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Abstract. A passive multifunctional metasurface design has
been proposed in this work for both linear and circular polar-
ized incidences, between a frequency range of 4–7 GHz. The
proposed unit cell structure comprises of concentric split pen-
tagonal rings, loaded with two lumped capacitors on the top
layer, having single dielectric layer. The main functionalities
include polarization selective absorption (4.31–4.36 GHz)
and reflective cross-polarization conversion (5.79–6.02 GHz)
for linear polarized incidences. Moreover, polarization
handedness maintaining reflection (4.57–5.45 GHz) and po-
larization selective absorption (6.12–6.26 GHz) for circular
polarized incidences has been achieved. A sample prototype
of 10 × 10-unit cells (2𝜆0 × 2𝜆0), was fabricated and the
experimental results were verified with the simulated ones.
Since the proposed design has such diversified functionalities
for both linear and circular polarized incidences, it can find
probable applications in polarimetric imaging techniques,
polarization modulation devices, polarization sensors etc.

Keywords
Lumped capacitor, multifunctional metasurface, polar-
ization converter, polarization selective absorber

1. Introduction
In the last few years, metasurface based devices have

gained huge dominance in engineering due to its unique
ability to manipulate the electromagnetic (EM) waves and
versatile applicability [1] in various areas like negative re-
fraction [2], independent control of reflection [3], EM scat-
terer [4], microwave absorption [5–7], polarization conver-
sion and manipulation [8–10], etc.

In the past, metasurfaces have been substantially ap-
plied for linear polarized (LP) absorption (LP-A) [11–15] as
well as circular polarized (CP) absorption (CP-A) [16–19].
Besides, linear to linear orthogonal polarization conversion
(LP-LP) [20–22] and circular to circular polarization hand-

edness maintaining (CP-CP) [23], [24] reflection, were also
explored predominantly among the other kinds of reflective
polarization converters (PCs). Naturally, such PCs found ex-
tensive use in RCS reduction [25], antennae with polarization
reconfigurable facilities [26], microwave measurement, and
polarization manipulation and control devices [27]. How-
ever, these reported designs have been developed mainly for
single functionality and thus fail to meet growing demands
of devices having multiple functions.

To mitigate this problem, reconfigurable or switchable
metasurfaces, using PIN diodes were reported [28–32]. They
offered multi-functionalities like LP-A and LP-LP for LP in-
cidences. In the meantime, switchable metasurfaces were de-
signed both with [28], [29] and without [30], [31] air spacers
apart from a dielectric layer, where the operating modes could
be selected by switching the state of PIN diodes. Li et. al [28],
reported LP-LP and LP-A when the diode was in ON and OFF
states respectively. Similar phenomenon was noted in [29]
and [30], but conversion and absorption were achieved for
ON and OFF states of the diodes respectively. In [31], ab-
sorption and conversion modes were achieved with varactor
diode. Again, multi-functionality was achieved by switching
between frequency bands with LP-LP functionality, as re-
ported in [33]. LP-CP conversion along with LP-LP was also
achieved by four PIN diodes in [34]. Although, these designs
exhibited more than one functionality by integrating the PIN
diodes or varactor diodes, they introduced complex biasing
arrangement with higher loss due to active elements [28].
Moreover, all of them were appropriate mainly for LP inci-
dences and inconvenient for CP incidences.

To overcome these issues, passive multifunctional de-
vices, based on metasurface were introduced [35–40], where
they could simultaneously manipulate the state of LP and
CP incidence waves. In [24, 41, 42], according to the inci-
dent polarization, the operating mode could be chosen from
LP-LP and CP-CP. These reported passive multifunctional
metasurfaces only work in polarization conversion mode but
not in absorption mode. However, LP-LP, CP-CP, LP-A,
and CP-A, all modes are equally demanding for various EM
applications [11, 15, 17]. Recently, multifunctionality has
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been demonstrated with devices achieving LP-LP and LP-A
conversions as shown in [43], and trifunctionality encom-
passing LP-LP, LP-CP, and LP-A conversions as reported
in [44]. However, to the best of our knowledge, no device
has yet been reported that can simultaneously realize LP-LP
and LP-A states under linearly polarized (LP) incidence, as
well as CP-CP and CP-A states under circularly polarized
(CP) incidence.

In this paper, we have introduced a single-substrate lay-
ered, multifunctional passive metasurface based on concen-
tric split pentagonal geometry embedded with lumped ca-
pacitors. Unlike previously reported devices, the proposed
design has the unique ability to behave as both absorber and
polarization converter simultaneously for both LP and CP in-
cidences. The proposed device offers LP-A under x-polarized
incidence, in addition to LP-LP under both x-polarized and
y-polarized incidences. Moreover, it also offers CP-A for left-
handed circular polarized (LCP) incidence, along with CP-
CP for both LCP and right-handed circular polarized (RCP)
incidences. It is noteworthy to mention that the handedness
of circular polarization mentioned throughout this paper has
been considered with respect to +z-axis. Further, we have
elucidated its working mechanism, with the heLP of the sur-
face current density and distribution analysis of the proposed
device. Finally, the proposed device is fabricated, and mea-
surements were carried out to confirm the working principle.
The proposed structure maybe be applied for environments
where handedness-maintained CP reflection is required like
satellite communication [39], [40], satellite TV [41], deep
space missions [42], [43] etc., along with areas like stealth
where out of band absorption of a particular polarized wave
is required [44]. The proposed structure can easily be scaled
to accommodate other applications that match the proposed
functionalities due to its simple structure.

2. Design and Analysis of Proposed
Multifunctional Structure

2.1 Geometrical Configuration
The proposed unit cell structure is shown in Fig. 1(a),

where the unit cell can be broken down into three distinct
parts: 1) top patterned patch, 2) middle dielectric and 3)
bottom continuous ground. The top part consisting of two
concentric pentagonal strips of different size, having two
splits on two of their sides were printed on FR4 substrate
(𝜀r = 4.3, and tan 𝛿 = 0.025) with thickness of 2.8 mm.
One of the sides containing the gaps have been filled with
two lumped capacitors (𝐶 = 0.1 pF) to match the free
space impedance. The back side of substrate is laminated
by copper ground plane to avoid transmission of EM wave
through the surface. The dimensions used here are given
as: (𝑎 = 14 mm, 𝑝1 = 4.5 mm, 𝑝2 = 6 mm, 𝑔1 = 𝑔2 =

1.8 mm, 𝑤 = 1 mm, ℎ = 2.8 mm, 𝑡 = 0.035 mm).

Fig. 1. Schematic representation of proposed multifunctional
metasurface. (a) Top view; (b) side view of the unit
cell; (c) and (d) effect of shape of strips on LP and CP
absorptivity respectively; (e) effect of number of parallel
strips on LP absorptivity.

The pentagonal geometry in our structure was chosen
to introduce diagonal asymmetry, unlike even-sided shapes
(e.g., square, hexagon, octagon) that exhibit diagonal symme-
try and thus suppress chiral responses critical for polarization
conversion and polarization-sensitive absorption. The inher-
ent asymmetry of the pentagon enhances chiral behavior, as
shown in Fig. 1(c) and (d). Further, the slits in the pentago-
nal rings disrupt mirror symmetries of the metallic surface’s
n-fold rotational symmetry, reinforcing polarization conver-
sion. Figure 1(e) shows that configurations with a single or
triple ring result in weaker resonances and absorption, how-
ever with two rings, strong absorption, following the well-
known double split ring resonator (DSRR) design principles.

2.2 Simulated Reflection Coefficients
The proposed unit cell is simulated in CST Microwave

Studio using Floquet ports and master-slave boundaries.
For linearly polarized (LP) y-incidence, the co-polarized
and cross-polarized reflection coefficients are defined as
𝑅yy =

| ®𝐸r
y |

| ®𝐸 i
y |

and 𝑅xy =
| ®𝐸r

x |
| ®𝐸 i

y |
, respectively. For circularly

polarized (CP) incidence, the corresponding coefficients are
𝑅LL =

| ®𝐸r
L |

| ®𝐸 i
L |

and 𝑅RL =
| ®𝐸r

R |
| ®𝐸 i

L |
. Here, superscripts r and i denote

reflected and incident fields, respectively. Similar defini-
tions apply for x-polarized and RCP incidences. Figure 2
presents the simulated reflection responses under normal in-
cidence. For x-polarization (see Fig. 2(a)), 𝑅xx and 𝑅yx
remain below −10 dB in the 4.31–4.36 GHz band, indicat-
ing strong absorption. In the 5.87–5.98 GHz band, 𝑅xx stays
below −8 dB, while 𝑅yx exceeds −3 dB, confirming polariza-
tion conversion.
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Fig. 2. Simulation results of co and cross-polarized reflection co-
efficients under (a) x-polarized, (b) y-polarized, (c) LCP,
and (d) RCP incidences.

Fig. 3. Simulation results of PCR with incident angle (𝜃) varia-
tion under (a) x-polarized, (b) y-polarized LP incidences
and of PMR for (c) LCP and (d) RCP incidences.

3. Mechanism from Surface Currents
For y-polarization (Fig. 2(b)), 𝑅yy is above −3 dB and

𝑅xy is below −10 dB in the lower band, while in the higher
band (5.79–6.05 GHz), 𝑅yy drops below −8 dB and 𝑅xy ex-
ceeds−3 dB. For CP incidence (Figs. 2(c)–(d)), both 𝑅LL and
𝑅RR remain above −1.5 dB and 𝑅RL, 𝑅LR stay below −8 dB
across 4.57–5.45 GHz, indicating handedness preservation.
In the 6.16–6.26 GHz range, 𝑅LL and 𝑅RL fall below −10 dB
under LCP incidence, implying strong absorption.

Fig. 4. Simulation results of absorptivity with incident angle (𝜃)
variation for (a) x-polarized LP and (b) LCP incidences.

Conversely, for RCP incidence, 𝑅RR drops below −8 dB
and 𝑅LR exceeds −3 dB, resembling metallic reflection be-
havior.

3.1 Performance Analysis
To evaluate the effectiveness of the proposed unit cell,

polarization conversion ratio (PCR) for LP-LP and polariza-
tion handedness maintaining ratio (PMR) for CP-CP, along
with linear and circular absorptivity, are computed under
oblique incidence. For LP and CP cases, PCR [26] and
PMR [23] are defined as:

PCR =
|𝑅cross-pol |2

|𝑅cross-pol |2 + |𝑅co-pol |2
, (1)

PMR =
|𝑅co-pol |2

|𝑅cross-pol |2 + |𝑅co-pol |2
. (2)

As shown in Fig. 3, the PCR exceeds 0.8 in the
5.87–5.98 GHz band for x-polarization (Fig. 3(a)) and
5.79–6.05 GHz for y-polarization (Fig. 3(b)), sustaining per-
formance up to 60◦ incidence. Similarly, the PMR remains
above 0.8 across 4.56–5.43 GHz for both LCP and RCP,
validating CP-CP behavior, though it declines at angles be-
yond 60◦.

Absorptivity (𝐴) for both LP [15] and CP [19] inci-
dences is calculated as:

𝐴 = 1 − |𝑅co-pol |2 − |𝑅cross-pol |2. (3)

For x-polarized incidence, 𝐴 exceeds 0.8 in the
4.31–4.36 GHz range and remains stable across oblique an-
gles (Fig. 4(a)). In contrast, absorptivity for y-polarization
is below 0.02 in the same band, indicating x-polarization
selective absorption. For LCP incidence, absorptivity ex-
ceeds 0.8 in the 6.12–6.22 GHz band up to 60◦ (Fig. 4(b)),
whereas RCP absorption remains below 0.25, demonstrating
selectivity. Absorption peaks observed at 6.13–6.25 GHz
(x-polarization) and 4.34 GHz (LCP/RCP) are excluded due
to poor absorptivity. A summary of the key polarization
behaviors is provided in Tab. 1.
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Incident polarization Frequency [GHz] Function Remarks

Linear 4.31 – 4.36 x-LP absorption A > 0.8
5.79 – 6.02 Orthogonal polarization conversion for both x- and y-polarized wave PCR > 0.8

Circular 4.57 – 5.43 Polarization handedness keeping reflection for both LCP and RCP PMR > 0.8
6.12 – 6.26 LCP selective absorption A > 0.8

Note: A: Absorptivity; PCR: Polarization conversion ratio; PMR: Polarization handedness maintaining ratio.

Tab. 1. Summary of polarization-dependent functions.

Fig. 5. Current distribution of (a) top layer and (b) bottom layer
for x-polarized incidence, and (c) top layer and (d) bottom
layer for y-polarized incidence of the proposed structure.

3.2 Polarization Conversion for LP Incidence
The surface current distribution for various polarized

incidences is analyzed to understand the mechanism of mul-
tifunctionality. As shown in Fig. 5, the induced electric
moments (p) on the top layer are primarily concentrated
on the lower part of the pentagonal structures. Decompos-
ing them into x- and y-components, Figure 5(a) reveals that
p2x and p3x are in phase, while the antiparallel moment p4
shown in Fig. 5(b) on the ground layer leads to magnetic res-
onance. Meanwhile, the y-components p2y and p3y cancel
each other, while p1 contributes entirely to reflection, making
y-polarized reflection dominant for x-polarized incidence.

For y-polarized incidence, as seen in Fig. 5(c), the y-
components p1, p2, p3y, and p4y align and add up, while
the opposing p5 in the ground layer generates magnetic res-
onance. Simultaneously, the x-components p3x and p4x con-
tribute to radiation, leading to x-polarized reflection. Al-
though strong currents appear on the upper portion of the
pentagonal strips for x-polarized incidence, their opposing
directions cause cancellation of moments, preventing their
participation in reflection.

3.3 Surface Current Density for CP Incidence
For CP incidence, the current distributions in the con-

ductive layers are analyzed by decomposing them into x- and
y-components [45]. The reflected wave along the +z-axis can
be expressed as:

𝐸̂x = 𝐸𝑚ej𝜙x , 𝐸̂y = 𝐸𝑚ej𝜙y .

The handedness of the reflected wave is determined by the
phase difference 𝜙y − 𝜙x, where 𝜙y − 𝜙x = +90◦ for LCP and
𝜙y − 𝜙x = −90◦ for RCP. Figure 6(a) and Figure 6(b) illus-
trate the x- and y-components of induced currents under LCP
illumination at 5 GHz. The x-component is primarily con-
centrated on the top layer, while the bottom layer contributes
to the y-component. The radiation from the y-component
experiences a path phase shift of −𝛽𝑧, calculated as −34.88◦
for a dielectric constant of 4.3 and a height of 2.8 mm. From
Fig. 6(b), the y-component phase at the bottom layer is 120◦,
and from Fig. 6(a), the x-component phase (𝜙x) is 0◦. Thus,
the phase at the top layer is: 𝜙y = 120◦ − 34.88◦ = 85.12◦
yielding 𝜙y−𝜙x = 85.12◦ which is close to +90◦, confirming
LCP reflection for LCP incidence.

Similarly, for RCP incidence at 5 GHz, the x-component
of the induced current is primarily concentrated on the top
layer, as shown in Fig. 6(c), with a phase (𝜙x) of 180◦. Mean-
while, the y-component is dominant on the bottom layer, as
depicted in Fig. 6(d), with a maximum phase of 120◦. As the
y-component propagates to the top layer, its phase reduces to
85.12◦, resulting in: (𝜙y − 𝜙x = 85.12◦ − 180◦ = −84.88◦)
which approximates to −90◦, confirming RCP reflection for
RCP incidence.

3.4 Mechanism of Absorption
The absorption mechanism is analyzed based on the

induced current distribution on the top layer, as shown in
Fig. 7. For x-polarized LP incidence, strong currents are
concentrated on the outer pentagonal loop at the absorption
peak of 4.34 GHz, as seen in Fig. 7(a). Due to capacitive
effects, the inner loop also exhibits strong currents at its edge
facing the outer loop, generating electric resonance which
enhances absorption. Similarly, for LCP incidence, an ab-
sorption peak at 6.18 GHz is observed, attributed to strong
currents on the top layer, as depicted in Fig. 7(b). The inner
loop also shows current distribution, while capacitive effects
induce additional currents on the outer loop, leading to strong
electric resonance and effective absorption of LCP waves.
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Fig. 6. Amplitude and phase of (a) x-component, and (b) y-component for LCP incidence; (c) x-component, and (d) y-component for RCP
incidence, of the surface current distribution on top and bottom layers of the proposed structure at 5 GHz.

Fig. 7. Current distributions on top layer for (a) x-polarized in-
cidence at 4.34 GHz and (b) LCP incidence at 6.18 GHz.

4. Fabrication and Measurement
A prototype sample was fabricated, as shown in

Fig. 8(a), by using printed circuit board (PCB) technique,
having 10 × 10-unit cells. The lumped capacitors (VJ0805
SMD Multilayer Ceramic Capacitor) were used on the PCB.

The fabricated sample was measured using the free-
space method in front of an anechoic chamber wall, as shown
in Fig. 8(b). Two wideband horn antennas (transmitter and
receiver) were positioned 1 m from the sample and connected
to an Anritsu MS2038C network analyzer to measure co- and
cross-polarized reflection magnitudes. Calibration was per-
formed using a copper plate of the same dimensions before
testing the prototype.

Fig. 8. (a) Top view of fabricated sample and (b) experimental
setup.

The measured reflection magnitudes confirmed LP-
LP conversion in the 5.87–5.98 GHz range for x-polarized
incidence and 5.79–6.02 GHz for y-polarized incidence,
as seen in Fig. 9(a) and (b). The LP-LP bandwidth
for x-polarized incidence was slightly larger than for y-
polarized, consistent with earlier observations. Addition-
ally, LP-A was observed at 4.31–4.36 GHz for x-polarized
waves. For CP incidence, CP-CP conversion occurred
in the 4.57–5.45 GHz range, as shown in Fig. 9(c) and
(d). At higher frequencies (6.15–6.26 GHz), the sample
exhibited CP-A for LCP and handedness-reversed reflec-
tion for RCP. The experimental results closely matched
simulations, with minor deviations due to ripples, fab-
rication tolerances, and SMD component uncertainties.
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Ref.
Absorption LP–LP CP–CP LP–CP Unit cell geometry Lumped elements Unit cell Prof. No. of

LP CP Active Passive (𝜆0 × 𝜆0) (𝜆0) func.

[28] ✓ – ✓ – – Cross loop PIN R 0.34 × 0.34 0.150 2

[29] ✓ – ✓ – – Fish-bone structure PIN R 0.26 × 0.26 0.048 2

[31] ✓ – ✓ – – Square ring + patch Varicap – 0.30 × 0.30 0.020 2

[33] – – ✓ – – Square double slotted rings PIN L 0.20 × 0.20 0.056 2

[34] – – ✓ – ✓ Arrow patch + square island PIN – 0.35 × 0.35 0.019 2

[36] – – ✓ ✓ – Truncated patch – – 0.44 × 0.44 0.074 2

[41] – – ✓ – ✓ Split ring loaded cross dipole – – 0.4 × 0.4 0.95 2

[42] – – ✓ ✓ ✓ Cross slot – – 0.14 × 0.13 0.034 2

[44] ✓ – ✓ – ✓ Split ring + L-shaped strip – – 0.25 × 0.25 0.071 3

Our work ✓ ✓ ✓ ✓ – Double pentagonal slotted rings – C 0.20 × 0.20 0.040 4
Note: R: resistor; L: inductor; C: capacitor.

Tab. 2. Comparison of reported multifunctional metasurfaces.

Fig. 9. Simulated and measurement results of fabricated sample
under (a) x-polarized, (b) y-polarized incident LP wave,
(c) LCP and (d) RCP incident wave.

This work demonstrates a multifunctional metasurface with
a higher number of functionalities and a relatively thinner
substrate, as summarized in Tab. 2. The substrate thickness
and unit cell dimensions are normalized to 𝜆0, the highest
resonant wavelength.

5. Conclusion
A passive multifunctional metasurface has been de-

signed by using a simple concentric spilt pentagonal struc-
ture, having a single dielectric layer. The polarization se-
lective absorption was found for both linear and circular
polarized incidences at lower and higher frequency bands

respectively. At the same time, cross-polarized reflection
and polarization handedness keeping reflection was found
for linear and circular polarized incidences respectively. The
ability to provide functionality for both linear and circular
polarized incidences with a simple top layer design, with-
out any active elements and having single dielectric layer are
the main advantages of this work. Presence of these quali-
ties may enable this work to be suitable for applications like
polarimetric imaging, polarization modulations, polarization
sensors, satellite communications etc.
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