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Abstract. Recently, there has been an increasing interest
in employing dynamical systems as solvers of NP-complete
problems. In this paper, we present accurate implementa-
tions of two continuous-time dynamical solvers, known in the
literature as analog SAT and digital memcomputing, using
advanced numerical integration algorithms of SPICE cir-
cuit simulators. For this purpose, we have developed Python
scripts that convert Boolean satisfiability (SAT) problems into
electronic circuits representing the analog SAT and digital
memcomputing dynamical systems. Our Python scripts pro-
cess conjunctive normal form (CNF) files and create netlists
that can be directly imported into LTspice. We explore the
SPICE implementations of analog SAT and digital memcom-
puting solvers by applying these to a selected set of problems
and present some interesting and potentially useful findings
related to digital memcomputing and analog SAT. In this
work, we also introduce networks of continuous-time solvers
with potential applications extending beyond the solution of
Boolean satisfiability problems.
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1. Introduction
In recent years, there has been growing attention to-

wards unconventional computing [1], which includes the
use of physical systems for computation. In this area, the
evolution of a suitable classical [2] or quantum [3] system
is seen as a computation process. Examples of computing
with physical systems include quantum computing [4], [5],
memcomputing [6], [7], analog SAT [8], Toshiba bifurcation
machine [9], and circuits involving stochastic tunnel junc-
tions [10]. In certain tasks, physical computing systems have
the potential to surpass traditional von Neumann computing
systems, as suggested by Arute et al. [11].

The present paper focuses on two continuous-time dy-
namical solvers known in the literature as analog SAT [8]
and digital memcomputing [12]. Chronologically, the first
solver was the analog SAT developed by Ercsey-Ravasz and
Toroczkai [8], who first proposed a mapping of 𝑘-SAT to
a deterministic continuous-time dynamical system. In this
approach, Boolean variables are extended to continuous ones
within a particular dynamical system, such that finding a solu-
tion to the 𝑘-SAT problem is equivalent to identifying a stable
fixed point (or points) of the system. To avoid local minima,
the authors of [8] used a modified energy function depending
on auxiliary variables. The idea is that the growth of auxil-
iary variables increases the weight of unresolved clauses and
promotes their resolution1. For hard instances, the analog
SAT dynamics is characterized by transiently chaotic trajec-
tories that, however, all converge to the solution [8]. It is
argued that the analog SAT has a polynomial analog-time
complexity [8], [18].

Digital memcomputing [12] is a continuous-time dy-
namical solver based on different equations. We emphasize
that while several designs of digital memcomputing are avail-
able in the literature [6]2, [12], here we consider the equa-
tions introduced by Bearden, Pei, and Di Ventra in [12] that
tackle the 3-SAT problem. According to the authors, the new
equations improve the analog SAT by avoiding exponential
fluctuations in the energy function [12]. Several properties
of digital memcomputing solvers have been identified. It is
argued that they rely on self-organizing logic gates to find the
problem solution [12]. Internally, the solver operates through
instantonic jumps that couple less stable critical points with
more stable ones so that the number of unstable directions
reduces after each jump [20], [21]. Furthermore, the dynam-
ics of digital memcomputing machines with solution(s) does
not exhibit chaos and/or periodic orbits [22], [23].

Analog SAT and digital memcomputing dynamical sys-
tems are typically realized using numerical techniques to
integrate their equations. Either conventional or dedicated
hardware (such as GPUs or FPGAs) is used for this purpose.

1It is worth mentioning that the clause weighting is also employed in certain stochastic local search algorithms [13–17].
2See [19] for some crucial information to reproduce the first design [6].
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Analog SAT [24] Digital memcomputing [12]

Equations
¤𝑠𝑖 =

𝑀∑︁
𝑚=1
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𝐶𝑚 (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) =
1
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min
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Variables 𝑠𝑖 ∈ [−1, 1], 𝑖 = 1, . . . , 𝑁 𝑣𝑖 ∈ [−1, 1], 𝑖 = 1, . . . , 𝑁
𝑎𝑚 ∈ (0,∞) , 𝑚 = 1, . . . , 𝑀 𝑥𝑠,𝑚 ∈ [0, 1], 𝑥𝑙,𝑚 ∈ [1, 104𝑀 ], 𝑚 = 1, . . . , 𝑀

Properties Polynomial analog-time Polynomial time to solution [6], [12], absence of chaos and
complexity [8], [18], and periodic orbits in DMMs with solutions [12],
transient chaos [8] relies on instantonic dynamics [25] of SO logic gates

Hardware GPU [24], ASIC [26] FPGA [27], [28]
† In this table, the dots above variables are used to indicate the time derivative.

Tab. 1. Summary of the analog SAT and digital memcomputing approaches.

For nearly five decades, SPICE (Simulation Program
with Integrated Circuit Emphasis) circuit simulators have
been in use since the publication of the original SPICE re-
port [29]. Their operation relies on sophisticated numerical
integration algorithms that have been refined and tested thor-
oughly throughout these years. In this work, we develop
Python scripts to convert the equations of analog SAT and
digital memcomputing dynamical systems into equivalent
electronic circuits that can be directly imported into a SPICE
environment. While our work is based on LTspice XVII
(Analog Device), other simulators can also be used (with
suitable minor modifications).

Although classical ODE solvers and dedicated SAT
solvers remain the best in time-critical and large-scale ap-
plications, our approach uses the SPICE for a very different
purpose, which is to provide a hardware-oriented platform to
explore the dynamics of continuous-time SAT solvers. The
use of SPICE to implement SAT solvers bridges the gap
between theoretical dynamical system models and possible
hardware implementations. Therefore, our work is not a com-
petitor to state-of-the-art SAT solvers, but rather a conceptual
and experimental framework to investigate the behavior of
solvers and their potential circuit-level implementations.

The structure of this paper is as follows. Section 2
provides an overview of the problem, solvers, and informa-
tion on the SPICE modeling approach. Examples of LTspice
simulations are given in Sec. 3. These include the applica-
tion of solvers to a variety of SAT problems, modification of
solvers, and simulation of digital memcomputing networks.
Section 3 is followed by a discussion in Sec. 4. The paper
ends with an acknowledgment.

2. Methods

2.1 3-SAT
In this paper, we limit ourselves to 3-SAT problems,

wherein each clause is formed by the disjunction of 3 lit-
erals. A literal is a Boolean variable, 𝑥𝑖 , or its negation,
𝑥𝑖 . Basically, the problem is to find the assignment of 𝑁
Boolean variables to satisfy 𝑀 clauses forming a formula.
An example of a 3-SAT formula is

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥7 ∨ 𝑥5 ∨ 𝑥2) ∧ (𝑥3 ∨ 𝑥1 ∨ 𝑥6) ∧ . . . (11)

where ∨ stands for the disjunction (OR) and ∧ stands for
the conjunction (AND). Here we just show explicitly the first
three clauses.

In the above expression, the first clause can be satisfied
by 𝑥1 = TRUE, etc. However, since each variable (directly
or negated) enters on average into 3𝑀/𝑁 clauses, finding
the solution, in general, is difficult, especially at 𝑀/𝑁 close
to 4.26 [30]. In fact, it is well known that 3-SAT is NP-
complete [31].

A simple example of a 3-SAT problem can be found in
the Listing 1 of Appendix.

2.2 Solvers
The continuous-time solvers considered in this work are

summarized in Tab. 1.
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2.2.1Analog SAT
The dynamical system in the analog SAT approach [24]

is characterized by (1) and (2) 3. In these equations, 𝑠𝑖-s are
continuous extensions of Boolean variables 𝑥𝑖-s (𝑠𝑖 = 1 if
𝑥𝑖 is TRUE, 𝑠𝑖 = −1 if 𝑥𝑖 is FALSE), and 𝑎𝑚 are auxiliary
variables. Moreover, 𝑐𝑚𝑖 = 1 (−1) if 𝑖-th variable enters into
𝑚-the clause in the direct (negated) form, respectively, and
𝑐𝑚𝑖 = 0 otherwise.

We note that Equation (1) implements the gradient
descent [32] for a modified energy function 𝑉 (s, a) =∑𝑀
𝑚=1 𝑎𝑚𝐾𝑚 (s)2 with 𝑎𝑚 defining the weight of 𝑚-th clause.

According to (2), the weights of unsatisfied clauses increase
with time. This promotes their resolution through (1).

Overall, the analog SAT is a deterministic non-local
search algorithm wherein the auxiliary variables provide ex-
tra dimensions along which the trajectories escape from local
minima. Several points related to (1)–(2) should be men-
tioned (for more details, see [8]). First, the dynamics of s
is confined to the continuous domain [−1, 1]𝑁 (for an arbi-
trary initial condition for s within [−1, 1]𝑁 ). Second, 3-SAT
solutions are stable fixed points of (1) and all trajectories
converge to a solution [18]. Third, the system has no limit
cycles. Fourth, for problems with solution, the only stable
fixed points of (1)–(2) are the ones corresponding to the
global minimum of 𝑉 (s, a) with 𝑉 = 0 [8].

2.2.2Digital Memcomputing
The dynamical system in the digital memcomputing ap-

proach [12] is characterized by (3)–(5) (the original notation
is used). In (3)–(5), 𝑣𝑛-s are continuous variables (similar
to 𝑠𝑖-s in the analog SAT), 𝑥𝑠,𝑚-s and 𝑥𝑙,𝑚-s are the short
and long memory variables, and 𝑞 𝑗 ,𝑚-s are the constants
defining the clauses (same as 𝑐𝑚𝑗 -s in the analog SAT). The
performance of digital memcomputing depends on the pa-
rameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜖 , and 𝜁 [12]. The intervals for 𝑣𝑛, 𝑥𝑠,𝑚,
and 𝑥𝑙,𝑚 are provided in Tab. 1. Moreover, Equation (10)
defines the clause function, 𝐶𝑚 (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘), used in (4), (5),
and (9). This function characterizes the state of the variable
that most closely satisfies clause 𝑚. For more information,
see [7], [12].

The first term in (3) can be interpreted as a “gradient-
like” term, while the second - as a “rigidity” term [12]. The
purpose of the “rigidity” term is to suppress the evolution of
𝑣𝑛 when its value is the best to satisfy clause𝑚. Compared to
a single variable 𝑎𝑚 associated with each clause in the analog
SAT, in digital memcomputing, two memory variables, the
short (s) and long (l), are associated with each clause.

2.3 SPICE Implementations
Two Python scripts were developed to generate elec-

tronic circuits that implement the analog SAT and digital
memcomputing dynamical systems in SPICE. These scripts

can be downloaded from [33]. Each script takes a CNF file
representing a 3-SAT problem as input and generates the cor-
responding solver circuit as output. Python scripts are limited
to clauses that contain three literals. In the case of analog
SAT, the factor 1/23 in (6) was omitted for compactness.

In SPICE, ordinary differential equations are numeri-
cally integrated employing 1 F capacitors driven by voltage-
controlled current sources, which is a widely-used technique
(see, e.g., [34], [35]). While capacitor voltages represent
variables, voltage-controlled current sources implement the
right-hand sides of dynamical equations (such as (1)–(2)).
As described in [35], to ensure a DC path to the ground, the
capacitors are shunted by high-resistance resistors, which do
not affect the outcome of the integration. This approach is
illustrated in Fig. 1 for the variable 𝑣1 in the digital mem-
computing solver.

The initial conditions are set as follows. In the ana-
log SAT solver, 𝑠𝑖-s are chosen at random from a uniform
distribution in the interval [−1, 1] and 𝑎𝑚 (0) = 1. In the
digital memcomputing solver, we select 𝑣𝑖-s at random from
a uniform distribution within the interval [−1, 1], and set
𝑥𝑠,𝑚(0) = 0.5 and 𝑥𝑙,𝑚 (0) = 1. Our analog SAT and mem-
computing SPICE models utilize 𝑁 +𝑀 and 𝑁 + 2𝑀 capaci-
tors, respectively, equal to the number of dynamical variables
in these models.

Additionally, two control circuits are used to achieve
a compact representation of the dynamics. The analog con-
trol voltage (node “contra”) is obtained according to

𝑉contra =

𝑁∑︁
𝑚=1

𝐶𝑚 (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘) (12)

where 𝐶𝑚 (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘) is given by (10). The digital control
voltage (node “contrd”) is derived from an analogous expres-
sion adjusted by incorporating the unit step functions, 𝑢(. . . ).
In principle, 𝑉contrd (𝑡) represents the number of unsatisfied
clauses at time 𝑡.

Fig. 1. SPICE model for the integration of (3) with 𝑛 = 1. Here,
fv1( ) is the function that represents the right-hand side
of (3). The step functions, u(. . . ) , are used to confine
the variable 𝑣1 to the interval [−1, 1].

3Note that in earlier publications [8], [18], Equation (2) had the form ¤𝑎𝑚 = 𝑎𝑚𝐾𝑚 (s) .
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Examples of SPICE netlists for the problem in the List-
ing 1 are given in the Listings 2 and 3 in Appendix.

To enable random initial values for variables, the user
must make sure the "Use the clock to reseed the MC genera-
tor" option is turned on in LTspice XVII. Moreover, the “uic”
option should be selected in the transient analysis.

In addition to LTspice XVII, the functionality of our
netlists has been verified in LTspice’s newest release (ver-
sion 24.1.9). A minor necessary change was the replacement
of the “.probe” instruction with “.save”. Although numeri-
cal convergence issues have not been encountered in LTspice
XVII, it might be necessary to employ smoothing techniques,
rather than relying on the statements “if” and “unity step”, to
execute our netlists in alternative SPICE environments.

2.4 Generation of Instances
To illustrate the approach, we used LTspice to solve easy,

difficult, and very difficult 3-SAT instances with planted so-
lutions. Easy and difficult 3-SAT instances were generated
using the method of Barthel et al. [36] at 𝑝0 = 0.08 se-
lecting 𝑀/𝑁 = 7 and 𝑀/𝑁 = 4.3, respectively. For more
information, see Barthel et al. [36].

The 3 regular 3-XORSAT instances are considered chal-
lenging for various 3-SAT solvers [5]. To create such an in-
stance, a set of modulo 2 addition equations was generated via
a random assignment of variables. Each equation included
three variables, with their negations determined randomly.
Furthermore, each variable appeared in precisely three equa-
tions. Finally, each equation was transformed into four 3-SAT
clauses.

3. Simulations
In this section, we present examples of SPICE simu-

lations for both the analog SAT and digital memcomputing
solvers. Unless otherwise specified, the digital memcom-
puting results were obtained using the following parameter
values: 𝛼 = 5, 𝛽 = 20, 𝛾 = 0.25, 𝛿 = 0.05, 𝜖 = 0.001, and
𝜁 = 0.01. These parameter values are close to the optimal
ones mentioned in [12].

3.1 Main Simulations
Ten instances were created for each type of the problem

(easy, difficult, and very difficult) and size of the problem
(we considered problems of 𝑁 = 10, 20, 30, 40, and 50).
In each run, the circuit was simulated for up to 𝑡ev = 300 s
of its evolution. Each solver was used on each problem
just once, resulting in either a solved or unsolved outcome.
For unsolved outcomes, there were two distinct scenarios:
one in which the time interval 𝑡ev was insufficient to reach the
solution and the other in which a convergence to zero was ob-
served, as described below. The problems used in this study
and corresponding netlists can be downloaded from [33].

# Unsolved (out of 10)
B4.3 B7 X

𝑁 = 10 analog SAT 0 0 10 (10)
memcomputing 0 0 0

𝑁 = 20 analog SAT 0 0 7 (7)
memcomputing 0 0 0

𝑁 = 30 analog SAT 0 0 8 (8)
memcomputing 0 0 4

𝑁 = 40 analog SAT 0 0 9 (9)
memcomputing 0 0 10

𝑁 = 50 analog SAT 0 0 10 (9)
memcomputing 0 0 10

Tab. 2. Summary of LTspice simulations.

Table 2 provides a summary of the outcomes from our
SPICE simulations. In the "Unsolved" column, the numbers
in parentheses represent the number of cases when the con-
vergence to zero was observed. The convergence to zero was
only observed with the analog SAT solver.

According to Tab. 2, all Barthel instances were solved by
the two approaches. The convergence to zero was the reason
for all unsolved cases by analog SAT, except one (at 𝑁 = 50).
We explain the remaining unsolved cases (by both methods)
by the finite evolution time used in this study, 𝑡ev = 300 s.
Presumably, this value was too short for the solvers to reach
the solution. At the same time, we have not verified whether
the solution can be found at large values of 𝑡ev in such cases.

Figure 2 presents examples of the temporal evolution
of variables in solved problems of various complexity levels.
According to Fig. 2, there is a clear correlation between the
difficulty of the problem (easy, difficult, and very difficult)
and the time to the solution. Noticeably, at any given diffi-
culty of the problem, it takes more time/transitions for digital
memcomputing to reach the solution in comparison to the
analog SAT. However, this observation is not universal, since
the opposite behavior was also observed in some other cases.

3.2 Convergence to Zero
It was unexpected to observe the convergence to zero in

the dynamics of analog SAT. By the “convergence to zero”
we mean a long-term behavior when all main variables in
the solver, 𝑠𝑖 , approach zero as in Fig. 3(a). This transition
was only observed when the analog SAT was applied to the
3 regular 3-XORSAT instances. According to the right col-
umn of Tab. 2, the convergence to zero was the most common
scenario in the case of very difficult problems.

Figure 3 illustrates how the main variables, 𝑠𝑖 , and the
auxiliary variables, 𝑎𝑖 , behave during the convergence to zero
of the main variables. It can be observed that while the main
variables rapidly decrease to zero (Fig. 3(a)), the auxiliary
variables exhibit exponential growth (Fig. 3(b)). It is im-
portant to point out that the convergence to zero is not the
only possible scenario. It can be avoided with an alternative
random selection of initial conditions.
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Fig. 2. Solving (a), (b) easy, (c), (d) difficult, and (e), (f) very difficult 3-SAT problems in SPICE. These plots show the dynamics of the variables
𝑠𝑖 and 𝑣𝑖 in the analog SAT and digital memcomputing algorithms, respectively. These plots were obtained using 𝑁 = 40 3-SAT problems
(panels (a)–(d)) and one 𝑁 = 20 problem (panels (e)–(f)). Each pair of simulation results was derived from solving the same problem.
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Fig. 3. An example of the converging to zero solution: time-
dependencies of (a) main and (b) auxiliary variables.
This figure was obtained using an 𝑁 = 20, 3 regular
3-XORSAT problem.
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Fig. 4. Evolution of (a) voltage variables and (b) number of
unsatisfied clauses in a modified memcomputing solver
(without restrictions on 𝑣𝑖). The problem considered in
this example is the same as in Fig. 2(c) and (d).

3.3 Modified Solvers
The techniques we have devised for modeling

continuous-time solvers in SPICE offer a straightforward way
to investigate and improve these solvers. In fact, different
modifications to the solvers can be easily made, either through
Python scripts or directly within the final electronic circuits.
Presented below are two examples demonstrating this.

3.3.1Digital Memcomputing
For illustration purposes, the memcomputing solver was

modified by eliminating the constraints on 𝑣𝑖 (refer to the line
below (10) in Tab. 1). This adjustment was made directly in
the solver’s net list of a specific problem by removing the sec-
ond multiplier from the equations that govern relevant current
sources, similar to the one shown in Fig. 1. Specifically, in
Fig. 1 case, the expression was simplified to fv1().

Figure 4 shows that the digital memcomputing solver
without imposing restrictions on the values 𝑣𝑖 may find the
solution to the problem. Figure 4(b) depicts the number of
unsatisfied clauses as a function of time (node “contrd” of
the circuit).

3.3.2Analog SAT
In an attempt to understand the generality of the conver-

gence to zero (Sec. 3.2), the following versions of (2) were
considered:

¤𝑎𝑚 = 𝑎𝑚𝐾𝑚 (s), (13)
¤𝑎𝑚 = 𝐾𝑚 (s), (14)
¤𝑎𝑚 = 𝐾𝑚 (s)2. (15)

Using SPICE simulations, in all three cases, we have cases of
the convergence to zero, as in Fig. 3(a). However, in the case
of (14) and (15), the growth of the auxiliary variables was
linear instead of exponential. Therefore, the convergence to
zero seems to be unrelated to the exponential growth of the
auxiliary variables shown in Fig. 3(b).

3.4 Networks of SAT Solvers
It might be worthwhile to explore networks composed

of continuous-time SAT solvers, where these solvers serve as
nodes that interact via some of their variables or combina-
tions of them. On the one hand, SAT solver networks can
be utilized to solve SAT problems whose size exceeds the
capacity of an individual SAT solver, a particularly crucial
approach for physical implementations of these solvers that
have finite sizes [26]. On the other hand, SAT solvers can
be viewed as distant analogs to neurons, possessing complex
functionalities determined by the SAT problems they solve.
Therefore, one can anticipate that networks of SAT solvers
could find applications in artificial neural network architec-
tures or reservoir computing.

An especially useful feature of SPICE for this applica-
tion is the subcircuit declaration. Fundamentally, the subcir-
cuit functions as a collection of elements in SPICE that can
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Fig. 5. Solvers A and B’s response to a square wave voltage (represented by 𝑣1). For the sake of clarity, the applied voltage curves were shifted
downward by 2 V. See Sec. 3.4 for more details. These simulations were performed using 𝛼 = 0.

be referred to in a manner similar to device models. Exter-
nally, the subcircuit is accessed through its external nodes.
For SAT solvers, a potential approach is to define 𝑃 input
nodes and 𝑄 output nodes (𝑃 + 𝑄 ≤ 𝑁), such that, in the
digital memcomputing case, the input nodes simply set the
values of 𝑃 voltage variables (their dynamics equations are
disregarded), while the output nodes are used to output the
values of some other 𝑄 voltage variables. To monitor the
solver’s state, the signal 𝑉contrd (𝑡) may be included in the
output nodes. Of course, there are other choices available to
connect the solvers.

As an example, we considered two instances, say A and
B, of the 3-regular 3-XORSAT problem with 𝑁 = 10. The
digital memcomputing circuits for A and B were created us-
ing our Python script [33]. First, we simulated uncoupled
solvers and found the following solutions (which are not nec-
essarily unique):

0101100111 for instance A, (16)
0100111101 for instance B. (17)

Here, each digit from left to right represents 𝑥1 through 𝑥10.
By modifying several lines in the netlists of solvers A and B,
we created the subcircuits for subsequent simulations. The
sets {𝑣1}, {𝑣𝑖 , 𝑉contrd (𝑡)} with 𝑖 = 2 or 3 were selected as
input and output nodes, respectively.

Next, we studied how individual solvers react to an ap-
plied square wave voltage. To achieve this, a square wave
voltage source (−1 V to +1 V) was connected to the solver’s

input node. We have observed that when the applied voltage
is at logic zero and there is sufficient time, both solvers can
successfully identify the solution. When the applied voltage
is at logic one, the solvers exhibit some interesting dynam-
ics, which can be described as deterministic for solver A and
chaotic for solver B. These observations are evident in Fig. 5.
A notable characteristic associated with solver A is the pe-
riod doubling behavior depicted in Fig. 5(a), which vanishes
at a longer period, as demonstrated in Fig. 5(b).

Finally, the solvers were connected in a network as
shown in Fig. 6(a). Two cases were considered: in the first
case, 𝑣2 was used as the output node in both solvers, while
in the second case, 𝑣3 was employed for the same purpose.
The networks were simulated for 300 time units of the cir-
cuit dynamics. Figure 6(b) demonstrates that selecting 𝑣2 as
the output node results in no solution for the whole network,
whereas using 𝑣3 as the output node successfully yields a so-
lution. These observations align with the solutions provided
by (16) and (17) and can be explained by them.

4. Discussion
In this work, we have developed a platform for high-

accuracy modeling of continuous-time SAT solvers within
the SPICE framework. To achieve this, we utilized
Python scripts to produce electronic circuits that implement
continuous-time solvers of specific problems. Cutting-edge
SPICE simulation tools, such as LTspice, used in this research
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Fig. 6. (a) Schematics of a simple network of two digital memcomputing solvers; (b) Number of unsatisfied clauses as a function of time when
𝑣2 is used as the output node in both solvers; (c) Number of unsatisfied clauses as a function of time when 𝑣3 is used as the output node in
both solvers.

are based on advanced numerical algorithms to simulate cir-
cuit dynamics. These algorithms being a part of our platform
are used to solve NP-complete problems via circuit simula-
tions. On a standard PC, LTspice can effectively handle
problems with 𝑁 ≲ 50. For larger 3-SAT problems, mas-
sively parallel SPICE circuit simulators such as XyseTM [37]
could offer potential solutions.

Through the application of analog SAT and digital
memcomputing techniques to 3-SAT problems of several
levels of complexity, we have observed, for the first time,
the transition to zero in the behavior of certain analog SAT
dynamical systems. Such behavior is robust with respect to
the equations that define the dynamics of auxiliary variables
and have a large basin of attraction. This observation chal-
lenges the statement that “eventually all trajectories converge
to a solution” [18].

Additionally, we have observed that the digital mem-
computing solver continues to function effectively when the
limitation on voltage variables is removed. This observation
could prove beneficial in the design of specialized digital
memcomputing hardware [38].

Lastly, we have demonstrated that it is quite straight-
forward to simulate networks of continuous-time solvers in
SPICE. It is expected that such networks may have poten-
tial applications extending beyond the solution of Boolean
satisfiability problems.

In a wider perspective, although digital memcomputing
and analog SAT belong to the same group of algorithms, their
development has occurred largely in isolation. This presents

opportunities for mutual enrichment of these methodologies
at both theoretical and applied levels. For example, digital
memcomputing operations are believed to incorporate in-
stantonic jumps that connect less stable critical points with
more stable ones, thereby decreasing the number of unstable
directions after each jump [21]. We propose that analogous
instantonic jumps may be present in analog SAT as well. In
fact, in Figs. 2(c) and (e) showing the dynamics of analogue
SAT, it is easy to identify distinct groups of transitions re-
sembling those previously attributed to instantons in digital
memcomputing [21]. A similar argument applies to the role
of self-organizing gates in these solvers.
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Appendix A: File Listings

Listing 1. A simple 3-SAT problem in CNF notation.

c p0=0.08
p cnf 5 15
5 -4 3 0
5 -2 -3 0
3 5 1 0
-2 5 3 0
-2 1 -5 0
-4 -1 3 0
5 -1 -4 0
5 3 4 0
-5 2 -4 0
-3 -5 -2 0
-3 5 4 0
3 -4 2 0
-2 4 5 0
1 3 5 0
1 3 4 0

Listing 2. LTspice netlist for the analog SAT algorithm for the problem in Listing 1.

* Control circuit
ESAT1 contra 0 value={fsat1()}
RSAT1 contra 0 100meg
ESAT2 contrd 0 value={fsat2()}
RSAT2 contrd 0 100meg

* Main variables
Cs1 s1 0 1 IC={-1+mc(1,1)}
Gs1 0 s1 value={fs1()}
Rs1 s1 0 100meg
Cs2 s2 0 1 IC={-1+mc(1,1)}
Gs2 0 s2 value={fs2()}
Rs2 s2 0 100meg
Cs3 s3 0 1 IC={-1+mc(1,1)}
Gs3 0 s3 value={fs3()}
Rs3 s3 0 100meg
Cs4 s4 0 1 IC={-1+mc(1,1)}
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Gs4 0 s4 value={fs4()}
Rs4 s4 0 100meg
Cs5 s5 0 1 IC={-1+mc(1,1)}
Gs5 0 s5 value={fs5()}
Rs5 s5 0 100meg

* Memory variables
Ca1 a1 0 1 IC={1}
Ga1 0 a1 value={fa1()}
Ra1 a1 0 100meg
Ca2 a2 0 1 IC={1}
Ga2 0 a2 value={fa2()}
Ra2 a2 0 100meg
Ca3 a3 0 1 IC={1}
Ga3 0 a3 value={fa3()}
Ra3 a3 0 100meg
Ca4 a4 0 1 IC={1}
Ga4 0 a4 value={fa4()}
Ra4 a4 0 100meg
Ca5 a5 0 1 IC={1}
Ga5 0 a5 value={fa5()}
Ra5 a5 0 100meg
Ca6 a6 0 1 IC={1}
Ga6 0 a6 value={fa6()}
Ra6 a6 0 100meg
Ca7 a7 0 1 IC={1}
Ga7 0 a7 value={fa7()}
Ra7 a7 0 100meg
Ca8 a8 0 1 IC={1}
Ga8 0 a8 value={fa8()}
Ra8 a8 0 100meg
Ca9 a9 0 1 IC={1}
Ga9 0 a9 value={fa9()}
Ra9 a9 0 100meg
Ca10 a10 0 1 IC={1}
Ga10 0 a10 value={fa10()}
Ra10 a10 0 100meg
Ca11 a11 0 1 IC={1}
Ga11 0 a11 value={fa11()}
Ra11 a11 0 100meg
Ca12 a12 0 1 IC={1}
Ga12 0 a12 value={fa12()}
Ra12 a12 0 100meg
Ca13 a13 0 1 IC={1}
Ga13 0 a13 value={fa13()}
Ra13 a13 0 100meg
Ca14 a14 0 1 IC={1}
Ga14 0 a14 value={fa14()}
Ra14 a14 0 100meg
Ca15 a15 0 1 IC={1}
Ga15 0 a15 value={fa15()}
Ra15 a15 0 100meg

* functions
.func Cm(x,y,z)={0.5*min(1-x,min(1-y,1-z))}
.func Cm1(x,y,z)={min(1-u(x),min(1-u(y),1-u(z)))}

.func fsat1()=Cm(V(s5),-V(s4),V(s3))+Cm(V(s5),-V(s2),-V(s3))+Cm(V(s3),V(s5),V(s1))+Cm(-V(s2),V(s5),V(
s3))+Cm(-V(s2),V(s1),-V(s5))+Cm(-V(s4),-V(s1),V(s3))+Cm(V(s5),-V(s1),-V(s4))+Cm(V(s5),V(s3),V(s4
))+Cm(-V(s5),V(s2),-V(s4))+Cm(-V(s3),-V(s5),-V(s2))+Cm(-V(s3),V(s5),V(s4))+Cm(V(s3),-V(s4),V(s2)
)+Cm(-V(s2),V(s4),V(s5))+Cm(V(s1),V(s3),V(s5))+Cm(V(s1),V(s3),V(s4))

.func fsat2()=Cm1(V(s5),-V(s4),V(s3))+Cm1(V(s5),-V(s2),-V(s3))+Cm1(V(s3),V(s5),V(s1))+Cm1(-V(s2),V(s5
),V(s3))+Cm1(-V(s2),V(s1),-V(s5))+Cm1(-V(s4),-V(s1),V(s3))+Cm1(V(s5),-V(s1),-V(s4))+Cm1(V(s5),V(
s3),V(s4))+Cm1(-V(s5),V(s2),-V(s4))+Cm1(-V(s3),-V(s5),-V(s2))+Cm1(-V(s3),V(s5),V(s4))+Cm1(V(s3)
,-V(s4),V(s2))+Cm1(-V(s2),V(s4),V(s5))+Cm1(V(s1),V(s3),V(s5))+Cm1(V(s1),V(s3),V(s4))

.func fs1() = {2*V(a3)*(1)*pow(1-V(s3),2)*pow(1-V(s5),2)*pow(1-V(s1),1)+2*V(a5)*(1)*pow(1+V(s2),2)*
pow(1-V(s1),1)*pow(1+V(s5),2)+2*V(a6)*(-1)*pow(1+V(s4),2)*pow(1+V(s1),1)*pow(1-V(s3),2)+2*V(a7)*
(-1)*pow(1-V(s5),2)*pow(1+V(s1),1)*pow(1+V(s4),2)+2*V(a14)*(1)*pow(1-V(s1),1)*pow(1-V(s3),2)*pow
(1-V(s5),2)+2*V(a15)*(1)*pow(1-V(s1),1)*pow(1-V(s3),2)*pow(1-V(s4),2)}

.func fs2() = {2*V(a2)*(-1)*pow(1-V(s5),2)*pow(1+V(s2),1)*pow(1+V(s3),2)+2*V(a4)*(-1)*pow(1+V(s2),1)*
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pow(1-V(s5),2)*pow(1-V(s3),2)+2*V(a5)*(-1)*pow(1+V(s2),1)*pow(1-V(s1),2)*pow(1+V(s5),2)+2*V(a9)*
(1)*pow(1+V(s5),2)*pow(1-V(s2),1)*pow(1+V(s4),2)+2*V(a10)*(-1)*pow(1+V(s3),2)*pow(1+V(s5),2)*pow
(1+V(s2),1)+2*V(a12)*(1)*pow(1-V(s3),2)*pow(1+V(s4),2)*pow(1-V(s2),1)+2*V(a13)*(-1)*pow(1+V(s2)
,1)*pow(1-V(s4),2)*pow(1-V(s5),2)}

.func fs3() = {2*V(a1)*(1)*pow(1-V(s5),2)*pow(1+V(s4),2)*pow(1-V(s3),1)+2*V(a2)*(-1)*pow(1-V(s5),2)*
pow(1+V(s2),2)*pow(1+V(s3),1)+2*V(a3)*(1)*pow(1-V(s3),1)*pow(1-V(s5),2)*pow(1-V(s1),2)+2*V(a4)*
(1)*pow(1+V(s2),2)*pow(1-V(s5),2)*pow(1-V(s3),1)+2*V(a6)*(1)*pow(1+V(s4),2)*pow(1+V(s1),2)*pow
(1-V(s3),1)+2*V(a8)*(1)*pow(1-V(s5),2)*pow(1-V(s3),1)*pow(1-V(s4),2)+2*V(a10)*(-1)*pow(1+V(s3)
,1)*pow(1+V(s5),2)*pow(1+V(s2),2)+2*V(a11)*(-1)*pow(1+V(s3),1)*pow(1-V(s5),2)*pow(1-V(s4),2)+2*V
(a12)*(1)*pow(1-V(s3),1)*pow(1+V(s4),2)*pow(1-V(s2),2)+2*V(a14)*(1)*pow(1-V(s1),2)*pow(1-V(s3)
,1)*pow(1-V(s5),2)+2*V(a15)*(1)*pow(1-V(s1),2)*pow(1-V(s3),1)*pow(1-V(s4),2)}

.func fs4() = {2*V(a1)*(-1)*pow(1-V(s5),2)*pow(1+V(s4),1)*pow(1-V(s3),2)+2*V(a6)*(-1)*pow(1+V(s4),1)*
pow(1+V(s1),2)*pow(1-V(s3),2)+2*V(a7)*(-1)*pow(1-V(s5),2)*pow(1+V(s1),2)*pow(1+V(s4),1)+2*V(a8)*
(1)*pow(1-V(s5),2)*pow(1-V(s3),2)*pow(1-V(s4),1)+2*V(a9)*(-1)*pow(1+V(s5),2)*pow(1-V(s2),2)*pow
(1+V(s4),1)+2*V(a11)*(1)*pow(1+V(s3),2)*pow(1-V(s5),2)*pow(1-V(s4),1)+2*V(a12)*(-1)*pow(1-V(s3)
,2)*pow(1+V(s4),1)*pow(1-V(s2),2)+2*V(a13)*(1)*pow(1+V(s2),2)*pow(1-V(s4),1)*pow(1-V(s5),2)+2*V(
a15)*(1)*pow(1-V(s1),2)*pow(1-V(s3),2)*pow(1-V(s4),1)}

.func fs5() = {2*V(a1)*(1)*pow(1-V(s5),1)*pow(1+V(s4),2)*pow(1-V(s3),2)+2*V(a2)*(1)*pow(1-V(s5),1)*
pow(1+V(s2),2)*pow(1+V(s3),2)+2*V(a3)*(1)*pow(1-V(s3),2)*pow(1-V(s5),1)*pow(1-V(s1),2)+2*V(a4)*
(1)*pow(1+V(s2),2)*pow(1-V(s5),1)*pow(1-V(s3),2)+2*V(a5)*(-1)*pow(1+V(s2),2)*pow(1-V(s1),2)*pow
(1+V(s5),1)+2*V(a7)*(1)*pow(1-V(s5),1)*pow(1+V(s1),2)*pow(1+V(s4),2)+2*V(a8)*(1)*pow(1-V(s5),1)*
pow(1-V(s3),2)*pow(1-V(s4),2)+2*V(a9)*(-1)*pow(1+V(s5),1)*pow(1-V(s2),2)*pow(1+V(s4),2)+2*V(a10)
*(-1)*pow(1+V(s3),2)*pow(1+V(s5),1)*pow(1+V(s2),2)+2*V(a11)*(1)*pow(1+V(s3),2)*pow(1-V(s5),1)*
pow(1-V(s4),2)+2*V(a13)*(1)*pow(1+V(s2),2)*pow(1-V(s4),2)*pow(1-V(s5),1)+2*V(a14)*(1)*pow(1-V(s1
),2)*pow(1-V(s3),2)*pow(1-V(s5),1)}

.func fa1() = {V(a1)*pow((1-V(s5))*(1+V(s4))*(1-V(s3)),2)}

.func fa2() = {V(a2)*pow((1-V(s5))*(1+V(s2))*(1+V(s3)),2)}

.func fa3() = {V(a3)*pow((1-V(s3))*(1-V(s5))*(1-V(s1)),2)}

.func fa4() = {V(a4)*pow((1+V(s2))*(1-V(s5))*(1-V(s3)),2)}

.func fa5() = {V(a5)*pow((1+V(s2))*(1-V(s1))*(1+V(s5)),2)}

.func fa6() = {V(a6)*pow((1+V(s4))*(1+V(s1))*(1-V(s3)),2)}

.func fa7() = {V(a7)*pow((1-V(s5))*(1+V(s1))*(1+V(s4)),2)}

.func fa8() = {V(a8)*pow((1-V(s5))*(1-V(s3))*(1-V(s4)),2)}

.func fa9() = {V(a9)*pow((1+V(s5))*(1-V(s2))*(1+V(s4)),2)}

.func fa10() = {V(a10)*pow((1+V(s3))*(1+V(s5))*(1+V(s2)),2)}

.func fa11() = {V(a11)*pow((1+V(s3))*(1-V(s5))*(1-V(s4)),2)}

.func fa12() = {V(a12)*pow((1-V(s3))*(1+V(s4))*(1-V(s2)),2)}

.func fa13() = {V(a13)*pow((1+V(s2))*(1-V(s4))*(1-V(s5)),2)}

.func fa14() = {V(a14)*pow((1-V(s1))*(1-V(s3))*(1-V(s5)),2)}

.func fa15() = {V(a15)*pow((1-V(s1))*(1-V(s3))*(1-V(s4)),2)}

.tran 0 300.000000 1u uic

.probe V(contra) V(contrd) V(s1) V(s2) V(s3) V(s4) V(s5)

Listing 3. LTspice netlist for the digital memcomputing algorithm for the problem in Listing 1.

* parameters
.param alpha=5.000000 beta=20.000000 gamma=0.250000 delta=0.050000 epsilon=0.001000 xi=0.010000 xlmax

=910000

* Control circuit
ESAT1 contra 0 value={fsat1()}
RSAT1 contra 0 100meg
ESAT2 contrd 0 value={fsat2()}
RSAT2 contrd 0 100meg

* Main variables
Cv1 v1 0 1 IC={-1+mc(1,1)}
Gv1 0 v1 value={fv1()*(u(1-V(v1))*u(fv1())+u(V(v1)+1)*u(-fv1()))}
Rv1 v1 0 100meg
Cv2 v2 0 1 IC={-1+mc(1,1)}
Gv2 0 v2 value={fv2()*(u(1-V(v2))*u(fv2())+u(V(v2)+1)*u(-fv2()))}
Rv2 v2 0 100meg
Cv3 v3 0 1 IC={-1+mc(1,1)}
Gv3 0 v3 value={fv3()*(u(1-V(v3))*u(fv3())+u(V(v3)+1)*u(-fv3()))}
Rv3 v3 0 100meg
Cv4 v4 0 1 IC={-1+mc(1,1)}
Gv4 0 v4 value={fv4()*(u(1-V(v4))*u(fv4())+u(V(v4)+1)*u(-fv4()))}
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Rv4 v4 0 100meg
Cv5 v5 0 1 IC={-1+mc(1,1)}
Gv5 0 v5 value={fv5()*(u(1-V(v5))*u(fv5())+u(V(v5)+1)*u(-fv5()))}
Rv5 v5 0 100meg

* Short memory variables
Cs1 xs1 0 1 IC={0.5}
Gs1 0 xs1 value={fs1()*(u(1-V(xs1))*u(fs1())+u(V(xs1))*u(-fs1()))}
Rs1 xs1 0 100meg
Cs2 xs2 0 1 IC={0.5}
Gs2 0 xs2 value={fs2()*(u(1-V(xs2))*u(fs2())+u(V(xs2))*u(-fs2()))}
Rs2 xs2 0 100meg
Cs3 xs3 0 1 IC={0.5}
Gs3 0 xs3 value={fs3()*(u(1-V(xs3))*u(fs3())+u(V(xs3))*u(-fs3()))}
Rs3 xs3 0 100meg
Cs4 xs4 0 1 IC={0.5}
Gs4 0 xs4 value={fs4()*(u(1-V(xs4))*u(fs4())+u(V(xs4))*u(-fs4()))}
Rs4 xs4 0 100meg
Cs5 xs5 0 1 IC={0.5}
Gs5 0 xs5 value={fs5()*(u(1-V(xs5))*u(fs5())+u(V(xs5))*u(-fs5()))}
Rs5 xs5 0 100meg
Cs6 xs6 0 1 IC={0.5}
Gs6 0 xs6 value={fs6()*(u(1-V(xs6))*u(fs6())+u(V(xs6))*u(-fs6()))}
Rs6 xs6 0 100meg
Cs7 xs7 0 1 IC={0.5}
Gs7 0 xs7 value={fs7()*(u(1-V(xs7))*u(fs7())+u(V(xs7))*u(-fs7()))}
Rs7 xs7 0 100meg
Cs8 xs8 0 1 IC={0.5}
Gs8 0 xs8 value={fs8()*(u(1-V(xs8))*u(fs8())+u(V(xs8))*u(-fs8()))}
Rs8 xs8 0 100meg
Cs9 xs9 0 1 IC={0.5}
Gs9 0 xs9 value={fs9()*(u(1-V(xs9))*u(fs9())+u(V(xs9))*u(-fs9()))}
Rs9 xs9 0 100meg
Cs10 xs10 0 1 IC={0.5}
Gs10 0 xs10 value={fs10()*(u(1-V(xs10))*u(fs10())+u(V(xs10))*u(-fs10()))}
Rs10 xs10 0 100meg
Cs11 xs11 0 1 IC={0.5}
Gs11 0 xs11 value={fs11()*(u(1-V(xs11))*u(fs11())+u(V(xs11))*u(-fs11()))}
Rs11 xs11 0 100meg
Cs12 xs12 0 1 IC={0.5}
Gs12 0 xs12 value={fs12()*(u(1-V(xs12))*u(fs12())+u(V(xs12))*u(-fs12()))}
Rs12 xs12 0 100meg
Cs13 xs13 0 1 IC={0.5}
Gs13 0 xs13 value={fs13()*(u(1-V(xs13))*u(fs13())+u(V(xs13))*u(-fs13()))}
Rs13 xs13 0 100meg
Cs14 xs14 0 1 IC={0.5}
Gs14 0 xs14 value={fs14()*(u(1-V(xs14))*u(fs14())+u(V(xs14))*u(-fs14()))}
Rs14 xs14 0 100meg
Cs15 xs15 0 1 IC={0.5}
Gs15 0 xs15 value={fs15()*(u(1-V(xs15))*u(fs15())+u(V(xs15))*u(-fs15()))}
Rs15 xs15 0 100meg

* Long memory variables
Cl1 xl1 0 1 IC={1}
Gl1 0 xl1 value={fl1()*(u(xlmax-V(xl1))*u(fl1())+u(V(xl1)-1)*u(-fl1()))}
Rl1 xl1 0 100meg
Cl2 xl2 0 1 IC={1}
Gl2 0 xl2 value={fl2()*(u(xlmax-V(xl2))*u(fl2())+u(V(xl2)-1)*u(-fl2()))}
Rl2 xl2 0 100meg
Cl3 xl3 0 1 IC={1}
Gl3 0 xl3 value={fl3()*(u(xlmax-V(xl3))*u(fl3())+u(V(xl3)-1)*u(-fl3()))}
Rl3 xl3 0 100meg
Cl4 xl4 0 1 IC={1}
Gl4 0 xl4 value={fl4()*(u(xlmax-V(xl4))*u(fl4())+u(V(xl4)-1)*u(-fl4()))}
Rl4 xl4 0 100meg
Cl5 xl5 0 1 IC={1}
Gl5 0 xl5 value={fl5()*(u(xlmax-V(xl5))*u(fl5())+u(V(xl5)-1)*u(-fl5()))}
Rl5 xl5 0 100meg
Cl6 xl6 0 1 IC={1}
Gl6 0 xl6 value={fl6()*(u(xlmax-V(xl6))*u(fl6())+u(V(xl6)-1)*u(-fl6()))}
Rl6 xl6 0 100meg
Cl7 xl7 0 1 IC={1}
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Gl7 0 xl7 value={fl7()*(u(xlmax-V(xl7))*u(fl7())+u(V(xl7)-1)*u(-fl7()))}
Rl7 xl7 0 100meg
Cl8 xl8 0 1 IC={1}
Gl8 0 xl8 value={fl8()*(u(xlmax-V(xl8))*u(fl8())+u(V(xl8)-1)*u(-fl8()))}
Rl8 xl8 0 100meg
Cl9 xl9 0 1 IC={1}
Gl9 0 xl9 value={fl9()*(u(xlmax-V(xl9))*u(fl9())+u(V(xl9)-1)*u(-fl9()))}
Rl9 xl9 0 100meg
Cl10 xl10 0 1 IC={1}
Gl10 0 xl10 value={fl10()*(u(xlmax-V(xl10))*u(fl10())+u(V(xl10)-1)*u(-fl10()))}
Rl10 xl10 0 100meg
Cl11 xl11 0 1 IC={1}
Gl11 0 xl11 value={fl11()*(u(xlmax-V(xl11))*u(fl11())+u(V(xl11)-1)*u(-fl11()))}
Rl11 xl11 0 100meg
Cl12 xl12 0 1 IC={1}
Gl12 0 xl12 value={fl12()*(u(xlmax-V(xl12))*u(fl12())+u(V(xl12)-1)*u(-fl12()))}
Rl12 xl12 0 100meg
Cl13 xl13 0 1 IC={1}
Gl13 0 xl13 value={fl13()*(u(xlmax-V(xl13))*u(fl13())+u(V(xl13)-1)*u(-fl13()))}
Rl13 xl13 0 100meg
Cl14 xl14 0 1 IC={1}
Gl14 0 xl14 value={fl14()*(u(xlmax-V(xl14))*u(fl14())+u(V(xl14)-1)*u(-fl14()))}
Rl14 xl14 0 100meg
Cl15 xl15 0 1 IC={1}
Gl15 0 xl15 value={fl15()*(u(xlmax-V(xl15))*u(fl15())+u(V(xl15)-1)*u(-fl15()))}
Rl15 xl15 0 100meg

* functions
.func Cm(x,y,z)={0.5*min(1-x,min(1-y,1-z))}
.func Cm1(x,y,z)={min(1-u(x),min(1-u(y),1-u(z)))}

.func fsat1()=Cm(V(v5),-V(v4),V(v3))+Cm(V(v5),-V(v2),-V(v3))+Cm(V(v3),V(v5),V(v1))+Cm(-V(v2),V(v5),V(
v3))+Cm(-V(v2),V(v1),-V(v5))+Cm(-V(v4),-V(v1),V(v3))+Cm(V(v5),-V(v1),-V(v4))+Cm(V(v5),V(v3),V(v4
))+Cm(-V(v5),V(v2),-V(v4))+Cm(-V(v3),-V(v5),-V(v2))+Cm(-V(v3),V(v5),V(v4))+Cm(V(v3),-V(v4),V(v2)
)+Cm(-V(v2),V(v4),V(v5))+Cm(V(v1),V(v3),V(v5))+Cm(V(v1),V(v3),V(v4))

.func fsat2()=Cm1(V(v5),-V(v4),V(v3))+Cm1(V(v5),-V(v2),-V(v3))+Cm1(V(v3),V(v5),V(v1))+Cm1(-V(v2),V(v5
),V(v3))+Cm1(-V(v2),V(v1),-V(v5))+Cm1(-V(v4),-V(v1),V(v3))+Cm1(V(v5),-V(v1),-V(v4))+Cm1(V(v5),V(
v3),V(v4))+Cm1(-V(v5),V(v2),-V(v4))+Cm1(-V(v3),-V(v5),-V(v2))+Cm1(-V(v3),V(v5),V(v4))+Cm1(V(v3)
,-V(v4),V(v2))+Cm1(-V(v2),V(v4),V(v5))+Cm1(V(v1),V(v3),V(v5))+Cm1(V(v1),V(v3),V(v4))

.func fv1() = {V(xl3)*V(xs3)*0.5*min(1-V(v3),1-V(v5))+(1+xi*V(xl3))*(1-V(xs3))*0.5*(1-V(v1))*if(V(v1)
> V(v3), if(V(v1) > V(v5),1,0),0)+V(xl5)*V(xs5)*0.5*min(1+V(v2),1+V(v5))+(1+xi*V(xl5))*(1-V(xs5
))*0.5*(1-V(v1))*if(V(v1) > -V(v2), if(V(v1) > -V(v5),1,0),0)+V(xl6)*V(xs6)*(-0.5)*min(1+V(v4)
,1-V(v3))+(1+xi*V(xl6))*(1-V(xs6))*0.5*(-1-V(v1))*if(-V(v1) > -V(v4), if(-V(v1) > V(v3),1,0),0)+
V(xl7)*V(xs7)*(-0.5)*min(1-V(v5),1+V(v4))+(1+xi*V(xl7))*(1-V(xs7))*0.5*(-1-V(v1))*if(-V(v1) > V(
v5), if(-V(v1) > -V(v4),1,0),0)+V(xl14)*V(xs14)*0.5*min(1-V(v3),1-V(v5))+(1+xi*V(xl14))*(1-V(
xs14))*0.5*(1-V(v1))*if(V(v1) > V(v3), if(V(v1) > V(v5),1,0),0)+V(xl15)*V(xs15)*0.5*min(1-V(v3)
,1-V(v4))+(1+xi*V(xl15))*(1-V(xs15))*0.5*(1-V(v1))*if(V(v1) > V(v3), if(V(v1) > V(v4),1,0),0)}

.func fv2() = {V(xl2)*V(xs2)*(-0.5)*min(1-V(v5),1+V(v3))+(1+xi*V(xl2))*(1-V(xs2))*0.5*(-1-V(v2))*if(-
V(v2) > V(v5), if(-V(v2) > -V(v3),1,0),0)+V(xl4)*V(xs4)*(-0.5)*min(1-V(v5),1-V(v3))+(1+xi*V(xl4)
)*(1-V(xs4))*0.5*(-1-V(v2))*if(-V(v2) > V(v5), if(-V(v2) > V(v3),1,0),0)+V(xl5)*V(xs5)*(-0.5)*
min(1-V(v1),1+V(v5))+(1+xi*V(xl5))*(1-V(xs5))*0.5*(-1-V(v2))*if(-V(v2) > V(v1), if(-V(v2) > -V(
v5),1,0),0)+V(xl9)*V(xs9)*0.5*min(1+V(v5),1+V(v4))+(1+xi*V(xl9))*(1-V(xs9))*0.5*(1-V(v2))*if(V(
v2) > -V(v5), if(V(v2) > -V(v4),1,0),0)+V(xl10)*V(xs10)*(-0.5)*min(1+V(v3),1+V(v5))+(1+xi*V(xl10
))*(1-V(xs10))*0.5*(-1-V(v2))*if(-V(v2) > -V(v3), if(-V(v2) > -V(v5),1,0),0)+V(xl12)*V(xs12)*0.5
*min(1-V(v3),1+V(v4))+(1+xi*V(xl12))*(1-V(xs12))*0.5*(1-V(v2))*if(V(v2) > V(v3), if(V(v2) > -V(
v4),1,0),0)+V(xl13)*V(xs13)*(-0.5)*min(1-V(v4),1-V(v5))+(1+xi*V(xl13))*(1-V(xs13))*0.5*(-1-V(v2)
)*if(-V(v2) > V(v4), if(-V(v2) > V(v5),1,0),0)}

.func fv3() = {V(xl1)*V(xs1)*0.5*min(1-V(v5),1+V(v4))+(1+xi*V(xl1))*(1-V(xs1))*0.5*(1-V(v3))*if(V(v3)
> V(v5), if(V(v3) > -V(v4),1,0),0)+V(xl2)*V(xs2)*(-0.5)*min(1-V(v5),1+V(v2))+(1+xi*V(xl2))*(1-V
(xs2))*0.5*(-1-V(v3))*if(-V(v3) > V(v5), if(-V(v3) > -V(v2),1,0),0)+V(xl3)*V(xs3)*0.5*min(1-V(v5
),1-V(v1))+(1+xi*V(xl3))*(1-V(xs3))*0.5*(1-V(v3))*if(V(v3) > V(v5), if(V(v3) > V(v1),1,0),0)+V(
xl4)*V(xs4)*0.5*min(1+V(v2),1-V(v5))+(1+xi*V(xl4))*(1-V(xs4))*0.5*(1-V(v3))*if(V(v3) > -V(v2),
if(V(v3) > V(v5),1,0),0)+V(xl6)*V(xs6)*0.5*min(1+V(v4),1+V(v1))+(1+xi*V(xl6))*(1-V(xs6))*0.5*(1-
V(v3))*if(V(v3) > -V(v4), if(V(v3) > -V(v1),1,0),0)+V(xl8)*V(xs8)*0.5*min(1-V(v5),1-V(v4))+(1+xi
*V(xl8))*(1-V(xs8))*0.5*(1-V(v3))*if(V(v3) > V(v5), if(V(v3) > V(v4),1,0),0)+V(xl10)*V(xs10)*
(-0.5)*min(1+V(v5),1+V(v2))+(1+xi*V(xl10))*(1-V(xs10))*0.5*(-1-V(v3))*if(-V(v3) > -V(v5), if(-V(
v3) > -V(v2),1,0),0)+V(xl11)*V(xs11)*(-0.5)*min(1-V(v5),1-V(v4))+(1+xi*V(xl11))*(1-V(xs11))*0.5*
(-1-V(v3))*if(-V(v3) > V(v5), if(-V(v3) > V(v4),1,0),0)+V(xl12)*V(xs12)*0.5*min(1+V(v4),1-V(v2))
+(1+xi*V(xl12))*(1-V(xs12))*0.5*(1-V(v3))*if(V(v3) > -V(v4), if(V(v3) > V(v2),1,0),0)+V(xl14)*V(
xs14)*0.5*min(1-V(v1),1-V(v5))+(1+xi*V(xl14))*(1-V(xs14))*0.5*(1-V(v3))*if(V(v3) > V(v1), if(V(
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v3) > V(v5),1,0),0)+V(xl15)*V(xs15)*0.5*min(1-V(v1),1-V(v4))+(1+xi*V(xl15))*(1-V(xs15))*0.5*(1-V
(v3))*if(V(v3) > V(v1), if(V(v3) > V(v4),1,0),0)}

.func fv4() = {V(xl1)*V(xs1)*(-0.5)*min(1-V(v5),1-V(v3))+(1+xi*V(xl1))*(1-V(xs1))*0.5*(-1-V(v4))*if(-
V(v4) > V(v5), if(-V(v4) > V(v3),1,0),0)+V(xl6)*V(xs6)*(-0.5)*min(1+V(v1),1-V(v3))+(1+xi*V(xl6))
*(1-V(xs6))*0.5*(-1-V(v4))*if(-V(v4) > -V(v1), if(-V(v4) > V(v3),1,0),0)+V(xl7)*V(xs7)*(-0.5)*
min(1-V(v5),1+V(v1))+(1+xi*V(xl7))*(1-V(xs7))*0.5*(-1-V(v4))*if(-V(v4) > V(v5), if(-V(v4) > -V(
v1),1,0),0)+V(xl8)*V(xs8)*0.5*min(1-V(v5),1-V(v3))+(1+xi*V(xl8))*(1-V(xs8))*0.5*(1-V(v4))*if(V(
v4) > V(v5), if(V(v4) > V(v3),1,0),0)+V(xl9)*V(xs9)*(-0.5)*min(1+V(v5),1-V(v2))+(1+xi*V(xl9))*
(1-V(xs9))*0.5*(-1-V(v4))*if(-V(v4) > -V(v5), if(-V(v4) > V(v2),1,0),0)+V(xl11)*V(xs11)*0.5*min
(1+V(v3),1-V(v5))+(1+xi*V(xl11))*(1-V(xs11))*0.5*(1-V(v4))*if(V(v4) > -V(v3), if(V(v4) > V(v5)
,1,0),0)+V(xl12)*V(xs12)*(-0.5)*min(1-V(v3),1-V(v2))+(1+xi*V(xl12))*(1-V(xs12))*0.5*(-1-V(v4))*
if(-V(v4) > V(v3), if(-V(v4) > V(v2),1,0),0)+V(xl13)*V(xs13)*0.5*min(1+V(v2),1-V(v5))+(1+xi*V(
xl13))*(1-V(xs13))*0.5*(1-V(v4))*if(V(v4) > -V(v2), if(V(v4) > V(v5),1,0),0)+V(xl15)*V(xs15)*0.5
*min(1-V(v1),1-V(v3))+(1+xi*V(xl15))*(1-V(xs15))*0.5*(1-V(v4))*if(V(v4) > V(v1), if(V(v4) > V(v3
),1,0),0)}

.func fv5() = {V(xl1)*V(xs1)*0.5*min(1+V(v4),1-V(v3))+(1+xi*V(xl1))*(1-V(xs1))*0.5*(1-V(v5))*if(V(v5)
> -V(v4), if(V(v5) > V(v3),1,0),0)+V(xl2)*V(xs2)*0.5*min(1+V(v2),1+V(v3))+(1+xi*V(xl2))*(1-V(
xs2))*0.5*(1-V(v5))*if(V(v5) > -V(v2), if(V(v5) > -V(v3),1,0),0)+V(xl3)*V(xs3)*0.5*min(1-V(v3)
,1-V(v1))+(1+xi*V(xl3))*(1-V(xs3))*0.5*(1-V(v5))*if(V(v5) > V(v3), if(V(v5) > V(v1),1,0),0)+V(
xl4)*V(xs4)*0.5*min(1+V(v2),1-V(v3))+(1+xi*V(xl4))*(1-V(xs4))*0.5*(1-V(v5))*if(V(v5) > -V(v2),
if(V(v5) > V(v3),1,0),0)+V(xl5)*V(xs5)*(-0.5)*min(1+V(v2),1-V(v1))+(1+xi*V(xl5))*(1-V(xs5))*0.5*
(-1-V(v5))*if(-V(v5) > -V(v2), if(-V(v5) > V(v1),1,0),0)+V(xl7)*V(xs7)*0.5*min(1+V(v1),1+V(v4))
+(1+xi*V(xl7))*(1-V(xs7))*0.5*(1-V(v5))*if(V(v5) > -V(v1), if(V(v5) > -V(v4),1,0),0)+V(xl8)*V(
xs8)*0.5*min(1-V(v3),1-V(v4))+(1+xi*V(xl8))*(1-V(xs8))*0.5*(1-V(v5))*if(V(v5) > V(v3), if(V(v5)
> V(v4),1,0),0)+V(xl9)*V(xs9)*(-0.5)*min(1-V(v2),1+V(v4))+(1+xi*V(xl9))*(1-V(xs9))*0.5*(-1-V(v5)
)*if(-V(v5) > V(v2), if(-V(v5) > -V(v4),1,0),0)+V(xl10)*V(xs10)*(-0.5)*min(1+V(v3),1+V(v2))+(1+
xi*V(xl10))*(1-V(xs10))*0.5*(-1-V(v5))*if(-V(v5) > -V(v3), if(-V(v5) > -V(v2),1,0),0)+V(xl11)*V(
xs11)*0.5*min(1+V(v3),1-V(v4))+(1+xi*V(xl11))*(1-V(xs11))*0.5*(1-V(v5))*if(V(v5) > -V(v3), if(V(
v5) > V(v4),1,0),0)+V(xl13)*V(xs13)*0.5*min(1+V(v2),1-V(v4))+(1+xi*V(xl13))*(1-V(xs13))*0.5*(1-V
(v5))*if(V(v5) > -V(v2), if(V(v5) > V(v4),1,0),0)+V(xl14)*V(xs14)*0.5*min(1-V(v1),1-V(v3))+(1+xi
*V(xl14))*(1-V(xs14))*0.5*(1-V(v5))*if(V(v5) > V(v1), if(V(v5) > V(v3),1,0),0)}

.func fs1() = {beta*(V(xs1)+epsilon)*(Cm(V(v5),-V(v4),V(v3))-gamma)}

.func fs2() = {beta*(V(xs2)+epsilon)*(Cm(V(v5),-V(v2),-V(v3))-gamma)}

.func fs3() = {beta*(V(xs3)+epsilon)*(Cm(V(v3),V(v5),V(v1))-gamma)}

.func fs4() = {beta*(V(xs4)+epsilon)*(Cm(-V(v2),V(v5),V(v3))-gamma)}

.func fs5() = {beta*(V(xs5)+epsilon)*(Cm(-V(v2),V(v1),-V(v5))-gamma)}

.func fs6() = {beta*(V(xs6)+epsilon)*(Cm(-V(v4),-V(v1),V(v3))-gamma)}

.func fs7() = {beta*(V(xs7)+epsilon)*(Cm(V(v5),-V(v1),-V(v4))-gamma)}

.func fs8() = {beta*(V(xs8)+epsilon)*(Cm(V(v5),V(v3),V(v4))-gamma)}

.func fs9() = {beta*(V(xs9)+epsilon)*(Cm(-V(v5),V(v2),-V(v4))-gamma)}

.func fs10() = {beta*(V(xs10)+epsilon)*(Cm(-V(v3),-V(v5),-V(v2))-gamma)}

.func fs11() = {beta*(V(xs11)+epsilon)*(Cm(-V(v3),V(v5),V(v4))-gamma)}

.func fs12() = {beta*(V(xs12)+epsilon)*(Cm(V(v3),-V(v4),V(v2))-gamma)}

.func fs13() = {beta*(V(xs13)+epsilon)*(Cm(-V(v2),V(v4),V(v5))-gamma)}

.func fs14() = {beta*(V(xs14)+epsilon)*(Cm(V(v1),V(v3),V(v5))-gamma)}

.func fs15() = {beta*(V(xs15)+epsilon)*(Cm(V(v1),V(v3),V(v4))-gamma)}

.func fl1() = {alpha*(Cm(V(v5),-V(v4),V(v3))-delta)}

.func fl2() = {alpha*(Cm(V(v5),-V(v2),-V(v3))-delta)}

.func fl3() = {alpha*(Cm(V(v3),V(v5),V(v1))-delta)}

.func fl4() = {alpha*(Cm(-V(v2),V(v5),V(v3))-delta)}

.func fl5() = {alpha*(Cm(-V(v2),V(v1),-V(v5))-delta)}

.func fl6() = {alpha*(Cm(-V(v4),-V(v1),V(v3))-delta)}

.func fl7() = {alpha*(Cm(V(v5),-V(v1),-V(v4))-delta)}

.func fl8() = {alpha*(Cm(V(v5),V(v3),V(v4))-delta)}

.func fl9() = {alpha*(Cm(-V(v5),V(v2),-V(v4))-delta)}

.func fl10() = {alpha*(Cm(-V(v3),-V(v5),-V(v2))-delta)}

.func fl11() = {alpha*(Cm(-V(v3),V(v5),V(v4))-delta)}

.func fl12() = {alpha*(Cm(V(v3),-V(v4),V(v2))-delta)}

.func fl13() = {alpha*(Cm(-V(v2),V(v4),V(v5))-delta)}

.func fl14() = {alpha*(Cm(V(v1),V(v3),V(v5))-delta)}

.func fl15() = {alpha*(Cm(V(v1),V(v3),V(v4))-delta)}

.tran 0 300.000000 1u uic

.probe V(contra) V(contrd) V(v1) V(v2) V(v3) V(v4) V(v5)


