0071 m,
and 0.188 m, respectively. Second, the selected window size
is small, which helps minimize computational requirements
for hardware processing. Additionally, 𝑊𝑛 = 5 can also be
considered, however, the accuracy differences compared to

the best results indicate it performs slightly worse. Although
all experiments were conducted under similar Line of Sight
(LoS) conditions, the layout and equipment in each labora-
tory is different. In the Power and Network Labs, the estima-
tion error differed by only 0.007 m. By contrast, the Digital
Electronics Lab, where just 61 RSSI samples were collected,
showed a much larger variation. This emphasizes how a lim-
ited sample size can degrade localization accuracy.

Regarding the MAF, the smallest differences in error
are observed between window sizes 𝑊𝑛 = 5, 𝑊𝑛 = 7, and
𝑊𝑛 = 11, with slightly higher differences occurring between
𝑊𝑛 = 23 and 𝑊𝑛 = 29. This behavior is the same across the
different scenes. Therefore, as a preliminary deduction, it is
recommended to use a window size of 𝑊𝑛 = 5, 𝑊𝑛 = 7, or
𝑊𝑛 = 11 for the MAF to reduce location estimation error.
However, if the goal is to maximize estimation accuracy and
computational cost is not a limiting factor, a window size
greater than 𝑊𝑛 = 29 is recommended.

It is worth mentioning that, although the MAF appears
to outperform the MF by a significant difference, this obser-
vation is based only on maximum error values. Therefore,
a more general and detailed comparison is required. This
evaluation is carried out using the MSE, RMSE, and MAE
metrics described in Sec. 2.4. The localization errors esti-
mated in the Power Laboratory using several window sizes
𝑊𝑛 for both the median filter and the Moving median filter
are presented in Tab. 3. As shown, there is only a minimal
difference between the results obtained by both filters for
𝑊𝑛 = 5, 𝑊𝑛 = 7, and 𝑊𝑛 = 11 across all metrics. Overall,
the median filter yields better results for most window sizes,
except for 𝑊𝑛 = 41, where the MAF performs slightly bet-
ter. This suggests that the MAF requires a larger window
size to outperform the median filter for the Power Laboratory
environment.

Window Maximum median filter error
𝑊𝑛 Pow. Elec. Lab Net Lab. Dig. Elec. Lab
1 1.4785 ↑ 3.5372 ↑ 1.8165 ↑
3 1.3663 2.6985 1.6728
5 1.0261 1.6648 1.4014
7 1.0130 ↓ 1.3694 1.5627
11 1.0130 ↓ 1.3694 1.5627
23 1.2042 1.3623 ↓ 1.4764
29 1.2042 1.3623 ↓ 1.3747 ↓
41 1.0130 1.3623 1.1168
𝑊𝑛 Maximum moving average filter error
1 1.4785 ↑ 3.5372 ↑ 1.8165 ↑
3 0.9724 2.2168 1.5009
5 0.7716 1.6558 1.2853
7 0.7287 1.5257 1.2853
11 0.6804 1.4858 1.1112
23 0.5745 1.4265 0.7533
29 0.5346 1.3533 0.7533
41 0.4718 ↓ 1.3419 ↓ 0.7446 ↓

Tab. 2. Maximum mean square errors in meters based on the im-
plementation of MF and MAF with several windows𝑊𝑛.
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Median filter Moving average filter
𝑊𝑛 MSE RMSE MAE MSE RMSE MAE
1 0.2491 0.4991 0.3841 0.2491 0.4991 0.3841
3 0.1265 0.3556 0.2875 0.1512 0.3888 0.3394
5 0.0806 0.2839 0.2554 0.1189 0.3449 0.3104
7 0.0766 0.2767 0.2494 0.1046 0.3235 0.2921
11 0.0703 0.2652 0.2434 0.0904 0.3006 0.2747
23 0.0730 0.2703 0.2518 0.0762 0.2760 0.2587
29 0.0679 0.2607 0.2456 0.0734 0.2710 0.2554
41 0.0731 0.2705 0.2493 0.0688 0.2623 0.2500

Tab. 3. Power laboratory location mean square error, root mean
square error, and mean absolute error to a median filter
and moving average filter with several windows 𝑊𝑛.

Median filter Moving average filter
𝑊𝑛 MSE RMSE MAE MSE RMSE MAE
1 1.1312 1.0635 0.9732 1.1312 1.0635 0.9732
3 0.9962 0.9981 0.9396 0.9714 0.9856 0.9183
5 0.9351 0.9670 0.9260 0.9226 0.9605 0.9052
7 0.9183 0.9583 0.9182 0.8965 0.9468 0.8992
11 0.9036 0.9505 0.9123 0.8680 0.9316 0.8939
23 0.8909 0.9438 0.9161 0.8362 0.9144 0.8893
29 0.8746 0.9352 0.9111 0.8278 0.9098 0.8889
41 0.8862 0.9414 0.9197 0.8164 0.9035 0.8885

Tab. 4. Network laboratory location mean square error, root
mean square error, and mean absolute error to a me-
dian filter and moving average filter with several win-
dows 𝑊𝑛.

Median filter Moving average filter
𝑊𝑛 MSE RMSE MAE MSE RMSE MAE
1 0.7375 0.8587 0.6838 0.7375 0.8587 0.6838
3 0.4448 0.6670 0.5308 0.4438 0.6662 0.5725
5 0.2589 0.5088 0.4418 0.3561 0.5967 0.5139
7 0.2967 0.5447 0.4655 0.3210 0.5666 0.4925
11 0.2818 0.5308 0.4560 0.2648 0.5146 0.4612
23 0.2760 0.5254 0.4530 0.2115 0.4599 0.4120
29 0.2302 0.4798 0.4007 0.2040 0.4517 0.3951
41 0.1681 0.4101 0.3407 0.1689 0.4110 0.3393

Tab. 5. Digital laboratory location mean square error, root mean
square error, and and mean absolute error to a median fil-
ter and moving average filter with several windows 𝑊𝑛.

Median filter Moving average filter
𝑊𝑛 MSE RMSE MAE MSE RMSE MAE

R
ef

er
en

ce
1
𝑇
𝑥

re
f1

1 1.112 1.054 1.019 1.112 1.054 1.019
3 1.077 1.038 1.025 1.040 1.020 1.003
5 1.076 1.037 1.033 1.020 1.010 0.999
7 1.084 1.041 1.039 1.010 1.005 0.997
11 1.102 1.050 1.048 1.000 1.000 0.995
23 1.102 1.050 1.049 .990 0.995 0.993
29 1.136 1.066 1.065 0.989 0.995 0.993
41 1.145 1.070 1.068 0.989 0.994 0.994

R
ef

er
en

ce
2
𝑇
𝑥

re
f2

1 0.720 0.848 0.805 0.720 0.848 0.805
3 0.682 0.826 0.789 0.540 0.735 0.665
5 0.683 0.826 0.790 0.497 0.705 0.637
7 0.665 0.816 0.780 0.474 0.689 0.630
11 0.670 0.819 0.786 0.450 0.671 0.618
23 0.681 0.825 0.794 0.420 0.648 0.615
29 0.686 0.828 0.798 0.415 0.644 0.615
41 0.693 0.833 0.804 0.408 0.639 0.614

Tab. 6. Power laboratory location moving the target MSE,
RMSE, and MAE to a median filter and moving av-
erage filter with several windows 𝑊𝑛.

The metrics computed in the Network Laboratory are
presented in the Tab. 4. The results demonstrate that the
MAF uniformly outperforms the MF across all window sizes
𝑊𝑛, particularly for larger windows. Although both filters de-
crease localization errors as𝑊𝑛 increases, the MAF achieves
lower MSE, RMSE, and MAE values. This performance
can be attributed to the nature of RSSI measurements, which
typically exhibit continuous, Gaussian-like noise rather than
impulsive outliers. Consequently, the MAF is more effective
to smoothing these fluctuations and preserving signal trends,
improving its effectiveness for RSSI based localization in this
experimental setting.

Finally, Table 5 also compares the MF and the MAF
across window sizes 𝑊𝑛. At 𝑊𝑛 = 1, both filters are iden-
tical since no smoothing is applied. For all windows, the
MAF yields slightly lower MSE, RMSE, and MAE, indicat-
ing a moderate advantage in more precise filtering. However,
beginning at 𝑊𝑛 = 11, the MAF demonstrates a modest
advantage, after which it clearly surpasses the MF, reach-
ing a lower MSE, RMSE, and MAE value, and this differ-
ence increases for larger windows 𝑊𝑛 = 23 and 𝑊𝑛 = 29.
These results suggest that while the MF is more suitable for
small window sizes effectively reducing sporadic outliers,
the performance of MAF improves through leveraging the
continuous, Gaussian-like nature of RSSI noise, resulting in
smoother and more precise location estimates.

We note that the choice of a fixed window size 𝑊𝑛 for
the MF and MAF was guided entirely by empirical evalua-
tion rather than analytical derivation. In particular, window
lengths from 𝑊𝑛 = 5 to 𝑊𝑛 = 9 samples consistently min-
imized MSE, RMSE, and MAE for static transmitter. This
conclusion is based on the results presented in Tabs. 2–5.
However, this optimal range could vary in response to sub-
stantially different noise distributions, sampling rates, or bea-
con geometries. Moving average filtering consistently out-
performed median filtering in reducing localization error,
particularly for window sizes between 5 and 11. Statisti-
cal metrics confirm these improvements and indicate that
a window size of 7 achieves an effective balance between
smoothing and responsiveness. Furthermore, computational
benchmarks suggest that this configuration is feasible for real
time implementation on embedded hardware.

3.6 Modified Geometry and Comparison with
WLS

To support our proposed methodology, we designed
an additional receiver geometry and defined two new ref-
erence positions in the Power Electronics Laboratory. The
receiver positions are now located at 𝑅𝑥1 at (6.74, 2), 𝑅𝑥2 at
(0.3, 4.87), and 𝑅𝑥3 at (7.44, 8.74). The first reference posi-
tion 𝑇𝑥ref1 was placed at (3.87, 2.5), and the second 𝑇𝑥ref2 at
(3.87, 6.5). In Tab. 6, the MSE, RMSE, and MAE metrics
for each reference are shown using different windows 𝑊𝑛 for
the MF and MAF filters.
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For 𝑇𝑥ref1, an increase in error is observed compared
to previous experiments in the same environment. This may
be due to the proximity of the first and second receivers,
𝑅𝑥1 and 𝑅𝑥2, to the transmitter. However, the small differ-
ences in error for 𝑊𝑛 = 5, 7, and 11 remain consistent across
MSE, RMSE, and MAE. For𝑇𝑥ref2, the error decreases com-
pared to𝑇𝑥ref1, although it remains higher than in the original
geometry, where the receiver was located at the center. Addi-
tionally, the MSE, RMSE, and MAE follow the same pattern
as in previous measurements, with no significant differences
for 𝑊𝑛 = 5, 7, and 11.

Although the errors at both reference points appear
slightly amplified, the goal of this work is to analyze the limi-
tations of LoRa BastWAN boards. Furthermore, the achieved
accuracy is sufficient to determine whether the transmitter is
located within the laboratory space.

3.6.1WLS via Gauss–Newton
In this part, we aim to compare the position estimates

with those from a well known approach, the WLS method,
implemented using the Gauss–Newton (GN) algorithm. The
GN method is widely used to solve the nonlinear least squares
problem found in position estimation from range measure-
ments to known anchors. Estimating positions in trilateration
scenarios often relies on recursive, non-linear optimization
techniques, such as the Newton method or gradient based
schemes [49]. Several alternative solutions have been pro-
posed, for example in [50]. However, for fast benchmarking,
we focus on the results obtained using the GN method.

For the configuration of GN algorithm, two covariance
matrices Q were established, one based on the literature de-
fined as Q1 = [1 0 0; 0 1 0; 0 0 1], and Q2 based on the vari-
ances of the distance estimates derived from RSSI measure-
ments. Assuming that the shadowing effects are independent
and identically distributed, Q is a diagonal matrix that can
be defined as [51]:

Q = diag

(
1
𝜎2

1
,

1
𝜎2

2
, . . . ,

1
𝜎2
𝑖

)
(21)

where 𝜎𝑖 is the variance of distance measurements.

For the GN algorithm, the initial position was set at two
different points to analyze the impact of initialization on con-
vergence, one, In1, near the center of the Power Electronics
Laboratory at (4, 4), and a second, In2, at (0, 0). The number
of iterations was fixed at 1000, increasing this value did not
improve the results.

In a first test, without filtering the RSSI data and us-
ing the first reference position 𝑇𝑥ref1 with Q2 and In1, the
GN algorithm estimated the transmitter location at (3.037,
3.092) m, yielding an MSE of 1.021 m. When using Q1 and
In2, the estimated position was (3.187, 2.893) m, with a lower
MSE of 0.7878 m. Next, applying a MF with𝑊𝑛 = 11, along
with Q1 and In2, the GN estimated the position at (3.115,
2.867), resulting in an MSE of 0.8396 m. Using the same
parameters with a MAF, the estimated position was again
(3.187, 2.893), with an MSE of 0.7877 m.

For the second reference position 𝑇𝑥ref2, using Q2 and
In2, the estimated coordinates were (3.724, 7.761), with
an MSE of 1.2695 m. When using In2 with Q1, the GN
computed the position as (3.003, 7.982), with an MSE of
1.7170 m. Applying 𝑊𝑛 = 11 with Q1 and In2, the MF and
MAF filters yielded MSE values of 1.1044 m and 0.9223 m,
respectively.

The approximation based on an initial position different
from (4, 4), combined with the estimated matrix Q2, resulted
in an MSE exceeding 6 m. The best performance for the GN
method was achieved by initializing at (0, 0) and using the
Q1 matrix. Therefore, further research is needed to deter-
mine an optimal covariance matrix Q, particularly through
more detailed analysis of the RSSI measurements and the
corresponding distance estimations.

The results from geometry modification experiments
demonstrate that anchor placement significantly influences
the resulting position uncertainty. Simulations involving
variations in inter-receiver distances further highlight the
importance of spatial diversity in minimizing localization
error. The weighted least squares method, implemented via
the Gauss–Newton algorithm, converges reliably when the
initial estimate is close to the true location. However, em-
pirical estimation of the covariance matrix Q from RSSI
samples produces less accurate results compared to the use
of an identity matrix, thereby reducing the overall robustness
of the position estimation process.

4. Conclusions
This study introduced a novel strategy for indoor local-

ization using LoRa technology, with the primary contribution
being the effective optimization of the path loss exponent in
conjunction with OLS-based trilateration and median filter-
ing techniques. The experimental results confirmed that care-
fully tuning the path loss exponent, along with the application
of a median filter with an optimal window size 𝑊𝑛 = 7, can
dramatically improve the accuracy of localization in diverse
indoor settings. The proposed method, by using commercial
LoRa devices, not only reduces the mean square error of esti-
mated positions but also demonstrates its viability as a robust
and cost efficient solution for real world applications.

To further validate the proposed methodology, an al-
ternative receiver geometry was implemented in the Power
Electronics Laboratory with two distinct reference transmit-
ter positions. Despite observing slightly higher error val-
ues, particularly for the first reference location, filtering re-
sults using MF and MAF remained consistent for window
sizes 𝑊𝑛 = 5, 𝑊𝑛 = 7, and 𝑊𝑛 = 11, demonstrating the
robustness of the smoothing process. The increased error
observed in this experiment indicates that the spatial config-
uration significantly impacts measurement accuracy. Nev-
ertheless, the achieved precision remains sufficient to deter-
mine whether the transmitter is located within the laboratory
boundaries. Additionally, benchmark comparisons using the
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Gauss–Newton algorithm for weighted least squares estima-
tion revealed that proper initialization and covariance matrix
selection are critical for minimizing positioning error. These
findings highlight the practical limitations and prospects of
LoRa based localization systems and point to the need for
continued refinement of both algorithmic parameters and en-
vironmental modeling in future research.

Future work will investigate the impact of key LoRa
parameters, such as spreading factor and bandwidth, on lo-
calization performance to strike the optimal balance between
accuracy, communication reliability, and energy efficiency in
diverse indoor environments. We will also integrate adap-
tive filtering and machine learning techniques to improve
system adaptability across varying conditions and to sup-
port more dynamic scenarios. In parallel, we plan to refine
the weighted least squares estimator by developing more ac-
curate covariance models. To broaden application fields,
we will implement real-time geofencing and event triggered
alerts, enabling use cases such as asset tracking in smart
warehouses, personnel monitoring in healthcare facilities,
and automated navigation for indoor service robots. We will
also incorporate sensor fusion, combining RSSI with inertial
measurements or UWB ranging, and integrate cloud analytics
platforms to support predictive maintenance and energy op-
timization in smart buildings across industrial, commercial,
and residential environments.
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