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Abstract.  Accurate detection of mill conditions during
the cement grinding process directly impacts the quality of
particle size distribution and energy consumption per ton of
cement. This paper proposes a mill condition classification
method based on three-axis wireless vibration sensing and
deep feature learning to address issues such as distortion
of mill condition characterization caused by power grid dis-
turbances in traditional electrical power methods and sound
transmission attenuation in mill sound methods. First, three-
axis wireless vibration sensors were installed on the mill shell
to collect three-dimensional vibration signals. After filtering
and outlier removal, the Fast Fourier Transform (FFT) was
applied to generate frequency-domain energy distribution im-
ages, creating a vibration spectrum dataset with physical in-
terpretability. Next, a deep dilated separable convolution
and multi-head attention fusion network model is proposed.
In this model, dilated convolution captures multi-scale fre-
quency domain features using adjustable dilation rates, and
the multi-head attention mechanism dynamically adjusts the
weight distribution of key frequency bands, enabling adap-
tive extraction of global frequency domain correlations and
local resonance features. Experimental results show that
the use of three-dimensional vibration signals to character-
ize mill conditions improves accuracy by 10% compared to
one-dimensional signals. Classification accuracy increased
by 6.7% compared to traditional convolutional neural net-
works, and by 7.6% and 5.5% compared to linear models
and machine learning methods, respectively.
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1. Introduction

The detection of mill grinding conditions is a pivotal
technology in the cement production process [1]. Given
that cement grinding determines the particle size and per-
formance of the final product [2], its quality and efficiency
directly impact the structural strength and durability of build-
ings [3], [4]. Consequently, with the advancement of in-
dustrial automation and data-driven technologies in recent
years, the detection of mill grinding conditions has garnered
extensive research attention aimed at optimizing the cement
production process [5], [6].

Mill condition detection methods vary widely to accom-
modate different production environments and monitoring
needs. One common approach involves measuring electrical
power to detect grinding conditions. For instance, Wang et
al. proposed a machine learning framework that includes
a Training Data Generator (TDG) and a Look-back Opti-
mizer (LBO) [7]. This framework identifies working condi-
tions by analyzing fluctuations in current loads and changes
in power consumption. The electrical power signal repre-
sents the energy transfer in the system, where fluctuations
in the power grid voltage directly influence the motor’s in-
put power. The nonlinear relationship between changes in
the mill’s mechanical load and electrical power further ex-
acerbates errors. Another method, proposed by Kalantari
et al., involves detecting mill conditions using particle size
maps and acoustic signal data [8]. This approach was practi-
cally implemented and tested on a ball mill at the Lakan lead
and zinc processing plant, yielding promising results. Ad-
ditionally, acoustic signal analysis is an effective method for
detecting grinding conditions. Xu et al. introduced a method
that integrates online correlation analysis, Principal Com-
ponent Analysis (PCA), and adaptive K-means clustering to
extract features from acoustic signals [9]. The acoustic signal
analysis method extracts internal state information from the
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mill’s sound spectrum. When sound waves propagate from
inside the mill shell to the external receiving device, the ma-
terial friction sound undergoes exponential attenuation in the
air, as described by the formula A(f) = e~%/“(where a is
the attenuation coefficient and d is the propagation distance),
resulting in the loss of high-frequency features. Additionally,
background noise from sources such as fans and conveyors
overlaps with the frequency band of the mill’s sound signal,
with the signal-to-noise ratio (SNR) typically below 10dB,
leading to environmental noise contamination.

The mill’s vibration signal has been recognized as a crit-
ical indicator of its operational condition [10], [11]. Previous
studies have demonstrated that collecting and processing vi-
bration signals to assess load status provides an effective
framework for identifying ball mill conditions [12]. Nu-
merous researchers have analyzed vibration signals to derive
features indicative of the mill’s operating state [13], [14]. The
following sections will discuss the algorithms for extracting
and modeling mill vibration signals from two aspects.

Traditional signal feature extraction algorithms have
been widely used in the processing of mill vibration sig-
nals, but there are still significant limitations on their ef-
fectiveness [15], [16]. For this reason, many scholars have
improved these algorithms [17]. For instance, Shi et al.
first converted the vibration signals to multi-order frequency
spectrums (MFS) by fractional Fourier transform (FrFT) to
construct a mill load soft sensor model. In another study,
Behera et al. obtained vibration signals from accelerometers
mounted on the mill shaft and transformed the time-domain
signals into frequency-domain signals using the Fast Fourier
Transform (FFT) [18]. Tang et al. proposed a method in-
volving the selective integration of multi-source information,
which significantly enhanced the generalization ability of the
model by utilizing a subset of useful features from the vi-
bration frequency spectrum [19]. However, most existing
research, such as sampling from the mill-bearing pedestal,
has predominantly analyzed and processed vibration infor-
mation in a single dimension. This approach fails to capture
the richer motion and vibration information of the ball mill
in three-dimensional space, thereby limiting the comprehen-
siveness of the analysis.

Research in modeling algorithms based on vibration
signals has been extensively explored by numerous schol-
ars. Tang et al. introduced an updated Kernel Partial Least
Squares (KPLS) model [20]. The model parameters and input
variables were optimized using a Genetic Algorithm (GA).
Although this method demonstrated high accuracy and pre-
dictive performance in laboratory-scale mills, its efficacy in
the challenging environment of industrial mills remains un-
certain. There is another approach involves modeling mill
shell vibration signals. This method calculates the Power
Spectral Density (PSD) of the vibration signal using FFT
and extracts the mass and center frequency of minor peaks
in the spectrum as features. For instance, Zhao et al. uti-
lized a Support Vector Machine (SVM) to construct a soft
measurement model, optimizing the SVM parameters and

input variables via a GA, thereby enhancing the model’s
predictive performance [21]. Additionally, Liu et al. pro-
posed a new method that can address the poor performance
of traditional PCA and spectral feature selection techniques in
multi-scale situations [22]. They combined Empirical Mode
Decomposition (EMD), PCA, and optimal feature extraction
methods to extract, select, and model signals across differ-
ent frequency scales. Despite the theoretical advantages,
this method requires validation in an industrial on-site mill.
Also, Huang et al. proposed a deep migration learning-based
method for soft measurement of ball mill loads under vari-
able operating conditions [23]. However, deep convolutional
networks are prone to overfitting and demand high compu-
tational resources. This study was also limited to single-
source domain vibration signals from an experimental-scale
mill. And, Sener et al. have trained a Deep Multi-Layer
Perceptron (DMLP) algorithm by using the vibration labels
marked by analyzing frequency-domain data obtained from
FFT [24]. The algorithm selects time-domain signal features,
such as root mean square, gap factor, skewness, crest factor,
and shape factor, as inputs to detect vibrations. Nevertheless,
multilayer perceptron training is hindered by a large number
of parameters, slow convergence, and susceptibility to over-
fitting. Notably, Li et al. proposed a three-stage modeling
framework using a Convolutional Neural Network (CNN) to
predict ball mill performance [25]. This approach employs
adiscrete element method to generate data, including measur-
able variables such as Acoustic Emission (AE) signals, power
consumption, and grinding rate. It compares pre-trained and
untrained models through transfer learning. However, tra-
ditional neural networks have high computational demands,
necessitating the introduction of alternative methods to re-
duce computational effort. Table[I]compares the differences
between existing research and this paper in terms of signal
acquisition methods and model construction.

The innovations of this study were mainly reflected in
the following two aspects.

* By synchronously collecting axial, tangential, and ra-
dial vibration signals from the mill shell using triax-
ial wireless vibration sensors, a frequency-domain en-
ergy spectrum with industrial noise suppression is con-
structed for multidimensional vibration feature analysis.

e This study proposed a mill condition classification
model that integrated deep dilated separable convo-
lution and multi-head attention. The deep convolu-
tional layers enabled independent learning of the three-
dimensional vibration information, allowing the model
to finely understand the unique process patterns of each
dimension and avoid information confusion. The di-
lated convolutional layers dynamically adjusted the re-
ceptive fields to capture cross-band spectral features
while ensuring lightweight computation. The multi-
head attention layer was used to extract global depen-
dencies across time steps and key frequency-domain
features from the mill vibration signals.
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Existing research

The proposed method

Signal acquisition

Electrical signal [7], one-dimensional sound signal [8], [9],
one-dimensional vibrationa signal of the bearing [13], [14].

The three-dimensional axial, tangential, and radial vi-
bration signals of the mill shell.

Model construction

The modeling is primarily based on using a single machine
learning method in experimental-scale mills [17], [18].

Feature extraction and neural network modeling are
combined on industrial-scale mills.

Tab. 1. Comparison of existing related work.

The rest of the paper is organized as follows. The ex-
perimental process and milling machine vibration signal pro-
cessing methods are introduced in Sec. 2. Then, in Sec. 3, the
modeling method proposed in this paper is presented and ana-
lyzed. In Sec. 4 and Sec. 5, the effectiveness of the algorithm
is verified by comparative experiments and the conclusion is
given respectively.

2. Experimental and Signal Analysis

We selected a ball mill from a cement plant, with di-
mensions of 14.5m X 4.2 m, to obtain the three-dimensional
vibration response of the ball mill under various operating
conditions. Initially, we installed a wireless vibration sensor
on the surface of the mill cylinder. The sensor was secured
using an adapter tool attached to screws on the cylinder’s
surface. The three-dimensional vibration sensor used in the
experiment is a triaxial accelerometer with wireless commu-
nication, with a sensitivity of 0.5 mg, a frequency response
range from 10 Hz to 10 kHz, an error range of less than 5%,
a dustproof rating of [IP67, and dimensions of @56 x 84 mm.
The installation position and the shape of the sensor are il-
lustrated in Fig.[T[a) and (b).

To capture vibration information in three axial direc-
tions, we oriented the sensor’s Z-axis along the mill barrel
axis, the Y-axis along the barrel’s tangent, and the X-axis
perpendicular to the barrel. The sensor, as the transmitter,
collects the vibration signals and transmits them via ZigBee
communication at a working frequency of 2.4 GHz to the
wireless edge terminal, which serves as the receiver. The
communication distance on site is less than 5 meters. The
wireless edge terminal model is VS3000EDGE, with a ce-
ramic antenna type, and a transmission rate of 256 kbps, as
shown in Fig. [T{c) and (d). This setup allows us to obtain
raw time-domain vibration data.

2.1 Vibration Signal Acquisition

In this experiment, we employed a sampling frequency
of 1600Hz. Since the bandwidth of the industrial mill we
used is approximately 700 Hz, Shannon’s sampling theorem
dictates that the sampling frequency should be more than
twice the signal bandwidth to ensure accurate recovery of
the original information. To account for the delay in wire-
less signal transmission, we set the sampling duration to 4
seconds. Consequently, each sampling session yields 6400
data points for the X-axis, Y-axis, and Z-axis, with an in-
terval of 0.000625 seconds between each point. The mill

conditions are categorized into underload, normal load, and
overload, with a total of 2100 rounds of data collected to form
the dataset.

The time-domain information for each working condi-
tion is illustrated in Fig.

2.2 Frequency-domain Transform

The time-domain vibration signals received by sensors
contain extensive information about the vibration conditions
of ball mill grinding. However, due to the presence of noise
and the specific frequency range of these signals, interpret-
ing the vibration information directly from the time-domain
is challenging. Therefore, it is necessary to transform the
time-domain vibration signals into the frequency-domain to
facilitate interpretation.

(b) Actual installation of the sensor

v/

(c) Wireless edge terminal

(d) Ceramic antenna

Fig. 1. Experimental equipment and installation.
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Fig. 2. Time-domain and frequency-domain information of the vibration signal.
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The frequency content in the sampled signal can be
calculated using the Discrete Fourier Transform (DFT), as
shown in (T) [26].

N-1

X(f) =) x(me 2N £20,1,2,.. . ,N-1 (1)

n=0

where n is the number of samples, f is the sampling fre-
quency, j is the imaginary unit, satisfying j> = —1 and e(") is
the exponential operator.

Therefore, the frequency-domain amplitude of the sam-
pled vibration signal can be calculated by (2)) and the X (f)

in this equation can be calculated efficiently using the Fast
Fourier Transform (FFT) [27].

N-1

%Zx(n)e B

n=0

Xa(f) =

N
,f=0,1,2,. 2—1 2)

where X (f) is a complex vector of length N, and the sum
of its real and imaginary parts is denoted as Xg () +jX1(f).
The absolute value of X (f) is shown as (3):

XA()] =y IXR()T + (X ()1 3)

and |X (f)| includes the amplitude of the positive and neg-
ative sampling frequencies. The corresponding spectrum of
x(n) is denoted as the first N/2 points of | X (f)| with a scale
factor of 2/N.

After performing the calculation, we obtained the dis-
tribution of the total energy of the time-domain signal in the
frequency-domain. This approach allows for the analysis of
any specific frequency band, thereby overcoming the chal-
lenge of selecting a single dominant frequency [18]. The
transformed frequency-domain information for each operat-
ing condition is illustrated in Fig.[2]

2.3 Analysis of Mutual Information Value

This study simplified the model by using depthwise sep-
arable convolutions. The efficiency of depthwise separable
convolutions assumes that features from different channels
are independent, without explicitly modeling the mutual in-
formation (MI) between them. MI quantifies the dependence
between two random variables, and I(X; Y) ~ O indicates that
X and Y are approximately independent. In general, to ensure
the effectiveness of depthwise separable convolutions, it is
required that I(X;Y) < 0.1. This study used information-
theoretic tools to compute the mutual information values
between pairs of dimensions in the three-dimensional vibra-
tion signals. The results were presented in Tab. 2] The
table showed that the mutual information values between the
dimensions of the three-dimensional vibration signals were
all below 0.086, confirming the applicability of depthwise
separable convolution to simplify the model.

X-axis Y-axis Z-axis
X-axis 1 0.05025 | 0.05009
Y-axis | 0.05025 1 0.08628
Z-axis | 0.05009 | 0.08628 1

Tab. 2. Statistical analysis of mutual information values between
dimensions.
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Fig. 3. Modeling framework.

3. Proposed Method

This section introduced the key components of the pro-
posed Depthwise Separable Dilated Multi-Head Attention
CNN (DM-CNN) algorithm, specifically the depthwise sep-
arable dilated convolution module and the multi-head atten-
tion mechanism. The model framework was illustrated in
Fig.[3] The signal underwent preprocessing steps, including
FFT frequency domain transformation and normalization, to
construct training and testing datasets. In the training phase,
convolutional layers, activation functions, and pooling layers
were applied to extract features. The depthwise separable di-
lated convolution layer extracted frequency domain features
from the signal using convolutional kernels and pooling op-
erations. Dilated convolution also expanded the receptive
field, allowing the model to capture signal variations over
longer time intervals. The multi-head attention mechanism
focused on different parts of the input features, capturing im-
portant patterns or anomalous fluctuations, which enhanced
the model’s predictive ability for specific operational condi-
tions. The model further processed the data through pooling
layers, dropout layers, and fully connected layers. Finally, the
SoftMax function was applied for classification prediction,
generating and storing the model results. In the validation
phase, testing data were used to evaluate the model’s perfor-
mance and predict operational conditions.
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3.1 Deeply Separable Dilated Convolutional

Depth separable dilated convolution is an advanced
technique in CNNs that integrates depthwise, pointwise,
and dilated convolutions. Depthwise separable convolu-
tion breaks down the standard convolution into spatial (per-
channel) and pointwise (channel fusion) convolutions, re-
ducing the parameter count by a factor of approximately K>
compared to traditional convolution, where K is the kernel
size. This reduction in parameters significantly decreases
model complexity. Dilated convolution controls the sparse
sampling interval of the kernel using the dilation rate, thereby
expanding the receptive field without increasing the param-
eter count. It effectively captures long-range dependencies
in frequency-domain images, such as wideband harmonic as-
sociations and resonance peak patterns. The module design
naturally supports parallel computation, making it ideal for
tasks like mill condition classification, which require high
real-time performance.

3.2 Multi-head Attention

The multi-head attention mechanism learns the impor-
tance weights of frequency-domain images across different
subspaces in parallel [28]. It dynamically focuses on key
frequency bands strongly correlated with load conditions,
such as high-frequency ranges dominated by material im-
pact and low-frequency ranges dominated by barrel vibra-
tion, facilitating feature interaction across subspaces. Ad-
ditionally, it adaptively adjusts the attention weights of the
frequency-domain energy distribution, suppressing irrelevant
noise, such as equipment vibrations and sensor interference,
while enhancing the discriminative representation of load
features. Furthermore, the attention mechanism compen-
sates for the limitations of convolution operations in model-
ing global context. Meanwhile, the local features extracted by
convolution provide spatial prior knowledge to the attention
mechanism. Together, they enhance the model’s ability to
analyze complex frequency-domain patterns synergistically.

4. Experiment

This section evaluated the effectiveness of the proposed
grinding condition classification method through several ex-
periments. Experimental data were obtained from a cement
plant in China by installing a three-axis wireless vibration
sensor on the ball mill. A total of 2,100 data points, in-
cluding underload, normal load, and overload conditions,
were collected. The data were divided into training, valida-

tion, and test sets at an 80%, 10%, and 10% ratio, respec-
tively, to create the grinding condition classification dataset.
The neural network structure for all experiments was imple-
mented using PyTorch 2.0.0 and Python 3.9.19. Model train-
ing was performed on an NVIDIA Quadro RTX 5000 GPU
with CUDA 11.7 support. Model parameter settings were
optimized through multiple training sessions using an ex-
haustive search method, considering hardware constraints,
to determine the convolutional network parameters in the
DM-CNN model, as detailed in Tab. E} Specifically, "in_c"
refers to the number of input channels, "out_c" to the number
of output channels, "kernel" to the size of the convolution
kernel, "stride" to the step size, "padding" to the number of
zero-padding layers, "groups” to the number of independent
convolution groups in the depthwise separable convolution
layer, and "dilation" to the dilation rate. For the multi-head
attention layer, key parameters were set as follows. "em-
bedding_dim" was equal to 256, indicating the embedding
dimension, and "n_head" was equal to 4, representing the
number of attention heads.

The loss function used in all networks was the mean
square error (MSE) with L2 regularization. The training
process was configured with a maximum of 300 epochs and
a batch size of 16. The Adam optimizer was applied for op-
timization. A dynamic learning rate schedule was employed,
starting with an initial learning rate of 0.002, a decay period
of 30 epochs, and a decay factor of 0.9. Training was halted
when the absolute difference in validation loss stayed below
0.0001 for 20 consecutive iterations.

4.1 Verification of the Validity of Three-
dimensional Vibration Signals

This section evaluated the effectiveness of the pro-
posed three-dimensional vibration signal modeling approach.
The detailed procedure was as follows. First, the acquired
three-dimensional vibration signals were decomposed into
one-dimensional components to simulate traditional one-
dimensional vibration signals along three axes (denoted as
X-axis, Y-axis, and Z-axis). Next, both acquired three-
dimensional and one-dimensional datasets were put into
model training and conducted mill condition predictions. Fi-
nally, a comparative analysis of the results was performed.
The performance of classification predictions was illustrated
in Fig. ] with a detailed statistical data of classification
predictions shown in Fig. [5] where Class O represented un-
derload, Class 1 corresponded to normal load, and Class 2
denoted overload.

Parameters in_c | out_c | kernel | stride | padding | groups | dilation
Convolutional Layer 3 16 5 2 1 - -
Depthwise Separable Convolutional Layer 16 16 3 1 1 16 -
Pointwise Convolutional Layer 16 32 1 1 0 - -
Dilated Convolutional Layer 32 64 3 1 2 - 2

Tab. 3. Convolutional network parameter settings.
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The experimental results indicated that the average
prediction accuracies based on one-dimensional vibration
signals were 80%, 78.10%, and 85.24%, respectively. In
contrast, the average prediction accuracy of the three-
dimensional vibration signal reached 94.29%. Notably,
three-dimensional vibration signals perform significantly
better than one-dimensional vibration signals in classifying
overload grinding conditions. Upon further evaluation, the
average prediction accuracies of the three-dimensional vibra-
tion signal model for underload, normal load, and overload
conditions were 92.86%, 94.29%, and 95.71%, respectively.

The results show that the mill’s vibration signals are fun-
damentally a superposition of multiple excitation sources. In
particular, three-dimensional vibration signals offered a more
comprehensive depiction of the mill’s operating conditions.
These included tangential eccentric vibrations of the mill
shell and axial impact vibrations caused by the grinding me-
dia. Therefore, by integrating dynamic features across multi-
ple axes, three-dimensional vibration signals allow for a more
precise characterization of the mill’s operational state.

4.2 Model Evaluation

This section presents a comprehensive evaluation of the
DM-CNN model’s overall performance, category differenti-
ation, and robustness in grinding condition classification,
based on three metrics: Fl-score, confusion matrix, and
AUC-ROC curve. Specifically, the F1-score indicates classi-
fication robustness under imbalanced mill status categories.
The calculation formula of FI-score is shown as (@), where
TP is True Positive, FP is False Positive, and FN is False
Negative. The confusion matrix displays misclassification
details and error distribution for each mill status, and the
AUC-ROC curve quantifies the model’s generalization abil-
ity concerning threshold robustness. The model parameters
remain consistent with those in the previous section.

2 X Precision X Recall

Fl-score = —
Precision + Recall
TP
Precision = ————, €]
TP+ FP
TP
Recall = ——.
TP+ FN
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mill condition | TP | FP | FN | Precision | Recall | F1-score
Class 0 65 2 5 0.97 0.93 0.95
Class 1 67 | 4 3 0.94 0.96 0.95
Class 2 67 | 5 3 0.93 0.96 0.94

Tab. 4. Fl-score of DM-CNN.

The confusion matrix for the model is shown in Fig. [f]
The definitions of Class 0, Class 1, and Class 2 were consis-
tent with those in the previous section. Overall, the model
achieved an accuracy of 94.76%. However, the model showed
a false negative issue in detecting underloaded grinding con-
ditions, FNcpss0 = 5, which was higher than in other condi-
tions. Additionally, the model showed false positive detec-
tions in overloaded grinding conditions, FPcyass2 = 5, which
was also higher than in other conditions. This suggests that,
under balanced sampling, there is still room for improve-
ment in the model’s classification boundaries. The boundary
for underloaded grinding conditions is stricter, while that for
overloaded conditions is more lenient.

The F1-scores for each category were calculated based
on the confusion matrix, and the results are shown in Tab.
Recallciasso = 0.93 and Precisionciassy = 0.93 reflect simi-
lar issues with the model’s classification boundaries. The
F1-scores for the three mill conditions indicated that the
model performed excellently overall, with some subtle dif-
ferences. Specifically, the FI-scoreciasso = 0.94 was lower
than that for the other categories, and there was a slight
imbalance between Categories Recallcyssr = 0.96 and Pre-
cisionclassy = 0.93. Therefore, adjusting the classification
threshold for overloaded mill conditions is necessary to fur-
ther improve performance.

The AUC-ROC curve evaluated the model’s perfor-
mance across various classification thresholds by illustrating
the relationship between the true positive and false positive
rates. The AUC, representing the area under the ROC curve,
quantifies the model’s ability to differentiate categories, with
higher values closer to 1 indicating superior performance.
This study adapted the method by treating one class as the
true positive rate and the other two as the false positive rate,
yielding three distinct curves. Figure[7] presented the AUC-
ROC curves for DM-CNN.
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Fig. 7. AUC-ROC curve of DM-CNN.

Figurem shows the ROC curve of the DM-CNN model,
which is located near the upper-left region. Additionally, the
AUC values of the DM-CNN model under various grind-
ing conditions and thresholds approached 1. These results
demonstrate that the DM-CNN model is highly effective in
distinguishing between positive and negative samples.

4.3 Comparison with Other Methods

To comprehensively evaluate the DM-CNN model’s
efficacy, this section benchmarked it against representative
linear (Multinomial Logistic Regression, MLR), non-linear
(Support Vector Machine, SVM), and ensemble learning (eX-
treme Gradient Boosting, XGBoost) classifiers. Model pa-
rameter settings were optimized through multiple training
sessions using an exhaustive search method, and the model
parameters used in this section were determined as follows.
The MLR was implemented using a single fully connected
neural network, with input and output dimensions based on
the mill condition classification dataset. The learning rate
matched that of the DM-CNN model. The SVM employed
a radial basis function kernel, with the penalty coefficient set
to C = 1.0 and the kernel coefficient set to gamma = scale.
The XGBoost had a learning rate of /» = 0.1, with the max-
imum tree depth set to max_d = 6. The row and column
sampling ratios were both set to 0.8, the minimum leaf node
sample weight min_c_w = 1, and the L2 regularization term
lambda = 1. The models’ classification performance was
shown in Fig.[8]

As shown in Figs. [§] and @{d), the DM-CNN model
achieves the highest overall accuracy across various grind-
ing conditions, outperforming MLR, SVM, and XGBoost
by 9.05%, 5.72%, and 5.24%, respectively. Secondly, de-
tailed analysis revealed that the MLR model performed poorly
in distinguishing overload mill conditions. This was pri-
marily due to its linear architecture, which could not ef-
fectively capture the nonlinear relationships in the three-
dimensional vibration frequency-domain features. Although
the SVM model employed a kernel-based nonlinear classifi-
cation method, its accuracy in identifying underload and over-
load mill conditions remained lower than that of DM-CNN
(Fig[@[d)). The XGBoost ensemble learning method, utiliz-
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ing gradient boosting mechanisms and regularization tech-
niques, demonstrated high accuracy and generalization in
other fields. However, due to the non-stationarity and com-
plexity of the mill’s three-dimensional vibration signals, as
well as the loss of spatial structural information, the clas-
sification accuracy of XGBoost was limited to 89.05%. In
summary, DM-CNN successfully performs adaptive weight
adjustment and multi-scale frequency feature extraction by
integrating deep separable dilated convolutions with multi-
head attention layers. This enables the effective recognition
and classification of mill conditions in the specific industrial
context of cement grinding.
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Fig. 8. Classification methods visualization.

5. Conclusion

To classify grinding conditions in the cement indus-
try, this study employed a novel three-dimensional wire-
less vibration sensor to collect comprehensive vibration data
from the ball mill. To address low classification accu-
racy in existing models using three-dimensional vibration
data, this study introduced a novel deep learning approach
that combines depthwise separable dilated convolution with
a multi-head attention mechanism. The method employs
dilated convolution to expand the receptive field, captur-
ing key patterns that reflect operational characteristics of
the mill, thereby addressing the ball mill’s vibration signal
spectra and long-range dependencies. A lightweight model
based on depthwise separable convolution is used to meet the
real-time deployment requirements of the equipment. More-
over, the method utilizes a multi-head attention mechanism
to adaptively select discriminative sensor feature combina-
tions, effectively suppressing noise interference. The exper-
imental results show that, compared to individual modules,
this complementary ensemble method that integrates mill
three-dimensional vibration information can more compre-
hensively characterize the mill’s condition and achieve higher
classification accuracy.

The proposed method demonstrated effective mill con-
dition classification but lacks validation across diverse ball
mill types and material conditions due to single-source in-
dustrial data. Future research will prioritize multi-plant val-
idation to enhance model generalizability and operational
robustness.

The simulated dataset and model validation scheme re-
lated to this study can be obtained by contacting the author.
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