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Abstract. Adjusting user transmission power is an effective
approach to managing Inter-Cell Interference (ICI) in Ultra-
Dense Networks (UDNs). Thus, users can proactively adjust
their transmission power to minimize total power consump-
tion while maintaining the required quality-of-service. Most
recent research on power control mechanisms focuses on de-
signing policies that increase the transmission power for all
active users, including both near users with good received
signal qualities and far users with poor ones. However,
since near users—referred to as Cell-Center Users (CCUs)—
can already achieve the desired service quality, this paper
applies the power control mechanism to far users, known as
Cell-Edge Users (CEUs). The uplink coverage probabilities
of near and far users are derived under the stretched path
loss model and Rayleigh fading for systems with and without
the power-domain Non-Orthogonal Multiple Access (NOMA)
technique. The analysis shows that the proposed mechanism
can significantly reduce transmission power by up to 25%
in conventional systems and up to 36.6% in NOMA systems.
Moreover, the NOMA system model with the proposed power
control mechanism can also improve the ergodic capacity by
up to 72.48%.
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1. Introduction

The evolution of fifth-generation (5G) and beyond-5G
(B5G) cellular networks is driving significant advancements
in wireless communication technologies. One of the primary
objectives of these emerging networks is to provide ubiqui-
tous high quality-of-service across the entire coverage area.
To fully fill these ambitious performance expectations, the
deployment of UDNSs, characterized by an extremely high
density of BSs, has been recognized as a promising cellu-
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lar network topology. This topology enhances spatial reuse
of spectrum, reduces access delays, and improves network
capacity, thereby supporting a wide range of data-intensive
and latency-sensitive applications [1]. To allocate the spec-
trum for a large number of BSs in a small area, mmWave
bands are considered the ideal carrier for UDNs due to their
wide bandwidth availability. However, deploying BSs at ex-
tremely high density introduces significant challenges. No-
tably, mmWave signals are highly susceptible to obstacles
and easily absorbed, resulting in significant power loss during
transmission. Therefore, the users are encouraged to transmit
at high power levels to ensure that the received signal power
at the BSs is sufficient for further signal processing.

Due to the high density of BS deployment and the re-
quirement of high user transmission power, uplink ICI man-
agement in UDNs has become a more significant challenge
than in previous network topologies. Various techniques
have been studied in the literature to mitigate ICI [2-4], ad-
vanced resource allocation using machine learning [5], and
BS/user transmission power control [6], [7]. While con-
ventional ICIC schemes rely on predefined criteria to group
potential users or BSs into clusters [2], recent advanced In-
tercell Interference Coordination (ICIC) techniques leverage
machine learning to address the joint BS resource allocation
problem and power optimization. However, these solutions
have their own limitations. For example, user/BS grouping
techniques face challenges when the number of users and BSs
randomly vary. Machine learning-based ICIC and resource
allocation techniques also remain challenging due to their
high computational cost. In that context, the power control
technique in which the user and BS can proactively adjust
their transmission power to meet the requirement for signal
strength is still a potential solution.

By using a power control mechanism, users dynamically
adjust their transmission power based on wireless channel
conditions. Traditionally, users increase their transmission
power in inverse proportion to the estimated path loss to their
serving BS, thereby securing sufficient signal strength at the
BS. Power control mechanisms have been extensively stud-
ied in the literature as one of the main challenges in cellular



RADIOENGINEERING, VOL. 34, NO. 3, SEPTEMBER 2025

555

systems [6], [8]. In [8], [9], the power control mechanism
was discussed for the regular path loss model, where user
transmission power is proportional to the path loss between
the user and its serving BS or dynamically by the Artifi-
cial Bee Colony Algorithm. Based on a stochastic geom-
etry framework, the uplink coverage probability of a user
was derived for the multi-slope path loss model, which is
characterized by multiple path loss exponents across differ-
ent distance regimes. In recent work, the stretched path loss
model has been proposed for UDNs as a simplified alternative
to the conventional multi-slope model, where the path loss
is computed using a single equation with only two tunable
parameters [10]. The combination of power control mecha-
nism and the NOMA technique was studied in [6], where the
stretched path loss model was adopted to determine the user
transmission power and analyse user performance.

Recently, machine learning has started being used to dy-
namically allocate the transmission power for users [7,11,12].
In [11], a Deep Reinforcement Learning technique was em-
ployed for a Cognitive Radio network, where the secondary
user is unable to observe the transmission power level of the
primary user. Thus, the secondary user must learn to adjust
its transmission power to meet the quality-of-service require-
ments of both itself and the primary user. Dynamic power
management on the secure broadcast channel was studied
in [12], where an autonomous agent determines the trans-
mission power for two users to prevent eavesdropping. In
a recent work [7], a graph neural network was proposed for
cellular systems to optimize power consumption and enhance
spectrum utilization.

Although the aforementioned works have provided ad-
vanced techniques to dynamically control the user transmis-
sion power, they contain some limitations that should be
addressed: (i) the power control schemes in these studies are
designed for all active users. In UDNs utilizing mmWave,
the signal qualities often widely vary as users randomly move
within the coverage area. Specifically, some users are near
the serving BSs and receive strong desired signals, allowing
them to maintain the required quality of service even with
lower transmission power. In contrast, others are far from
the serving BSs and require much higher transmission power
to achieve acceptable signal quality; (ii) Utilization of com-
plex control algorithms can enhance user performance, but
they may face challenges such as compatibility with cellular
devices that have low computational capability and higher
delays compared to conventional approaches.

To overcome these limitations, this paper focuses on
a regular control approach in which the user proactively es-
timates path loss and individually adjusts its transmission
power. Specifically, the paper defines CCUs and CEUs,
where CCUs are near the serving BSs and CEUs are near
the cell edges. Thus, the power control mechanism applies
only to CEUs. The initial concept of this approach was
presented in our recent work [13], where CCUs and CEUs
are distinguished by channel conditions, particularly Line-

of-Sight (LoS) and Non-LoS (NLoS) links. Since practical
users cannot always accurately determine LoS/NLoS con-
ditions, this paper classifies CCUs and CEUs based on the
distance between the users and the serving BSs, which can be
approximately estimated using reference signals [14]. In ad-
dition, the paper adopts the stretched path loss model, which
generalizes the LoS/NLoS model, to make the results more
general and less complex.

NOMA, which allows multiple users to simultaneously
transmit on the same frequency band, is one of the core
techniques in 5G and B5G systems [1]. NOMA can be ap-
plied in both the power domain and the code domain, where
users sharing the same frequency band are distinguished by
their transmission power or assigned codes, respectively. Al-
though code-domain NOMA can support a large number of
users concurrently, it typically requires significantly higher
computational resources compared to power-domain NOMA.
In UDNs with a large available mmWave spectrum, it is un-
common for multiple users to be assigned the same frequency
band. Therefore, power-domain NOMA is still considered
more feasible than code-domain NOMA in such scenarios.
Most of works on the power-domain NOMA technique fo-
cus on pairing two appropriate users to perform frequency
band sharing. Conventionally, the BS usually pairs a good
channel quality user, i.e. near user, with a bad channel con-
dition, i.e. far user [15-17]. In a such manner, the far user
is able to employ a higher transmission power than the near
user. In [18], a novel user pairing scheme is proposed for
an Integrated Sensing and Communication system with co-
operative NOMA to maximize the achievable sum rate of
users. Specifically, the channel orthogonality is used to-
gether with correlation among users to determine the pair of
users. For cellular networks-assisted Unmanned Aerial Vehi-
cle, the authors in [19] discussed a two-hop user grouping to
maximize the system sum rate. Furthermore, the joint opti-
mization between the user pairing and other problems such as
beam forming, transmission power minimization [20], [21]
and reflection coefficient of simultaneously transmitting and
reflecting reconfigurable intelligent surface [22]. Through
the discussed papers, it can be stated that research on power-
domain NOMA, particularly in finding an appropriate pair of
users, is still an open topic and requires further investigation.

Therefore, the paper combines the power control mech-
anism and power-NOMA technique in a simple manner.
Specifically, a user that is farther than reference distance
R is called CCU, and a user with larger distance is CEU. The
highlighted contributions of the paper are as follows:

* Instead of applying a power control mechanism to all
users, the paper proposes utilizing this mechanism for
CEUs only. Under this policy, the transmission powers
of the CCU and CEU are Py and Py exp (ear?), respec-
tively, where Py denotes the minimum user transmission
power. This approach also incorporates the ICIC tech-
nique, which allows CEUs to transmit at a higher power
level than CCUs.
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* Based on the definition of CCU and CEU, the paper
employs the power-domain NOMA technique so that
this pair of CCU-CEU is able to simultaneously utilize
the same frequency band. Specially, the CEU acts as
the far user and control its transmission power by the
power control mechanism.

* The coverage probabilities of the CCU (without power
control) and the CEU (with power control) in the sys-
tem with and without the power-domain NOMA tech-
nique are derived under a stretched path loss model and
Rayleigh fading.

* The analytical results indicates that the proposed power
control mechanism can significantly save the power con-
sumption for both the system with and without power-
domain NOMA technique.

In comparison with advanced approaches such as machine
learning or Artificial Bee Colony algorithm, the proposed
mechanism has higher feasibility. Specifically: (i) It is based
on the distance between the user and its serving BS, which is
determined by the network without advanced techniques; (ii)
It requires neither data and hardware as in machine learning-
based algorithms, nor a high computational load like the
Artificial Bee Colony algorithm; (iii) It can operate in real-
time.

2. System Model

This study investigates indoor cellular networks in
which BSs and users are randomly positioned within the cov-
erage area, following a Spatial Poisson Point Process (PPP).
All BSs share the entire available bandwidth, i.e. full fre-
quency reuse. Moreover, the user density is assumed to be
sufficiently high such that every BS has at least two active
users, as illustrated in Fig. 1.
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Fig. 1. System model.

The user utilizes the nearest-association strategy, where
it identifies and sends a communication request to the closest
active BS. Thus, the distance between the user and its serving
BS has the following Probability Density Function (PDF):

fr(r) = 27Ar exp(—naAr?) (1)
where A is the density of BSs.

In densely populated environments with a high concen-
tration of obstacles such as humans, furniture, walls, and so
on, the user-BS link is frequently blocked. Therefore, instan-
taneous channel gain can be modelled by Rayleigh random
variable. As the result, the channel power gain has a unit
exponential distribution. In addition, the signal also suffers
path loss which can be captured through stretched path loss
model. According these models, the path loss over a distance
of r is

L(r) = exp(—arP) )

where @ and 8 are determined by the obstacle properties.
Specifically, 8 depends the density of obstacles while « cap-
tures the radio attenuation characteristics of these obstacles.

2.1 Proposed Power Control Mechanism

The power control mechanism is designed to compen-
sate path loss, ensuring that the signal strength remains within
an acceptable range while also reducing ICI with other users.
Conventionally, this mechanism increases the user transmis-
sion power by an amount proportional to the path loss. In dB,
the transmission power of the user is

Py[dB] = Py[dB] + ¢/L(r)[dB] 3)

where P is the standard/minimum user transmission power;
€ is the power control coefficient (0 < € < 1).

In the complex indoor transmission conditions with var-
ious obstacles, the received mmWave signal power signifi-
cantly depends on the transmission distances and density of
obstacles. Therefore, the path loss may dynamically vary
with both time and distance. Meanwhile, the user’s posi-
tion only slightly changes during the transmission duration.
Hence, this paper adopts the power control mechanism based
on the distance between the user and its BS rather than on the
path loss. The transmission power of the user is defined as

Pu = PoLc(r) = Pyexp (mfﬁ) . (4)

Due to variance of the received signal strength, some
users with the low path loss can achieve the desired signal
powers without any advanced techniques while others with
serious path loss and require the power control mechanism
to enhance the received signal strength. Thus, the paper pro-
poses to employ the power control mechanism for the users
with critical path loss only, i.e the user is farther than the ref-
erence distance of R or CEU. Meanwhile, the CCU utilizes
the fixed power during its transmission.
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The proposed power control mechanism can be applied
in practical networks. Specifically, the classification of CCUs
and CEUs is feasible since the BS can accurately estimate the
positions of its associated users. Based on the analysis of var-
ious network conditions in Sec. 5, the BS can then select the
most appropriate power control coefficient € and assign it to
the CEUs via signaling messages.

Mathematically, the user at distance r from its serv-
ing BS is called a near user or CCU if r < R. Since r is
the distance from the user to its nearest BS, the PDF of r
is fr(r) = 2mAexp(—mAr?). Let 1(r < R) is the indicator
function that takes a value of 1 if » < Rand O if » > R. Thus,
the expectation of 1(r < R) is

R
E(1(r < R)) = / 27Ar exp(—Ar?)dr
0
=1—-exp (—ﬂ/le) . 5

Consequently, the transmission power of the user can be re-
written as follows:

Pl = {PoLe(r)

for CCUorr < R

. (6)
for CEUorr > R

The transmission power of the randomly distributed user at
a distance of r from its serving BS is

P(r)=1(r < R)P+1(r > R) exp (argﬁ) . ™

By taking the expectation with respects to r, the average
transmission power of this user is

P(r) =E [l(r <R)Po+1(r > R)Poexp (‘”Eﬁ)]

R
=/ 27Ar Py exp(—nAr?)dr
0

00

+ 27 Ar Py exp (aréﬁ) exp(—nAr?)drdr
R

- [1 —exp (—mle)] Po

+/ 27 Ar Py exp (a/rfﬁ) exp(—mArt)dr.  (8)
R

2.2 Uplink SINR without NOMA

With the transmission power as in (6), the desired signal
power at the BS of the CCU and CEU are respectively

PogL(r) for CCUorr < R

Py(r) = { 9)
PogL(r)L¢(r) forCEUorr > R

where g is the instantaneous channel power gain.

In the UDNs with very high density of BSs, the BSs in-
dependently perform resource allocation mechanism for all
their active users. When the number of users is large enough,

it is highly possible that a given frequency band can be simul-
taneously occupied by all BSs. Thus, the typical user suffers
ICI from all adjacent BSs. In every BS of the system without
NOMA technique, a given frequency band is only used by
one user. Consequently, the number of interfering sources of
the typical user is exactly the number of BSs whose density
is A.

Let d; and r; are distance from the interfering user j
to its serving BS and serving BS of the user, respectively.
The transmission power of user j is determined by the power
control mechanism in (6). Particularly,

Py ifd; <R

. (10)
P()Le(dj) if dj >R

Pu(dj) = {

and the interfering power at the serving BS of the typical user

is
PoL(r;)
h%F{PL%
0 L‘(dj)

ifd; <R

: 1
ifd; >R (h

The total uplink ICI of the typical user is
[=P, ZgjL(rj) [1(d; < R) + L (d)1(d; > R)] (12)
jeo

where g is the instantaneous channel power gain from inter-
fering user j to the serving BS of the typical user. Conse-
quently, the uplink SINR of the typical user is:

P,
PosL(r) for CCU or r < R
I+0?2
SINR = PooL(rL (13)
M for CEUorr > R
I+02

where o2 is the power of Gaussian noise.

2.3 Non-Othorgonal Multiple Access

When the power-domain NOMA technique is em-
ployed, each BS looks for a pair of users to assign the same
frequency band. Therefore, the BS distinguishes the trans-
mitted signals of these users by analysing their signal powers.
The paper assumes that each user group comprises a CCU
and a CEU. In comparison with system without NOMA where
the frequency band is occupied either CCU or CEU, the CCU
signal at the BS in the NOMA system is affected by ICI from
CEU and vice versa due to share of frequency band. However,
this ICI can be removed by Successive Interference Cancel-
lation (SIC) technique. Thus, this paper only studies the ICI.
Since the frequency band is simultaneously utilized a pair of
CCU-CEU, the total ICI on a given frequency band is

Inoma = Po Z g;jL(rj) + Py Z g;iL(rj)Le(dj) (14
Jjeo Jjeo

where Py )’ ;g 8;L(r;) is the total ICI from the interfering
CCUs whose transmissions are Po; Po Y. jeg &L (1) Le(d;)
is the ICI that is originated from CEUs with transmission
powers of PoL.(d;).
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Since the utilization of NOMA technique only causes
the change in ICI, the desired signal of CCU and CEU are
still obtained from (9). Therefore, the uplink SINR in the
NOMA system is

PogL(r)

ﬁ fOTCCU

g

SINRnoma = ;O“zA N . 35)
LOLD) o
INnoma + 072

3. Performance Analysis

3.1 Laplace Transform of ICI
The Laplace transform of ICI is defined as
L(s) =E [exp(=sI)] (16)

Theorem 3.1 The Laplace transform of ICI in the system
without NOMA is L(s) =

ool -ama [ [

©o SP() <
exp 27m/ / Tl - TPEN Ty feddd; | (1)
j 1 + SPOLe(d )

sPoL(r;

1+L( )rjdrij(dj)ddj)X

Proof 3.2 Since [ is a function of random variables such
as the distance between user and BSs, channel power gains,
number of BSs, its Laplace transform is evaluated by the fol-
lowing steps. Substituting the definition of ICI in (12), we
obtains L(s)

=E [exp

1(d; < R)+
s (Pojez;gjL(rf) [Le(d‘,-)Jl(dj > R)

| el (P Tesitent < p)]
exp [—S (Po e &iL(rj)Le(dj)1(d; > R))]
Since all instantaneous channel power gains are independent

random variables, and 1(d; < R) and 1(d; > R) are two
exclusive events, the Laplace transform can be simplified as

[ ]'[jegexp( sPog;L(rj)1(d; < R)) ]
[1,coexp [-sPog;L(rj)Le(dj)1(d; > R)]

[ ]_[JegE[exp( sPog;L(rj)1(d; < R))]
H]egE exp[ sPog;L(rj)Lc(d;)1(d; >R)]]

Since 1(d; < R) and 1(d; > R) are indicator functions
whose the expectation of Laplace transform E[-al(x)] =
1 -E(x)(1 —a), L(s) is equal to

[](1=(1~exp(=sPog;L(r))ld; < R)

B jeo L( )
r
[0-f-eoorei)

jeo

L(s)=E

L(s) =

d>R).

Due to the independence of instantaneous channel power
gains whose expectation of Laplace transform is E[e™8%] =

s + , the Laplace transform of ICI is obtained by

sPoL(r
1] s <
jeé +sPyL(rj)
L(s)=E L(rj) . 18
(s) Py (8)
1-———2 14, >R
| L(rj)
jeo l+SP()m

It is recalled that the distance from the interfering user to
the victim BS is greater than that to its serving BS, r; > d;

whose PDF f(d;) = 2nAdexp (—nﬂd?
expectation with respect to d; is evaluated as:

0 sPOL(rj)

jeo

) . Therefore, the above

L(s)=E . 5Py L(m
0Lt
[111- [ ——rtfe(d)dd;
L(r;
jeo R 1+SPOL‘(dj)

19)

The above expectation can be obtained by using the Properties
of Generating Function which states that E [H jeo f (x)] =

exp (—27r/1 fx (1-f (x))xdx). Thus, the Laplace transform
is obtained as in (17).

Theorem 3.3 The Laplace transform of ICI in the system
without NOMA is Lnoma (S‘) =

oo -4m1 / [

J

o SPOLE(d)

.SP()LE(d )

SPoL(rj)r; SPLGrjry

1+ sPoL(rj) rifr(d;)dd; | x

Proof 3.4 The main difference between the system with and
without NOMA refers to the re-use of frequency band within
a cell. In the system without NOMA, each frequency band is
only used one user while the NOMA system allows a pair of
users simultaneously transmit on the same frequency band.
Thus, the density of interfering users in the system without
NOMA is A while that in the system with NOMA is 24.
Therefore, the Laplace transform of the ICI power in the
NOMA system is obtained from (20).

3.2 Coverage Probability

To examine the performance of the proposed power
control mechanism, the probability that the user is under
the coverage of its nearest BS, i.e. coverage probability, is
studied. For both the system with and without NOMA, the
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coverage probability of the user with the coverage threshold
of T is defined as the conditional probability

P(T) =P (SINR > T) 1)

where SINR is defined in (13) and (15) for the system without
and with NOMA technique, respectively.

For CCU The coverage probability of the CCU in the system
without NOMA technique is given by

Po(T) = P(Pfi—Lof;) > T)
=P T ! T ! 22
) (g> PoL(r) yL(r)) 22

where y = %. Under multipath condition as Rayleigh ran-
dom variable, the channel power gain is an exponential ran-
dom variable with CDF distribution F(g) = exp(—g), the
CCU coverage probability is

P(T) =E

1 T
exp (_TyL(r)) L (POL(r) )} . (23)

Since the distance of the CCU is a random variable which
varies from (0; R) and its PDF is given by (1), the coverage
probability is finally obtained by

R 1 T
Pell) = /0 exp (_TyLm) £ (PoL(r)

)fR(r)dr. 24)

For CEU Similarity, the coverage probability of CEU in the
system without NOMA technique is obtained by P (7'

. (Pogur)Le(r) § T)

I+ 02
_ " TL;'(r) TL.'(r)
- J, o[ () e e

Random user When the user is randomly located in the net-
work area and has a distance of r to its serving BS, it can
be CCU if r < R and CEU if r > R. Thus, the coverage
probability of the random user is

P(T) = P(T) + Pe(T). (26)

For the NOMA system, the coverage probabilities of the
CCU, CEU and random user are obtained from (24), (25)
and (26) by substituting £ (s) with Lnxoma (s)-

thttps://github.com/congls/radioEng.git

4. Ergodic Capacity

The uplink ergodic capacity of the user in the cellu-
lar network with unit bandwidth is defined by the Shannon
theorem which states that

C =log, (1 + SINR) 27)

where SINR is the uplink SINR of the user. Since SINR is
arandom variable, the ergodic capacity in the system without
NOMA can re-written in the following form

C =E [log,(1+ SINR)] =/ E[SINR > ¢' - 1] dr.
0

Since the frequency band in the NOMA system is occupied by
a pair of CCU-CEU, the ergodic capacity in the NOMA sys-
tem is the sum of the CCU capacity Cccy and CEU capacity
Ccgu. Therefore,

Cnoma = Cccu + Cceu- (28)

5. Simulation and Analysis

In this section, the simulation results are derived to
provide a clearly examination of the proposed system model.

5.1 Theoretical Validation

To validate the analytical results in (26), the following
indoor network scenario is adopted:

¢ In the indoor environment with high density of walls,
the BS can cover one or two rooms which corresponds to
the coverage area of about 10 m?. Thus, the simulation
assumes that the density of BSs A = 0.1-10° BS/m? [1].

* The transmission conditions is characterized by the den-
sity of obstacles 8 = 1 and their radio attenuation coeffi-
cient @ = 0.5. In that scenario, the density of obstacles
on each link are proportional to the length of that link.
This assumption is suitable for office corridors with
small rooms facing each other.

» The power control coefficient is set to € = 0.1, and the
SNR is varied as y = =20, —10, 10, 20 dB. These values
are used to evaluate the performance of the proposed
system under different signal conditions, ranging from
very poor to good.

In addition, the network area and Monte Carlo itera-
tion are chosen to be as large as possible. Larger value of
these parameters give the higher accurate and stable results.
Specifically, the network area is covered by a circular with
the radius of 2000 m; the number of Monte Carlo iteration is
103. All theoretical and simulation results are derived using
computer programs written in Python 1.
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Figure 2 illustrates that Monte Carlo simulation results
closely match the corresponding analytical results from (26).
Thus, the derived theoretical analysis can be verified in terms
of accuracy. The figure shows that at small values of SNR
such as SNR = —20dB, an increase in SNR has a critical
benefit to the user coverage probability. Meanwhile at high
values of SNR, the changes of this parameter only reflects
a small variance of user coverage probability. Take the 10 dB
increase in SNR and coverage threshold 7 = —25 dB as an ex-
ample, when SNR rises from —20 dB to —10 dB, the coverage
probability increases by 250% from 0.2 to 0.7 while this per-
formance metric only has a slight improvement of 36% from
0.7 to 0.95 as SNR increase from —10dB to 0 dB.

5.2 Coverage Probability vs Power Control Co-
efficient

Figure 3 depicts the impact of the power control coef-
ficient € on the user coverage probability, under the assump-
tion of SNR = 10dB, a target SINR threshold 7 = —10dB,
and BS densities of 1 = 0.0001, 0.001,0.01 and 0.1 BS/m?.
Meanwhile 4 = 0.01 and 4 = 0.1 are considered the high
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Fig. 4. Coverage probability vs reference distance R.

values, two others are called the low ones. The analytical
results are presented for the reference distance of R = 10 m.
Since an increase in € directly translates to an escalation in
the user transmission power, both the desired and ICI powers
increase with e. However, the effect of increasing € on user
performance exhibits contrasting behaviours depending on
the level of network densification, i.e. the value of A.

For a cellular network with a high density of BSs
(1=0.1;0.01 BS/mz), the network can be in a balanced state
where the uplink SINR remains unchanged despite variations
in user transmission power. As a result, the user coverage
probability becomes independent of the power control co-
efficient. Specifically, Figure 3 shows that increasing the
transmission power coefficient leads to only an infinitesimal
change in the user coverage probability.

For a cellular network with a high density of BSs
(1 = 0.0001;0.001 BS/rn2), most interfering signals travel
long distances before colliding with the desired signal at the
victim BS. As a result, these signals suffer significant path
loss, and the interfering power is relatively small. Mean-
while, the desired signal only needs to travel a significantly
shorter distance and therefore experiences lower path loss.
As aresult, increasing the power control coefficient and con-
sequently the transmission power has a limited impact on
interfering power but can significantly enhance the strength
of the desired signal. Consequently, the SINR and user cov-
erage probability increase.

5.3 Coverage Probability vs Reference Distance
R

Figure 4 analyses the effects of reference distance R
on the coverage probability in there network scenarios with
A =0.001;0.03;0.005 (BS/m?). Since the user that is farther
than reference distance R utilizes the power control mecha-
nism, the probability that the random distributed user utilizes
the power control mechanism increases with R. Interest-
ingly, for different network scenarios, the figure shows similar
trends on the coverage probability.
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It is recalled that the CEU classification probability is
given by exp(—mAR?), which decreases exponentially as R
increases. For small values of R, most users are classified
as CEUs and utilize the power control mechanism to adjust
their transmission powers. When R increases from 5m to
10m in a network with a density of 2 = 0.001 BS/m?, the
CEU probability decreases from approximately 0.92 to 0.73
(a 26% reduction). This decline implies that fewer users are
CEUs, resulting in a lower number of high-power interfer-
ers and, consequently, reductions in both the desired signal
power and the ICI power. However, due to the balance be-
tween these signal powers, the coverage probability shows
only slight variation for all values of A as the reference dis-
tance increases from 4 m to 10 m. Notably, the user coverage
probability in the network with 4 = 0.003 remains around
0.87, despite a 26% reduction in CEU classification. Fur-
thermore, it is observed that at R = 4m and R = 10 m, the
average transmission power of the user (obtained from (8))
is 2.0P¢ and 1.6Py, respectively. Thus, it can be stated that
the proposed model can save approximately 25% in power
consumption while maintaining user coverage probability.

However, when the reference distance R exceeds 10 m,
the CEU probability decreases more rapidly compared to
smaller values of R. At this point, nearly all users become
CCUs and transmit at the low power level. Therefore, fur-
ther increases in R no longer significantly reduce ICI but
instead substantially degrade the desired signal. As a result,
the coverage probability begins to decline at large values of
R. For instance, when the reference distance increases from
15m to 20 m, the user coverage probability in the case of
A = 0.003BS/m? drops by 9.3%, from 0.82 to 0.75, and by
13%, from 0.78 to 0.39, in the case of 1 = 0.001 BS/m?.
This sharp decline at lower BS densities (e.g., 4 = 0.001)
indicates that the power control mechanism is more benefi-
cial in low-density networks compared to those with higher
densification.

At very large values of reference distance R such as
R > 25 m in the cases of A = 0.002, 0.003, and 0.005 BS/m?2,
and 40 m in the case of A = 0.001 BS/m? the CEU classifi-
cation probability reaches its maximum value of 1, meaning
that all users employ the power control mechanism. There-
fore, as R continues to increase beyond these thresholds, the
number of CEUs remains constant, and no further changes
are observed in coverage probability behavior.

5.4 Ergodic Capacity vs Reference Distance R
in NOMA System

Figure 5 illustrates the ergodic capacity in the proposed
NOMA system as a function of the reference distance R, un-
der two different channel conditions and two access schemes,
with a fixed base station density 2 = 0.001 BS/km”. Two
channel environments are considered: an acceptable one with
(a = 0.125,8 = 1) and a harsher one with (@ = 0.25,8 =
1.25). It can be seen that the utilization of the power-domain
NOMA technique can significantly improve the data rate.

—¢———__ -~ Without NOMA (@=0.125; B=1)

—&— NOMA (a¢=0.125; B=1)
—&— Without NOMA (a =0.25; B=1.25)
—4— NOMA (a=0.25; B=1.25)

——
T
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Rereference Distance R (m)
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Fig. 5. Ergodic capacity vs reference distance R.

For (@ = 0.125,8 = 1), the ergodic capacity in the
system without NOMA technique experiences a decline of
about 60% from approximately 0.55 bit/s/Hz at R = 2m to
0.22bit/s/Hz at R = 10m. In the system with the NOMA
technique, the capacity drops about a similar percentage from
1.10bit/s/Hz to 0.45 bit/s/Hz as the reference distance R de-
creases within the same range. It is valuable to note that for
all values of R, the data rate in the proposed system main-
tains a twofold improvement over the regular system without
NOMA technique.

In the harsher environment (@ = 0.25,8 = 1.25),
the impact of NOMA deployment remains significant. At
R =2 m, the capacity without NOMA is 1.46 bit/s/Hz, while
the system with NOMA achieves 2.05 bit/s/Hz, representing
a 40% increase. At R = 10 m, the improvement widens to
approximately 56.5%.

To examine more clearly the benefits of the proposed
MONA system model on the user performance, Figure 6
plots the ergodic capacity with different values of € and R
in the network with the density of BSs 1 = 0.003 BS/km?.
For small values of the reference distance R, nearly all users
are classified as CEUs and operate under the power control
mechanism. Specifically, at R = 2m, the CEU classifica-
tion probability is approximately 98.1%. Since the trans-
mission power of all users increases with the power control
coeflicient, the user in the system with € = 1 experiences
the highest level of ICI. Consequently, the ergodic capacity
achieved for € = 1 is the lowest compared to the cases with
€ =0.4,0.6, and 0.8.

As the reference distance R increases, the probability
that a user is classified as a CEU and thus activates the power
control mechanism declines rapidly. For instance, at R = 10
m and € = 1, the CEU classification probability drops by
about 37%, to approximately 61.5%, from its initial value
at R = 2m. This decline leads to a substantial reduction in
overall ICI power, while the average desired signal power of
both CCUs and CEUs experiences only a slight decrease. As
a result, the ergodic capacity improves rapidly and reaches
its peak. For example, in the case of € = 1, when R = 12m
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e Proposed Full power Without power
model control control
Value %o Value %o
0.6 0.8313 0.7637 8.85% 0.7496  10.91%
0.8 0.9083 0.7119  27.57% | 0.7496  21.13%
1.0 1.0508 0.6094  72.48% | 0.7504  40.03%

Tab. 1. Comparison of ergodic capacity of three NOMA sys-
tems.

(corresponding to a CEU probability of 22.93%), the er-
godic capacity peaks at 1.05 bit/s/Hz representing a 72.48%
increase compared to its value at R = Om. Furthermore,
the average transmission power at R = Om and R = 12m is
4.1Py and 2.6Py, respectively. Hence, the proposed model
can increase the ergodic capacity by up to 72.48% while
reducing the average transmission power by 36.6%.

However, as the reference distance R continues to in-
crease beyond 10 m in the case of € = 1, a different trend in
ergodic capacity emerges. The CEU classification probabil-
ity continues to decline, leading to a further decrease in the
transmission power of interfering users and, consequently, in
the total ICI power. However, in this range, the degradation
of the desired signal becomes dominant. As a result, the
ergodic capacity moderately decreases for all values of e:
when R > 10mfore=1,R >8mfore=0.8,and R > 6 m
for e = 0.6. For instance, when R increases from 12m to
20 m, the ergodic capacity for € = 1 decreases from around
1.04 bit/s/Hz to approximately 0.83 bit/s/Hz, indicating a ca-
pacity loss of about 20%.

Table 1 compares the performance of the proposed sys-
tem model with the full power control (R = 0) and without
power control (R = 30) NOMA systems.

6. Conclusion

In this paper, a power control mechanism is proposed
specifically for CEUs located beyond a reference distance of
R from their serving BS. In this approach, CCUs use a fixed
transmission power, while the transmission power of CEUs

depends on the channel condition and the distance to their
serving BS. The coverage probability of a randomly located
user, either a CCU or a CEU, is derived under the stretched
path loss model and Rayleigh fading. The analysis, con-
ducted under varying network densities and power control
coefficients, reveals several key findings. First, the utiliza-
tion of the power control mechanism can significantly im-
prove user performance under favorable channel conditions
or in networks with small value of density of BSs 4. Second,
in systems without NOMA technique, the proposed power
control scheme can reduce power consumption by approxi-
mately 25% while maintaining acceptable user performance.
Finally, in systems with the power-domain NOMA technique,
the proposed model can enhance the ergodic capacity by up to
72.48% and simultaneously save up to 36.6% of transmission
power. Although the proposed algorithm is simple and has
a low computational load, it requires knowledge of the user’s
position to function accurately in real-time scenarios.
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