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Abstract. This study investigates the sensitivity of ra-
dio wave propagation models to terrain sampling density in
a 5G New Radio Vehicle-to-Everything downlink scenario
at 3.6 GHz. Four widely used models are analysed: the em-
pirical ITU-R P.1546-6, the deterministic Parabolic Equation
Method, and the hybrid ITU-R P.1812-6 and ITU-R P.452-16.
Real terrain profiles from Hungary are considered at multi-
ple resolutions, allowing a systematic assessment of how
accuracy degrades as the representation of terrain becomes
coarser. The analysis reveals a consistent ranking across
environments: the empirical model is the least affected by
resolution changes, while deterministic and hybrid methods
are significantly more sensitive. To interpret these differ-
ences, the study introduces a spectral complexity measure of
terrain profiles and establishes its strong relationship with er-
ror growth through regression analysis. This provides a novel
framework for explaining and quantifying the impact of ter-
rain detail on model behaviour. The findings highlight both
the methodological contribution of linking spectral complex-
ity to propagation accuracy and the practical implications
for optimising the trade-off between computational efficiency
and prediction reliability in vehicular network planning.
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1. Introduction
The modeling of electromagnetic wave propagation

plays a pivotal role in the design and implementation of
wireless communication systems. These models enable the
estimation of propagation losses in the transmission medium
without the need for on-site measurements, allowing for cov-

erage planning and cost-effective network design prior to
deployment [1]. Moreover, they are essential for assessing
the compatibility of various telecommunication technologies,
both within national borders and across them. In light of the
rapid development of mobile communication systems and
the increasing use of higher frequency bands, evaluating the
accuracy of existing propagation models for new technolo-
gies and frequency ranges, as well as developing modern,
advanced models, constitutes a timely and significant area of
research [2].

To gain a first-order understanding of the general struc-
ture and operation of wave propagation models, it is useful
to abstract the problem. Any propagation model may be re-
garded as a system with 𝑛 direct inputs (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) and
𝑚 so-called tuning parameters (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑚), whose
characteristic outputs are the path loss and the absolute value
of the resulting electric field strength. The system and two
representative examples of its outputs are presented in Fig. 1.

Based on the above, the wave propagation model as
a system can be formalized as

Γ (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑚) {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛} (1)

where the outputs depend on both sets of input parameters. It
is worth noting that the path loss determined at a given height
above the ground and the electric field strength level are in-
terconvertible, with the relationship between them governed
by the expression:

Fig. 1. The system model of a wave propagation model.
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𝐸 = ERP − 𝐿 + 10 log10 𝑓 + 79.35 (2)

where 𝐸 is the electric field strength in dBμV/m, ERP is
the effective radiated power of the transmitter in dBm, 𝐿 is
the basic transmission loss in dB, and 𝑓 is the frequency in
MHz [3].

Propagation models are commonly classified into three
major categories: purely empirical models based on observed
data (typically measurement results); deterministic models
founded on physical laws (e.g., the full set of Maxwell’s
equations); and hybrid models that combine elements of both
approaches [4]. In this paper, we examine widely used and
accessible models from each of these categories.

The 5G New Radio Vehicle-to-Everything (5G NR-
V2X) systems [5] are communication technologies that en-
able real-time interaction between vehicles, road infrastruc-
ture, pedestrians, and the network [6]. The stability and
reliability of these systems are of paramount importance and
fundamentally depend on the quality of wireless links, espe-
cially in areas with varying terrain conditions. Therefore, the
design of such networks requires the application of accurate
and reliable radio wave propagation models, along with the
understanding of their limitations [7]. In this paper, we focus
exclusively on the analysis of downlink communication be-
tween the base station and the vehicle within the 5G NR-V2X
system. The base station is considered as the transmitter, po-
sitioned at an average height of 30 meters above ground level,
while the vehicle is treated as the receiver, with an antenna
height of 1.5 meters above the ground. This case is illustrated
in Fig. 2.

One of the most critical tuning parameters in propa-
gation models is the terrain profile between the transmitting
antenna and the receiver [8]. It is evident that the terrain char-
acteristics along the analyzed propagation path significantly
influence the propagation phenomena, such as diffraction,
multipath propagation, or determining whether line-of-sight
conditions are met. Therefore, accurately defining the terrain
is essential for achieving precise simulation results. On the
other hand, a more accurate (i.e., more densely sampled) ter-
rain profile increases computational demands, thus reducing
the efficiency of propagation model algorithms. This raises
the need to achieve the desired level of computational accu-
racy with the sparsest possible terrain sampling. Our research
aims to investigate, through a 3.6 GHz 5G NR-V2X downlink
link, how the degradation in terrain sampling density affects
the computational accuracy of several commonly used prop-
agation models applicable to this frequency band. Recogniz-
ing that the choice of interpolation between known discrete
terrain points may affect accuracy [9], linear interpolation
is adopted throughout this study in order to ensure method-
ological simplicity and consistency; the impact of alternative
interpolation methods on accuracy is not considered.

As an example, Fig. 3 presents a specific terrain profile
under linear interpolation, illustrating the effects of varying
sampling densities.

Fig. 2. The downlink connection of the 5G NR-V2X system.

Fig. 3. Effect of spatial resolution on terrain profile representa-
tion.

In the scope of this article, we examine four different
radio wave propagation models: the ITU-R P.1546-6 model,
which is a widely adopted empirical method; the Parabolic
Equation Modeling (PEM) approach as a deterministic ex-
ample; and the ITU-R P.452-16 and P.1812-6 models, both
of which represent hybrid approaches. The analysis is car-
ried out in the 3.4–3.8 GHz frequency band, which has been
harmonized within the European Union for terrestrial sys-
tems capable of providing electronic communications ser-
vices [10], with specific frequency arrangements and tech-
nical conditions defined in ECC Decision (11)06 [11]. This
band is allocated on a co-primary basis to mobile services
(excluding aeronautical mobile) according to the Radio Reg-
ulations (RR) [12], and is designated for mobile use in the
European Table of Frequency Allocations and Applications
(ECA Table) [13]. Its favorable balance between coverage
and capacity, along with regulatory harmonization, makes it
a suitable candidate for 5G NR-V2X deployments, and there-
fore a relevant choice for propagation modeling in this study.

Building on our previous study, which provided a com-
parative evaluation of empirical, hybrid, and deterministic
propagation models in the 3.6 GHz and 6 GHz frequency
bands [3], the present work advances this line of research



RADIOENGINEERING, VOL. 34, NO. 4, DECEMBER 2025 605

in several important ways. While the earlier analysis fo-
cused primarily on the overall prediction accuracy and gen-
eral applicability of the models under different frequency
conditions, it did not address their sensitivity to terrain rep-
resentation and its sampling density.

In contrast, this study systematically investigates how
variations in the spatial resolution of digital elevation data
influence path loss estimation and the stability of model out-
puts. By quantifying the terrain-sampling dependence of
each model, we reveal significant differences in how empiri-
cal, hybrid, and deterministic approaches respond to changes
in input granularity.

This sensitivity-oriented perspective not only deepens
the understanding of model behavior under realistic geo-
graphic conditions but also provides practical guidance for
selecting appropriate terrain resolutions in large-scale prop-
agation simulations.

The remainder of this paper is structured as follows.
Section 2 provides an overview of the state of the art in out-
door propagation modeling, highlighting the lack of studies
addressing the sensitivity of model accuracy to terrain sam-
pling density. Section 3 details the adopted methodology, as
well as the design of controlled test cases over three represen-
tative Hungarian regions. Section 4 presents the simulation
results and evaluates how terrain sampling density affects
the accuracy of each model. Section 5 introduces the spec-
tral complexity ratio as a new terrain-dependent indicator
and demonstrates its strong exponential correlation with the
average RMSE. Finally, Section 6 summarizes the findings
and discusses their implications for future 5G/6G network
planning and spectrum management.

2. State of the Art and Research Gap
Accurate and reliable channel modeling is essential for

the design and optimization of 5G NR-V2X systems, es-
pecially at 3.6 GHz, which serves as a primary frequency
band for vehicular and intelligent transportation networks.
The spatial resolution of terrain data (referred to as terrain
sampling density) plays a decisive role in determining how
effectively a propagation model can represent diffraction,
shadowing, and multipath propagation effects [14]. Higher
terrain sampling density allows the model to capture small-
scale topographic variations that influence the received signal
power and time–frequency dispersion of multipath compo-
nents, particularly in complex or mountainous areas [15–17].

Earlier research provides a wide comparative back-
ground on model behavior under various topographical con-
ditions. The ITU-R P.1546-6 model, while widely adopted
for large-scale coverage estimation, tends to overestimate
near base stations and underestimate signal levels in rural
or obstructed environments [17–19]. The Parabolic Equation
Method, introduced by Levy [20] and refined by Donohue and

Kuttler [21], numerically solves the wave equation for irregu-
lar terrain, offering high fidelity in diffraction and shadow re-
gion modeling but at the expense of computational intensity.
Hybrid models such as ITU-R P.452-16 and ITU-R P.1812-6
bridge empirical and deterministic approaches, maintaining
good accuracy in moderately complex terrain while remain-
ing computationally efficient [3]. However, these models
still experience performance degradation in highly rugged
environments due to simplified diffraction approximations.

Several works have addressed terrain-induced diffrac-
tion and multipath effects through enhanced numerical
schemes and ray-tracing validations [22–26]. For instance,
PE-based simulations can handle slope angles up to 20◦,
providing consistent results with both theoretical and em-
pirical observations. Meanwhile, hybrid models like ITU-R
P.452-16 employ multi-knife-edge diffraction methods [27],
which balance computational load with acceptable accuracy
for large-scale network planning. Despite these advances,
most studies still focus on urban, highway, or relatively flat
rural regions, with mountainous and highly rugged terrains
largely underrepresented in the literature [16, 28, 29].

Beyond topographical sensitivity, methodological
progress has been achieved through the use of geometry-
based deterministic and hybrid frameworks. Studies lever-
aging models such as Geometry-based Efficient propagation
Model for ehicle-to-Vehicle and ehicle-to-Infrastructure com-
munications (GEMV2) and Three-Dimensional Geometry-
based Stochastic Vehicle-to-Vehicle Channel Model (3D-
GSV2) integrate digital terrain and obstacle informa-
tion to classify link types and simulate fading mecha-
nisms [30], [31]. These approaches demonstrate that detailed
environmental geometry – including vehicle outlines, fo-
liage, and building density – strongly influences delay spread,
shadow fading, and overall channel reliability.

Although numerous studies have compared propagation
models under specific scenarios, few have systematically ex-
amined how the terrain sampling density – that is, the spatial
resolution of digital elevation data – affects the predictive
performance and computational efficiency of different prop-
agation models. Most existing works focus on individual
model validation or frequency-specific case studies, but they
do not analyze the interplay between terrain discretization
and model behavior under identical simulation conditions,
particularly at mid-microwave frequencies such as 3.6 GHz
and 6 GHz.

Furthermore, the literature lacks a quantitative assess-
ment of how empirical models (e.g., ITU-R P.1546-6) and
hybrid or deterministic approaches (e.g., ITU-R P.452-17 and
PEM) respond to varying terrain resolutions when all other
environmental and simulation parameters are held constant.

Consequently, the sensitivity of propagation loss predic-
tions to terrain sampling density remains poorly understood,
despite its critical importance in the design of accurate, scal-
able, and reproducible radio-propagation simulations.
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The present study aims to fill this gap by conducting
a comprehensive and controlled comparison of three major
outdoor propagation models – ITU-R P.1546-6, ITU-R P.452-
17, and the Parabolic Equation Method (PEM) – across
multiple terrain configurations and sampling densities. By
quantifying the variations in key performance indicators such
as Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Bias between model outputs, the study provides
insight into how digital elevation model (DEM) resolution
impacts model accuracy and computational cost.

In addition, an automated simulation framework has
been developed to ensure consistent pre-processing, terrain
sampling, and model evaluation, thereby providing a repro-
ducible benchmark for future research. This contribution
helps clarify the terrain sensitivity of empirical, hybrid, and
deterministic approaches, supporting both regulatory appli-
cations and next-generation 5G/6G system planning.

To further quantify the relationship between terrain
characteristics and model accuracy, this study introduces the
spectral complexity ratio (SCR) as a novel terrain descrip-
tor. This, derived from the Fourier transform of the elevation
profile, expresses the proportion of high-frequency terrain
components relative to the total spectral energy, thus pro-
viding a compact indicator of topographic irregularity. Un-
like terrain sampling density, which only defines the spatial
resolution of input data, the SCR directly characterizes the
morphological complexity of the terrain itself.

By comparing the average root mean square error of
propagation model predictions with the corresponding SCR
values, a strong exponential correlation was identified across
all models and frequency bands. This finding establishes a di-
rect link between the spectral complexity of the terrain and the
expected model error, enabling the a priori estimation of the
model uncertainty without extensive simulations. The pro-
posed approach therefore provides a physically interpretable
and computationally efficient framework for assessing model
reliability as a function of terrain complexity.

3. Methodology
In the present study, we examine the above mentioned

four radio wave propagation models based on different the-
oretical foundations. The accuracy of the models in the
function of terrain sampling density is assessed using real to-
pographic data from Hungary, considering three distinct sce-
narios: an urban hilly area, a flat terrain, and a mountainous
region. For each case, both low-density test point evaluations
and high-resolution line-based calculations are carried out.

The aim of the analysis is to evaluate how the accuracy
of these models depends on the terrain sampling density,
specifically in the context of a 3.6 GHz 5G NR-V2X down-
link application.

3.1 Wave Propagation Models
To demonstrate the differences between the investigated

models, Figure 4 presents the results of line-based calcula-
tions along the same terrain profile using the ITU-R P.1546-
6, PEM, ITU-R P.452-16, and ITU-R P.1812-6 methods.
A side-by-side comparison reveals substantial variations be-
tween the models, as well as the differing degrees to which
terrain characteristics influence the outcomes. While a com-
prehensive accuracy assessment of these approaches is be-
yond the scope of this paper, further details on their compar-
ative performance can be found in the relevant literature [3].

Among the examined models, ITU-R P.1546-6 [32] is
an empirical point-to-area propagation model developed for
frequencies between 30 MHz and 4000 MHz, suitable for
various terrestrial services. It relies on interpolation and
extrapolation from field strength curves derived from ex-
tensive measurement data, incorporating parameters such
as distance, frequency, antenna height, time, and location
variability.

The model includes corrections for terrain clearance,
clutter, mixed land-sea paths, and antenna height differences,
making it adaptable to diverse environments, particularly for
long-range scenarios up to 1000 km. Due to its wide ac-
ceptance and standardized methodology, it provides a ro-
bust reference for evaluating terrain-dependent propagation
behavior.

The Parabolic Equation Modeling approach employed
in this study is a deterministic numerical method that solves
a form of the parabolic approximation to the Helmholtz
equation, enabling accurate modeling of wave diffraction,
refraction, and terrain-induced scattering in complex envi-
ronments. Using the Split-Step Fourier Method [33] or the
Crank-Nicolson Method [34], PEM computes the field prop-
agation in a terrain-following two-dimensional grid.
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(a) PEM
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(b) ITU-R P.1546-6
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(c) ITU-R P.452-16
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(d) ITU-R P.1812-6

Fig. 4. Line-based examples for the investigated models.
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The key relation,

𝜕𝜓 (𝑥, 𝑧)
𝜕𝑥

= − j
2𝑘0

(
𝜕2𝜓 (𝑥, 𝑧)

𝜕𝑧2 + 𝑘2
0

(
𝑛2 − 1

)
𝜓 (𝑥, 𝑧)

)
, (3)

describes the evolution of the complex field 𝜓(𝑥, 𝑧) in the
range-height domain, where 𝑘0 is the free-space wave num-
ber and n is the refractive index profile [35]. This formulation
allows terrain effect to be incorporated via boundary condi-
tions and terrain-following coordinate transformations.

The ITU-R P.452-16 is a semi-deterministic point-to-
point propagation model designed to predict interference and
wanted signal levels from 100 MHz. It incorporates multiple
propagation mechanisms including line-of-sight, diffraction
over terrain obstacles, tropospheric scatter, and anomalous
propagation such as ducting and layer reflection based on
detailed terrain and atmospheric refractivity profiles. The
model uses digital elevation data and climatic parameters to
estimate path-specific losses under varying time percentages.
It supports the assessment of both short- and long-range paths
and is particularly suited for frequency coordination, inter-
ference analysis, and high-frequency backhaul planning [36].

Last, but not least the ITU-R P.1812-6 is a point-to-area
and point-to-point propagation model specifically developed
for frequencies from 30 MHz to 6 GHz, optimized for terres-
trial services in mixed urban, suburban, and rural environ-
ments. It combines empirical and deterministic elements,
incorporating terrain data, land cover classification, and sta-
tistical parameters to estimate path loss with high spatial
resolution. The model supports various propagation mech-
anisms, including line-of-sight, diffraction over terrain and
buildings, and tropospheric effects, and is designed to han-
dle irregular topographies and clutter conditions [37]. By
integrating both digital elevation models and clutter height
databases, it offers detailed predictions for coverage, interfer-
ence, and compatibility analyses. Within the present study,
ITU-R P.1812-6 contributes a hybrid approach that bridges
the gap between purely empirical models and full-wave de-
terministic methods.

3.2 Test Cases
To comprehensively evaluate the degradation in accu-

racy of the investigated radio wave propagation models as
a function of terrain resolution, two distinct test scenarios
were devised. In the first scenario, we employed version
7.5.1.1 of the LStelcom CHIRplus_BC broadcast network
planning tool software [38], which incorporates all the propa-
gation models under study–except for the Parabolic Equation
Method (PEM)–and features its own terrain database with
a maximum resolution of 50 meters.

As illustrated in Fig. 5, the selected test areas are shown
within the simulation software environment.

Three separate 900 km2 regions were defined across
Hungary to represent distinct geographic environments: one
in and around Budapest, characterizing an urban, hilly set-

ting; another in the Great Hungarian Plain near Kecskemét,
representing flat terrain; and a third in close proxim-
ity to Kékestető, Hungary’s highest peak, illustrating
a mountainous and highly fragmented region. In each of
these areas, a 5G New Radio (5G NR) base station with a ref-
erence height of 30 meters was placed in the bottom-right
corner; for the Kékestető area, the station was positioned
directly on the mountaintop. Subsequently, 30 test points
were distributed across each region. These points were as-
signed a height of 1.5 meters above ground level, simulating
the typical elevation of a vehicle-mounted receiver. At each
test location, signal strength levels were evaluated. The ter-
rain profiles are illustrated in Fig. 6 and the bounding World
Geodetic System 1984 (WGS84) coordinates of the areas are
provided in Tab. 1.

Area type 𝑋min 𝑌min 𝑋max 𝑌max
Urban, hilly 18.3602 47.3146 19.0400 47.7366
Flat 19.7074 46.4795 20.3982 46.8978
Mountainous 19.6992 47.7689 20.2966 48.1322

Tab. 1. The WGS84 coordinates of the limits of the areas
(CHIRplus_BC).

Fig. 5. The point-based test cases in CHIRplus_BC software.

(a) Urban, hilly (b) Flat

(c) Mountainous

Fig. 6. Terrain profiles of the defined areas in CHIRplus_BC.
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(a) Urban, hilly (b) Flat (c) Mountainous

Fig. 7. Color relief map of the areas (OpenTopography).

Area type 𝑋min 𝑌min 𝑋max 𝑌max
Urban, hilly 18.6855 47.4355 19.0893 47.7036
Flat 19.7771 46.6554 20.1738 46.9209
Mountainous 19.5988 47.8726 20.0078 48.1379

Tab. 2. The WGS84 coordinates of the limits of the areas (Open-
Topography).

Metric Urban, hilly Flat Mountainous
Min [m] 93 66 100
Max [m] 761 141 1034
Elevation range [m] 669 75 934
Mean [m] 228 90 308
Standard deviation [m] 97 10 139
Mean slope 2.9 0.7 4.7

Tab. 3. Key statistical parameters of the three terrain profiles.

In the second scenario, we relied on the freely avail-
able Copernicus GLO-30 Digital Elevation Model, obtained
through the OpenTopography platform [39]. In this case,
three areas are again examined, selected to match the char-
acteristics of the regions used in the test point-based calcu-
lations. The bounding coordinates of these areas are pro-
vided in Tab. 2, their terrain characteristics are summarized
in Tab. 3, and the areas are illustrated in Fig. 7.

From these areas, 200 terrain profiles of 30 km in length
were randomly extracted using a custom Python script. To
enable the batch processing of these profiles, a dedicated
iterative script was developed in MATLAB [40] to inter-
face with the implemented versions of the ITU-R P.1546-6,
ITU-R P.1812-6, and ITU-R P.452-16 propagation models
available online [41]. These terrain profiles were then pro-
cessed under varying resolution settings, yielding line-based
simulation results with a significantly larger sample size than
those produced by the test point-based method.

The PEM approach constitutes an exception in both the
test point-based and line-based simulations, as the PEM sim-
ulations were carried out using the PETOOL v2.0 MATLAB
toolbox [42]. This toolbox cannot be directly integrated
with CHIRplus_BC and is primarily operated through its
own graphical user interface. As a first step, we reverse-
engineered the PETOOL code and developed an iterative
script that directly calls the Split-Step Parabolic Equation
(SSPE) function marked as SSPE_function(), responsible
for the core computations. This custom script enabled the
efficient batch processing of line-based calculations. For the
test point-based simulations, the terrain profiles between the
test base station and the respective test points were exported

from CHIRplus_BC and processed similarly using the line-
based method. However, only the result corresponding to the
final point along each path (that is, the test point itself) was
retained for analysis.

For the sake of straightforward comparability and to
eliminate confounding factors in the assessment of model
accuracy, the 5G NR test base stations under investigation
were equipped with omnidirectional antennas. Their average
effective radiated power was 46 dBm, and the transmission
frequency was set to 3.6 GHz [43].

3.3 Terrain Downsampling and Calculation
To assess the sensitivity of radio propagation models

to terrain data resolution, we applied a downsampling and
interpolation-based methodology. This approach aims to
quantify the extent to which the spatial resolution of input
terrain data affects the accuracy of field strength predictions.

Let ℎref [𝑖] denote the reference terrain profile, com-
posed of 𝑁 regularly spaced elevation samples (e.g., at 30-
meter intervals), which serves as the baseline for accurate
modeling. The corresponding electric field strength profile
𝐸ref [𝑖] is obtained by applying a selected propagation model
using the full-resolution profile as input.

To simulate lower-resolution terrain input, we apply sys-
tematic downsampling to the reference profile by retaining
every 𝑘-th sample:

ℎthin [ 𝑗] = ℎref [ 𝑗 𝑘] , 𝑗 = 0, 1, . . . ,
⌊
𝑁

𝑘

⌋
(4)

where 𝑘 ∈ N denotes the downsampling fator (e.g., 𝑘 =

2, 5, 10). The resulting coarse profile is then linearly inter-
polated back to the original resolution in order to reconstruct
a full-length approximation of the terrain:

ℎinterp [𝑖] = ℎthin [ 𝑗] +
(
𝑖 − 𝑗 𝑘

𝑘

)
· (ℎthin [ 𝑗 + 1] − ℎthin [ 𝑗]) ,

for 𝑗 𝑘 ≤ 𝑖 < ( 𝑗 + 1) 𝑘.
(5)

This interpolated profile ℎinterp [𝑖] is then used as the input
for a new run of the propagation model to obtain a modified
field strength profile:

𝐸interp [𝑖] = Γ
{
ℎinterp [𝑖]

}
. (6)

The deviation introduced by terrain downsampling is then
quantified by comparing the interpolated field strength pro-
file to the reference profile using standard error metrics.

3.4 Metrics for Sensitivity Analysis
To evaluate the degradation in accuracy of the propaga-

tion models as a function of terrain resolution, several statis-
tical metrics were employed [44]. Let 𝐸𝑖 denote the reference
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field strength value at the 𝑖-th point, obtained using the highest
available terrain resolution, and let 𝐸̂𝑖 be the corresponding
predicted value obtained using a reduced-resolution terrain
dataset. The total number of evaluation points or profiles
is denoted by 𝑁 . It is clear that the reference field strength
vector and the field strength vectors corresponding to sparser
terrain sampling have the same length, as the missing points
are filled in using linear interpolation.

The Mean Absolute Error (MAE) quantifies the aver-
age magnitude of the absolute errors between predicted and
reference values, irrespective of direction:

MAE =
1
𝑁

𝑁∑︁
𝑖=1

��𝐸̂𝑖 − 𝐸𝑖

�� . (7)

The Root Mean Square Error (RMSE) places greater
emphasis on larger errors due to the squaring and is sensitive
to outliers:

RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(
𝐸̂𝑖 − 𝐸𝑖

)2
. (8)

The Bias indicates whether the reduced-resolution ter-
rain model systematically overestimates or underestimates
the field strength:

Bias =
1
𝑁

𝑁∑︁
𝑖=1

(
𝐸̂𝑖 − 𝐸𝑖

)
. (9)

It is also informative to examine the Standard Deviation
of the Error (𝜎e), which characterizes the variability of the
errors around the mean value:

𝜎e =

√√√
1
𝑁

𝑁∑︁
𝑖=1

( (
𝐸̂𝑖 − 𝐸𝑖

)
− Bias

)2
. (10)

The pointwise relative error, denoted as RelErr𝑖 , was
calculated in the linear scale (i.e., in μV/m) rather than in
the logarithmic dB scale. This approach ensures physical
consistency, as the relative error inherently refers to a ratio
between absolute field strength values. The relative error
was computed only where the reference field strength was
non-zero, according to the following formula:

RelErr𝑖 =
��𝐸̂𝑖 − 𝐸𝑖

��
|𝐸𝑖 |

· 100 % (11)

where 𝐸𝑖 is the reference field strength and 𝐸̂𝑖 is the predicted
value, both expressed in μV/m. This method avoids division
by zero and ensures meaningful percentage deviations are
reported. Finally, the mean of all valid RelErr𝑖 values was
calculated for each resolution level.

Last, but not least, it is useful to define the normal-
ized RMSE (nRMSE) which facilitates comparisons across
datasets with differing dynamic ranges:

nRMSE =
RMSE

𝐸max − 𝐸min
(12)

where 𝐸max − 𝐸min denote the maximum and minimum of
the reference values, respectively.

3.5 Spectral-Driven Profile Simplification
To investigate how terrain sampling density affects

propagation model outputs, we introduced a controlled pro-
cedure involving artificial downsampling of terrain profiles,
followed by linear interpolation to restore the original profile
length [45]. Field strength was then recalculated using the
same propagation model, and compared to the reference re-
sults computed on the full-resolution terrain. This approach
allowed us to isolate the effects of terrain resolution from
other factors and quantify their impact on model accuracy.

To anticipate whether a given terrain profile is suscep-
tible to accuracy loss under reduced sampling, we analysed
its spatial frequency content using the discrete Fourier trans-
form (DFT) [46]. Let the terrain be represented as discrete
elevation sequence 𝑧𝑛 = 𝑧 (𝑛 · Δ𝑥), where Δ𝑥 is the original
sampling interval. The DFT of the "signal" is:

𝑍ℓ =

𝑁−1∑︁
𝑛=0

𝑧𝑛 · e−j 2𝜋ℓ𝑛
𝑁 , ℓ = 0, . . . , 𝑁 − 1 (13)

and the corresponding spectral power is:
𝑆ℓ = |𝑍ℓ |2 . (14)

The spatial frequency for each index is

𝑓ℓ =
ℓ

𝑁 · Δ𝑥 . (15)

To assess sensitivity to downsampling by a factor 𝑘 ,
a cutoff frequency is introduced based on the Nyquist crite-
rion for the reduced sampling interval 𝑘 · Δ𝑥:

𝑓c =
1

2𝑘 · Δ𝑥 . (16)

Frequencies below 𝑓c are retained after downsampling,
while those above are lost or aliased. Accordingly, we com-
pute the total energy in the low-frequency (LFE) and high-
frequency (HFE) domains as:

LFE =
∑︁
𝑓ℓ< 𝑓c

𝑆ℓ , HFE =
∑︁
𝑓ℓ≥ 𝑓c

𝑆ℓ . (17)

The spectral complexity ratio is then defined as:

𝑅 (𝑘 ) =
HFE

LFE + HFE
. (18)

This dimensionless parameter 𝑅 (𝑘 ) ∈ [0, 1] quantifies
the proportion of high-frequency energy in the terrain profile
at a given downsampling factor 𝑘 . Higher 𝑅 (𝑘 ) values in-
dicate greater local variation and steeper slopes, suggesting
higher sensitivity to profile simplification. To evaluate the
predictive utility of 𝑅 (𝑘 ) , the root mean square error (RMSE)
has been calculated between the field strength calculated on
the full-resolution profile and that obtained from the interpo-
lated profile after downsampling. Each terrain segment was
associated with a pair

(
𝑅
(𝑘 )
𝑖

,RMSE(𝑘 )
𝑖

)
.



610 T. I. UNGER, M. KUCZMANN, THE IMPACT OF TERRAIN SAMPLING DENSITY ON. . .

Instead of analysing these pairs individually for all
𝑁p profiles, we adopted an aggregated analysis: for each
downsampling factor 𝑘 , we averaged 𝑅 (𝑘 ) and RMSE(𝑘 )

across all 𝑁p = 200 profiles, resulting in a single aggregated
data point

(
𝑅
(𝑘 )

,RMSE
(𝑘 ) )

. This reduces the influence of
profile-specific variability and reveals the global trend be-
tween spectral complexity and model error as a function of
terrain resolution.

The aggregated data points were first fitted with a simple
linear regression model:

RMSE
(𝑘 )

= 𝛽0 + 𝛽1𝑅
(𝑘 ) + 𝜀 (𝑘 ) (19)

where 𝛽0 is the intercept, 𝛽1 is the slope, and 𝜀 (𝑘 ) is the
residual error term for downsampling factor 𝑘 .

We also tested a saturating exponential model. To
improve numerical stability, we min–max normalized
the predictor

𝑟 (𝑘 ) =
𝑅
(𝑘 ) − 𝑅min

𝑅max − 𝑅min
∈ [0, 1] (20)

and fitted the following first-order (asymptotic) response
model to the six aggregated points:

RMSE
(𝑘 )

= 𝑐 + 𝐴
(
1 − e−𝐵𝑟 (𝑘) ) + 𝜀 (𝑘 ) . (21)

Parameters (𝑐, 𝐴, 𝐵) were estimated by non-linear least
squares (sum of squared errors) using derivative-free opti-
mization with multiple reasonable initial values.

4. Test Point-Based Results
Our investigations based on test point simulations were

carried out in the CHIRplus_BC environment, following the
previously described methodology. For the ITU-R P.1546-6,
ITU-R P.452-16, and ITU-R P.1812-6 propagation models,
the time percentage was uniformly set to 10%, and the loca-
tion percentage to 50%. In the case of the ITU-R P.452-16
model, the prediction type was set to “Average Year”, while
the surface parameters were configured as follows: temper-
ature was set to 20◦C, atmospheric pressure to 1013.25 hPa,
and water vapour density to 8 g/m2; the atmospheric refrac-
tivity (N0) was set to 330 N-units, and the refractivity index
lapse rate to 45 N-units/km. The same parameters were ap-
plied in the ITU-R P.1812-6 model and during the line-based
computations to ensure comparability.

4.1 Urban, Hilly Terrain
The metrics calculated from the simulation results for

urban, hilly terrain are presented in Tab. 4 and Fig. 8. The
results corresponding to the 50 m raster resolution serve as
the reference, against which the calculations performed using
coarser terrain profiles were compared. The performance of
the ITU-R P.452-16 model across varying terrain resolutions

in urban, hilly environment reveals a generally consistent and
interpretable pattern. At the finest resolutions (100 m and
200 m), the model demonstrates high accuracy, with MAE
values of 0.70 and 0.62 dBμV/m, respectively, and RMSE
values of 1.26 and 1.13 dBμV/m. The relative error remains
modest at 6.10% and 4.36%, while the normalised RMSE
(nRMSE) is below 0.02 in both cases, confirming strong
alignment with the reference results.

From 400 m upwards, however, a clear decline in ac-
curacy is observed. The RMSE at 400 m rises sharply to
6.83 dBμV/m, accompanied by a relative error of 19.87%.
Despite a temporary decrease in RMSE at 800 m (to
5.30 dBμV/m), the relative error escalates to 39.96%, indi-
cating non-linear error amplification due to increased terrain
generalization.

At 1600 m resolution, all error metrics deteriorate sig-
nificantly, with the RMSE reaching 12.10 dBμV/m and the
relative error exceeding 369.64%. These results confirm that
the P.452-16 model is highly sensitive to terrain resolution,
particularly beyond 200 m, and may produce unreliable es-
timates when applied to coarse digital elevation models in
complex urban or hilly environments.

The ITU-R P.1546-6 model demonstrates a relatively
stable performance across different terrain resolutions, al-
though with clear signs of sensitivity at coarser levels. At the
finest resolution (100 m), its MAE and RMSE values are 1.52
and 2.98 dBμV/m, respectively, with a linear relative error of
only 1.16%. These values indicate that, despite being higher
than those of P.452-16, the model maintains good absolute
and relative accuracy in densely sampled terrains.

Test-point results: Urban, hilly terrain
Resolution MAE RMSE Bias 𝝈e RelErr nRMSE

[dB] [dB] [dB] [dB] [%] [–]
ITU-R P.452-16

100 m 0.697 1.263 –0.037 1.262 6.10 0.0187
200 m 0.620 1.134 0.347 1.079 4.36 0.0168
400 m 2.377 6.827 –0.403 6.815 19.87 0.1013
800 m 2.843 5.295 0.743 5.243 39.96 0.0786
1600 m 6.363 12.100 1.310 12.029 369.64 0.1795

ITU-R P.1546-6
100 m 1.520 2.975 0.207 2.968 1.16 0.0366
200 m 1.527 2.820 0.707 2.730 2.34 0.0347
400 m 3.037 5.319 0.650 5.279 20.30 0.0655
800 m 3.293 5.421 2.420 4.850 6.17 0.0668
1600 m 6.830 8.995 4.183 7.963 39.21 0.1108

ITU-R P.1812-6
100 m 0.690 1.260 –0.043 1.259 8.42 0.0188
200 m 0.597 1.110 0.343 1.055 7.72 0.0165
400 m 2.377 6.811 –0.383 6.800 20.14 0.1015
800 m 2.823 5.278 0.743 5.226 34.02 0.0787
1600 m 6.337 12.053 1.390 11.973 223.97 0.1796

PEM
100 m 6.911 11.340 1.890 11.181 94.66 0.0737
200 m 8.548 10.464 2.992 10.027 164.41 0.0680
400 m 15.823 20.805 8.828 18.839 817.42 0.1352
800 m 15.674 21.692 9.612 19.446 1003.9 0.1410
1600 m 26.973 36.396 16.987 32.189 2287.3 0.2365

Tab. 4. Test point-based error metrics in urban, hilly environ-
ments.
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Fig. 8. Test point-based error metrics of simulations over urban,
hilly terrain at varying terrain resolutions.
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Fig. 9. PEM calculations from the base station to a testpoint.

At 200 m resolution, the results remain remarkably con-
sistent: MAE and RMSE change only marginally (1.53 and
2.82 dBμV/m), and the relative error increases slightly to
2.34%. This suggests that moderate terrain simplification
does not substantially affect the model’s prediction accuracy.
However, from 400 m onwards, a more pronounced degrada-
tion emerges. At 400 m, RMSE increases to 5.32 dBμV/m
and relative error surges to over 20%, reflecting a drop in
robustness. This is followed by a non-monotonic trend:
at 800 m resolution, although the bias increases sharply to
2.42 dB, the standard deviation (𝜎e) decreases to 4.85 dB,
resulting in a reduced relative error of 6.17%. Finally, at
1600 m, the RMSE rises to nearly 9 dBμV/m and the relative
error exceeds 39%, accompanied by substantial overestima-
tion (bias = 4.18 dB).

This behaviour, also evident in the MAE and nRMSE
plots, highlights how empirical models like ITU-R P.1546-6
are influenced by terrain resolution in complex ways. Since
this model incorporates terrain statistically rather than geo-
metrically, resolution-dependent terrain smoothing may in-
advertently reduce signal variance. This can sometimes lead
to apparently improved relative errors, as observed at 800 m,
but these improvements may stem from consistent overesti-
mation rather than true accuracy. Overall, while the model
tolerates mild resolution coarsening, it becomes increasingly
unreliable in highly generalised terrain scenarios, both in
terms of amplitude accuracy and predictive stability.

The PEM model displays significantly higher error lev-
els than the ITU-R models across all terrain resolutions. Even
at 100 m, the RMSE exceeds 11 dBμV/m and the relative
error approaches 95%, indicating substantial discrepancies
despite the fine spatial input. As the resolution coarsens, the
error metrics deteriorate rapidly. At 400 m, the RMSE dou-
bles to 20.8 dBμV/m, and the relative error exceeds 800%. At
1600 m, the RMSE reaches 36.4 dBμV/m, while the relative
error exceeds 2200%. These extreme values suggest that the
PEM implementation in this study—designed primarily for
terrain-guided propagation—does not handle coarse eleva-
tion data gracefully. The model likely overfits to fine terrain
details, and the lack of such information at coarse resolutions
disrupts the ray curvature and ducting estimations that PEM
relies on. Among all the models evaluated, PEM is by far the
most sensitive to terrain generalization, as clearly illustrated
in Fig. 9, which shows a line-based calculation between the
test base station and a test point using both 50 m and 1600 m
terrain resolutions.

It is clearly observable that thinning the terrain profile
and subsequently filling the gaps using linear interpolation
can easily result in the loss of narrow but significant obsta-
cles in the landscape. In the case of a model with high terrain
sensitivity, such as PEM, this can result in substantial er-
rors. In this particular example, the test point lies just behind
such an obstacle; therefore, when using a high-resolution ter-
rain profile, the calculated field strength is very low, around
−52 dBμV/m. However, when the terrain profile is down-
sampled to a 1600 m resolution, the obstructing effect of the
terrain feature is lost.

Due to interpolation, the end of the profile coincides
with the top of the obstacle, which leads to the opposite effect:
instead of being shadowed by the obstruction, the receiver ap-
pears to be positioned on top of it, benefiting from improved
line-of-sight conditions. This results in a significantly higher
field strength of approximately 46 dBμV/m. This example
clearly explains the extreme errors observed and highlights
that PEM is considerably more sensitive to terrain character-
istics as an input parameter than the other models.

In urban, hilly environments, the ITU-R P.1812-6
model demonstrates excellent predictive accuracy when high-
resolution terrain data are used. At 100 m and 200 m terrain
sampling intervals, the model achieves mean absolute error
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and root mean square error values below 1.3 dBμV/m, with
relative errors remaining under 8.5%. These results indicate
that, at finer spatial resolutions, the model is able to account
for terrain-induced diffraction effects with a high degree of
reliability.

However, this performance advantage deteriorates
rapidly as the terrain resolution becomes coarser. At 400 m
and 800 m resolutions, RMSE values exceed 5 dBμV/m and
relative errors rise sharply, surpassing 34%. At 1600 m reso-
lution, the model’s predictive accuracy breaks down entirely,
with relative errors exceeding 220%, reflecting a drastic mis-
representation of the actual propagation environment.

This pronounced degradation highlights the model’s
strong dependency on detailed terrain input. As spatial detail
is lost, the diffraction mechanisms that the model attempts
to simulate become increasingly disconnected from the true
physical conditions, resulting in significant overestimation or
underestimation of field strength.

While the overall trend bears some resemblance to that
of the ITU-R P.452-16 model at lower resolutions, P.1812-6
consistently produces slightly higher relative errors across
all scales. This distinction is clearly supported by the plotted
error metrics and should be taken into account when se-
lecting models for simulations involving generalised or low-
resolution terrain data.

In summary, the evaluation of different propagation
models under varying terrain resolutions in an urban, hilly
environment highlights the critical importance of spatial de-
tail in accurate field strength prediction. While the ITU-
R P.452-16 and P.1812-6 models perform reliably at high-
resolution terrain inputs, their accuracy diminishes markedly
with coarser raster data.

The ITU-R P.1546-6 model, though more tolerant to
terrain simplification, still exhibits non-linear behaviour as
generalisation increases. By contrast, the PEM model shows
extreme sensitivity to resolution loss, with prediction errors
escalating rapidly even at moderate levels of generalisation.

The visual comparison of field strength maps in Fig. 10
further supports these conclusions, revealing how each
model’s spatial prediction fidelity deteriorates as terrain res-
olution coarsens.

4.2 Flat Terrain
Before having precise knowledge of the test point-based

results obtained over flat, lowland terrain, it is reasonable to
assume that in such cases, reducing the resolution of terrain
data has a significantly smaller impact on the accuracy of the
simulated field strength levels. This is due to the fact that the
terrain profile contains far fewer abrupt changes and promi-
nent topographical features. Consequently, if the terrain is
known to be flat, it may be possible to reduce the sampling
density, which can lead to lower computational demands and
faster simulation results.

(a) P.452-16, 50 m (b) P.452-16, 400 m

(c) P.452-16, 1600 m (d) P.1546-6, 50 m

(e) P.1546-6, 400 m (f) P.1546-6, 1600 m

(g) P.1812-6, 50 m (h) P.1812-6, 400 m

(i) P.1812-6, 1600 m (j) PEM, 50 m

(k) PEM, 400 m (l) PEM, 1600 m

Fig. 10. Field strength maps for different raster resolutions
(50 m, 400 m, 1600 m) across all models (ITU-R P.452-
16, P.1546-6, P.1812-6, and PEM) in urban, hilly terrain.
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The simulation results for flat terrain are presented in
Tab. 5. The outcomes support the initial hypothesis, confirm-
ing that the simplicity of flat terrain significantly reduces the
impact of sampling resolution reduction on the accuracy of
field strength predictions. While in urban, hilly environments
coarser terrain models introduced substantial errors already
at 400–800 m raster resolutions, several models maintain rel-
atively stable performance up to 800 m in flat areas.

The ITU-R P.452-16 model continues to provide accu-
rate predictions over flat terrain at 100 m and 200 m raster
resolutions: the errors remain small, and the relative error is
around 6%. At 400 m, the errors increase noticeably, but not
dramatically. In contrast, at 800 m and 1600 m resolutions,
a sharp degradation in accuracy is observed, with the relative
error exceeding 50%, which aligns well with the observation
that this model is particularly sensitive to the loss of terrain
detail, regardless of whether the environment is flat or hilly.

In the case of the ITU-R P.1812-6 model, the error
trends are nearly identical to those of the ITU-R P.452-16
model, especially in the 100–400 m resolution range. In
these cases, the RMSE remains below 1.2 dB, and the rela-
tive error is under 10.6%. This indicates that as long as the
terrain remains homogeneous, the model is capable of accu-
rately tracking propagation conditions. However, at 800 m
and 1600 m resolutions, a rapid increase in error also appears
here, indicating the model’s sensitivity to terrain detail. Still,
these deviations remain less severe than those observed in
urban, hilly environments.

The parallel behavior of the error metrics with respect
to raster resolution is evident not only in flat areas but also
in the simulation results for complex terrain. It is impor-
tant to emphasize, however, that the absolute predicted field
strength levels differ between the two models; the similar-
ity appears solely in the raster-dependent trends of the error
metrics. This can also be observed in Fig. 11.

This similarity is not coincidental: both models are
based on similar principles, particularly in the treatment of
diffraction, ray-tracing, and anomalous propagation compo-
nents. Nevertheless, the ITU-R P.1812-6 model relies on
more detailed climate zones and statistical distributions and
explicitly addresses the specific characteristics of the land
mobile service, resulting in generally more conservative pre-
dictions. The similar dependence of the metrics on terrain
resolution primarily stems from the fact that the mathematical
treatment of terrain-related components is largely equivalent
in both models, even though their practical scope and target
services differ.

The performance of the ITU-R P.1546-6 model over flat
terrain is particularly convincing. Within the 100–400 m res-
olution range, the RMSE consistently remains below 0.32 dB,
while the relative error stays under 2.5%. These values are
significantly more favourable than those observed in urban
environments, where even at 400 m resolution, the RMSE
exceeded 5 dB and the relative error approached 20%. Even

at a raster resolution of 800 m, only moderate distortion is
observed, indicating that the model tolerates resolution re-
duction well over flat terrain.

Test-point results: Flat terrain
Resolution MAE RMSE Bias 𝝈e RelErr nRMSE

[dB] [dB] [dB] [dB] [%] [–]
ITU-R P.452-16

100 m 0.430 1.164 0.230 1.141 5.98 0.0312
200 m 0.540 0.845 0.093 0.840 6.34 0.0227
400 m 0.920 1.188 0.107 1.184 10.60 0.0319
800 m 2.577 4.628 1.910 4.215 52.76 0.1241
1600 m 3.497 4.841 0.670 4.795 59.64 0.1298

ITU-R P.1546-6
100 m 0.057 0.091 –0.050 0.076 0.74 0.0022
200 m 0.120 0.181 –0.040 0.176 1.40 0.0044
400 m 0.213 0.314 0.200 0.242 2.46 0.0076
800 m 0.330 0.467 0.277 0.376 4.05 0.0113
1600 m 1.403 1.981 –1.323 1.475 16.87 0.0480

ITU-R P.1812-6
100 m 0.430 1.164 0.230 1.141 5.98 0.0315
200 m 0.550 0.865 0.110 0.858 6.49 0.0234
400 m 0.920 1.192 0.127 1.185 10.65 0.0322
800 m 2.590 4.598 1.923 4.177 52.32 0.1243
1600 m 3.340 4.806 1.027 4.695 58.38 0.1299

PEM
100 m 1.270 2.472 0.756 2.354 19.22 0.1040
200 m 1.431 2.177 0.856 2.001 19.74 0.0915
400 m 2.240 3.915 1.270 3.703 41.20 0.1646
800 m 3.375 5.579 1.383 5.405 80.37 0.2346
1600 m 6.006 7.723 0.599 7.700 107.33 0.3247

Tab. 5. Test point-based error metrics in flat environments.

Fig. 11. Test point-based error metrics of simulations over flat
terrain at varying terrain resolutions.



614 T. I. UNGER, M. KUCZMANN, THE IMPACT OF TERRAIN SAMPLING DENSITY ON. . .

(a) P.452-16, 50 m (b) P.452-16, 400 m

(c) P.452-16, 1600 m (d) P.1546-6, 50 m

(e) P.1546-6, 400 m (f) P.1546-6, 1600 m

(g) P.1812-6, 50 m (h) P.1812-6, 400 m

(i) P.1812-6, 1600 m (j) PEM, 50 m

(k) PEM, 400 m (l) PEM, 1600 m

Fig. 12. Field strength maps for different raster resolutions
(50 m, 400 m, 1600 m) across all models (ITU-R P.452-
16, P.1546-6, P.1812-6, and PEM) in flat terrain.

In the case of the PEM model, the results over flat
terrain also reflect the previously observed high sensitivity.
Although the errors are somewhat lower than in hilly envi-
ronments, the relative errors still exceed 19% even at a 100 m
resolution, and rise above 107% at 1600 m. The field strength
behavior at the examined test points across all four propaga-
tion models is presented in Fig. 12.

Overall, it can be stated that most models tolerate the re-
duction in sampling density better over flat terrain than under
more varied topographical conditions. The ITU-R P.1546-6
model in particular demonstrates outstanding stability, while
the ITU-R P.452-16 and ITU-R P.1812-6 models maintain ac-
ceptable error levels up to 400 m. The PEM model, however,
continues to produce significant errors, and its application
with generalised terrain data is therefore not recommended
even in flat environments.

4.3 Mountainous Terrain
The mountainous terrain profile is characterized by

rapid elevation changes over short horizontal distances, re-
sulting in a highly fragmented topography. It is therefore
reasonable to hypothesise that this terrain category would
yield the highest numerical values across the evaluated error
metrics. This expectation stems from the fact that when even
a small proportion of elevation samples is removed and re-
placed with linearly interpolated values, the resulting terrain
profile may fail to capture critical features such as ridges, val-
leys, and steep slopes. The simulation results, summarised
in Tab. 6, provide clear confirmation of this assumption.

Test-point results: Mountainous terrain
Resolution MAE RMSE Bias 𝝈e RelErr nRMSE

[dB] [dB] [dB] [dB] [%] [–]
ITU-R P.452-16

100 m 3.217 7.580 0.137 7.579 71.66 0.1170
200 m 4.963 9.823 –1.063 9.765 57.90 0.1516
400 m 6.710 12.983 4.177 12.292 740.12 0.2004
800 m 10.743 17.031 7.990 15.040 1700.7 0.2628
1600 m 13.890 20.521 13.777 15.209 1913.5 0.3167

ITU-R P.1546-6
100 m 1.690 3.629 –0.283 3.618 17.58 0.0917
200 m 2.350 3.690 0.070 3.689 27.82 0.0932
400 m 2.610 4.568 1.397 4.349 48.31 0.1154
800 m 4.220 6.497 3.447 5.508 98.98 0.1641
1600 m 4.513 6.760 3.927 5.502 104.95 0.1707

ITU-R P.1812-6
100 m 3.233 7.586 0.153 7.584 59.92 0.1174
200 m 4.963 9.805 –1.043 9.749 53.38 0.1518
400 m 6.717 12.952 4.150 12.270 609.02 0.2005
800 m 10.713 16.983 7.973 14.994 1440.7 0.2629
1600 m 13.817 20.409 13.710 15.119 2527.6 0.3159

PEM
100 m 6.659 9.092 2.591 8.715 214.77 0.0500
200 m 12.092 17.034 2.949 16.776 333.21 0.0936
400 m 22.412 38.615 12.921 36.390 1690.5 0.2123
800 m 27.173 41.687 22.394 35.161 21349 0.2292
1600 m 25.632 39.733 18.648 35.086 18461 0.2185

Tab. 6. Test point-based error metrics in mountainous environ-
ments.
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It is apparent that each metric yields quantitatively higher val-
ues by nearly an order of magnitude, which, without the need
for further detailed analysis, clearly suggests that, in this case,
the possibility of reducing terrain profile resolution without
significantly compromising accuracy is extremely limited.

In the case of the ITU-R P.452-16 model, as also illus-
trated in Fig. 13, the increase in error metrics systematically
follows the decrease in terrain resolution. The MAE rises
from the initial value of 3.2 dB to 13.9 dB, while the RMSE
more than doubles, increasing from 7.58 dB to 20.52 dB.
The bias initially turns negative (–1.063 dB at 200 m reso-
lution) and subsequently shifts to a markedly positive range
(13.777 dB at 1600 m), indicating a consistent overestima-
tion tendency at coarse resolutions. The relative error ex-
hibits a dramatic increase, jumping from 71.7% to 1913.5%,
which signals considerable instability. The nRMSE also in-
creases from 0.1170 to 0.3167, confirming that this model
is particularly sensitive to the loss of detailed topographic
information.

The behaviour of the ITU-R P.1546-6 model is some-
what more balanced. The bias increases only slightly (from -
0.283 dB to 3.927 dB) and remains within the positive domain
throughout, indicating a mild overestimation tendency. The
MAE and RMSE approximately double or slightly more, yet
their absolute values remain moderate even at the coarsest res-
olution (MAE: 4.5 dB, RMSE: 6.76 dB). Although the rela-
tive error also increases markedly (from 17.58% to 104.95%),
its magnitude remains substantially lower than that observed
in the other models. The nRMSE increases from 0.0917
to 0.1707, suggesting a comparatively robust performance.
The ITU-R P.1546-6 model maintains a more consistent er-
ror profile under reduced terrain resolution, highlighting its
resilience in complex topographic conditions. However, all
of this should be considered in the context that, despite its
relative stability, the accuracy of this model remains consid-
erably inferior when compared to the PEM [3].

The results of the ITU-R P.1812-6 model exhibit a pat-
tern very similar to that of the ITU-R P.452-16 model, al-
though the relative errors increase even more markedly. The
relative error rises from 59.92% to as high as 2527.6%. The
behavior of the bias closely mirrors that of ITU-R P.452-
16: it starts at a slightly positive value, becomes negative
at 200 m, and then increases sharply to 13.71 dB at 1600 m.
The RMSE increases from 7.586 dB to 20.409 dB, while the
normalized RMSE rises from 0.1174 to 0.3159. These re-
sults suggest that the ITU-R P.1812-6 model is particularly
unstable in mountainous environments, especially in terms
of relative error.

Figure 14 provides a visual representation of the spa-
tial distribution of the resulting field strength levels. From
the perspective of numerical error, the PEM model performs
particularly poorly in this environment. Even at the finest
resolution of 100 m, it produces the highest MAE (6.659 dB)
and RMSE (9.092 dB) values among all models, and these
figures deteriorate substantially with reduced resolution: the

maximum MAE reaches 27.173 dB, while the RMSE climbs
to 41.687 dB. The bias increases from 2.591 dB to 22.394 dB,
indicating that underestimation is not characteristic, whereas
overestimation becomes significantly pronounced. The rel-
ative errors are by far the most extreme among all models:
starting at 214.77%, they rise to an astonishing 21 349%, and
then stabilise at 18 461%. This indicates extreme instabil-
ity and a high sensitivity to interpolated terrain data. The
nRMSE also exceeds 0.21, which points to a breakdown of
the model’s reliability at coarse resolution levels.

Fig. 13. Test point-based error metrics of simulations over
mountainous terrain at varying terrain resolutions.

(a) P.452-16, 50 m (b) P.452-16, 400 m

(c) P.452-16, 1600 m (d) P.1546-6, 50 m
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(e) P.1546-6, 400 m (f) P.1546-6, 1600 m

(g) P.1812-6, 50 m (h) P.1812-6, 400 m

(i) P.1812-6, 1600 m (j) PEM, 50 m

(k) PEM, 400 m (l) PEM, 1600 m

Fig. 14. Field strength maps for different raster resolutions
(50 m, 400 m, 1600 m) across all models (ITU-R P.452-
16, P.1546-6, P.1812-6, and PEM) in mountainous ter-
rain.

5. Line-Based Results
For the line-based calculations, 200 segments of 30 km

length are randomly selected for each of the three terrain
types, and the simulations are carried out on these segments
and their corresponding terrain profiles at all terrain reso-
lutions. In addition to the descriptive metrics, the spectral
resolution of the terrain profiles is also considered here, along
with the relationship between the spectral complexity ratio
and the RMSE.

5.1 Urban, Hilly Terrain
Based on Tab. 7 and Fig. 15, it is evident that in urban,

hilly terrain the line-based evaluation produced consistently
higher errors for all models compared to the test point–based
approach.

Line-Based Results: Urban, Hilly Terrain
Resolution MAE RMSE Bias 𝝈e RelErr nRMSE

[dB] [dB] [dB] [dB] [%] [–]
ITU-R P.452-16

100 m 0.933 2.606 0.562 2.545 18.57 0.0220
200 m 2.021 4.428 1.459 4.180 55.66 0.0374
400 m 3.502 6.635 2.857 5.989 138.33 0.0561
800 m 5.838 9.746 5.121 8.292 349.94 0.0823
1600 m 9.710 14.651 9.005 11.557 1099.8 0.1238

ITU-R P.1546-6
100 m 0.956 2.678 0.515 2.628 11.33 0.0149
200 m 1.910 4.226 1.274 4.029 25.62 0.0235
400 m 3.129 5.911 2.396 5.403 46.77 0.0329
800 m 4.682 7.844 3.814 6.854 78.61 0.0436
1600 m 6.756 10.194 5.775 8.400 134.03 0.0567

ITU-R P.1812-6
100 m 0.904 2.556 0.544 2.497 17.97 0.0216
200 m 1.958 4.347 1.411 4.111 53.96 0.0367
400 m 3.402 6.521 2.772 5.902 134.24 0.0551
800 m 5.660 9.554 4.948 8.173 333.69 0.0807
1600 m 9.431 14.372 8.715 11.429 1034.3 0.1214

PEM
100 m 6.635 10.163 2.000 9.965 100.6 0.0243
200 m 10.930 16.274 5.154 15.436 395.9 0.0389
400 m 14.773 21.472 9.632 19.191 1391.5 0.0513
800 m 20.180 28.963 15.727 24.321 3993.4 0.0691
1600 m 28.111 39.034 24.779 30.161 13443 0.0932

Tab. 7. Line-based error metrics in urban, hilly environments.

Fig. 15. Line-based error metrics of simulations over urban, hilly
terrain at varying terrain resolutions.
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The most striking difference can be observed for ITU-R
P.452-16 and ITU-R P.1812-6, which not only yield similar
error magnitudes but also track each other almost identically
across all resolutions. With the test point reference, both
models produced RMSE values close to 1 dB at 100–200 m
resolution, while under the line-based reference these values
rose to around 2–4 dB.

This demonstrates that line-based reference more sen-
sitively exposes distortions caused by raster thinning, and
that both models are equally more vulnerable to resolution
degradation in this environment.

By contrast, ITU-R P.1546-6 shows a more balanced
behavior. Even with test point comparisons it exhibited
somewhat higher errors than P.452-16 or P.1812-6, yet when
evaluated against the line-based reference, its performance
deteriorated much less severely.

For example, at 1600 m resolution the RMSE increased
by only about 1 dB (from 9 dB to 10 dB), whereas the other
two models showed jumps of 2–3 dB. This clearly indicates
that in urban, hilly terrain ITU-R P.1546-6 is less sensitive
to changes in raster density and thus provides a more stable
choice when the input data resolution cannot be guaranteed.

The deterministic PEM model, however, performed
substantially worse under both references, with the differ-
ences being even more pronounced. While at 100 m reso-
lution the RMSE already exceeded 11 dB with the test point
evaluation, under the line-based calculations it increased to
nearly 39 dB at 1600 m, and the relative errors reached several
orders of magnitude higher than those of the ITU-R models.
This clearly highlights that PEM is far more sensitive to raster
thinning than the empirical models, and in urban, hilly terrain
the choice of reference resolution becomes a critical factor
for obtaining reliable results.

The regression parameters in Tab. 8 and the trends illus-
trated in Fig. 16 show that the error metrics of all evaluated
models are strongly dependent on the spectral complexity
of the terrain profiles. For the ITU-R P.452-16 and P.1812-
6 models, the linear regressions already produced high ex-
planatory power (the coefficient of determination 𝑅2 ≈ 0.87),
but the exponential fits further improved the performance to
𝑅2 ≈ 0.97. This indicates that in these models the increase of
RMSE with spectral complexity is systematic and very well
captured by a saturating nonlinear function. The close sim-
ilarity between the two models also confirms their parallel
behavior observed earlier in direct error comparisons.

The ITU-R P.1546-6 model displayed weaker corre-
lations than P.452-16 and P.1812-6. Its linear regression
explained about 76% of the RMSE variance, while the ex-
ponential form increased this to around 95%. Although the
fit quality is slightly lower than in the other ITU-R models,
the results still highlight a consistent dependence between
terrain spectral complexity and model errors. Interestingly,
this model requires relatively higher values of parameter 𝐵,
suggesting a steeper saturation effect compared to the other
ITU-R recommendations.

Fig. 16. Results of aggregated regression models for the differ-
ent models over urban, hilly terrain.

Model Type Parameters 𝑹2

ITU-R P.452-16 Linear 𝛽0 = −157.66, 𝛽1 = 4337.25 0.87
Exp. 𝑐 = 1.28, 𝐴 = 12.54, 𝐵 = 3.00 0.97

ITU-R P.1546-6 Linear 𝛽0 = −105.79, 𝛽1 = 2936.42 0.76
Exp. 𝑐 = 0.97, 𝐴 = 8.24, 𝐵 = 6.06 0.95

ITU-R P.1812-6 Linear 𝛽0 = −154.60, 𝛽1 = 4252.91 0.87
Exp. 𝑐 = 1.26, 𝐴 = 12.30, 𝐵 = 3.00 0.97

PEM Linear 𝛽0 = −380.65, 𝛽1 = 10544.73 0.77
Exp. 𝑐 = 4.02, 𝐴 = 29.60, 𝐵 = 5.54 0.94

Tab. 8. Regression results between spectral complexity ratio and
RMSE for the evaluated models over urban, hilly terrain.

For the deterministic PEM model the regressions also
revealed clear dependencies. The linear regression produced
𝑅2 ≈ 0.77, and the exponential fit improved this to about
0.94. Although the explained variance is somewhat lower
than in the ITU-R models, the strength of the relationship re-
mains substantial. The higher parameter values obtained for
the PEM model indicate stronger sensitivity to terrain spec-
tral content, which is consistent with its numerical nature and
the large error growth already observed at coarse resolutions.
Altogether, the regression analysis confirms that terrain spec-
tral descriptors provide a reliable basis for interpreting the
resolution sensitivity of propagation models.

5.2 Flat Terrain
The comparison of Tab. 9 and Tab. 7 reveals substantial

differences between flat and urban, hilly terrain in line-based
simulations. In flat environments, the growth of the error
metrics with coarser terrain resolution is moderate and re-
mains within a relatively narrow range, especially for the
ITU-R P.1546-6 model, which shows RMSE values below
5 dB even at 1600 m resolution. By contrast, in urban, hilly
terrain, all models exhibit a much steeper error growth, with
RMSE values exceeding 10 dB at 1600 m resolution for the
ITU-R P.452-16 and P.1812-6 models, and reaching nearly
40 dB for PEM. This indicates that spectral complexity and
relief variations of the terrain are decisive factors for error
amplification in the line-based approach.
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Line-based results: Flat terrain
Resolution MAE RMSE Bias 𝝈e RelErr nRMSE

[dB] [dB] [dB] [dB] [%] [–]
ITU-R P.452-16

100 m 1.770 3.568 1.307 3.319 33.61 0.0393
200 m 3.374 5.613 2.817 4.855 81.24 0.0618
400 m 5.080 7.681 4.577 6.168 154.34 0.0846
800 m 6.819 9.609 6.418 7.152 240.69 0.1059
1600 m 8.321 11.173 8.022 7.778 329.30 0.1231

ITU-R P.1546-6
100 m 0.623 2.262 0.486 2.209 7.90 0.0166
200 m 1.053 3.224 0.932 3.087 14.60 0.0237
400 m 1.341 3.826 1.258 3.613 20.97 0.0281
800 m 1.512 4.090 1.416 3.837 24.73 0.0300
1600 m 1.610 4.167 1.453 3.905 26.32 0.0306

ITU-R P.1812-6
100 m 1.733 3.494 1.261 3.259 32.51 0.0366
200 m 3.291 5.482 2.710 4.765 77.72 0.0575
400 m 4.947 7.492 4.405 6.061 146.68 0.0785
800 m 6.657 9.394 6.206 7.052 228.98 0.0985
1600 m 8.128 10.922 7.772 7.675 312.39 0.1145

PEM
100 m 3.310 5.321 1.302 5.160 67.19 0.0373
200 m 5.160 7.699 2.662 7.224 181.91 0.0539
400 m 6.701 9.667 4.255 8.680 352.52 0.0677
800 m 8.047 11.281 5.644 9.768 539.89 0.0790
1600 m 8.903 12.391 6.727 10.406 750.97 0.0868

Tab. 9. Line-based error metrics in flat environments.

The relative behavior of the models is also consistent
across environments but with significant differences in scale.
In both terrains, ITU-R P.1546-6 proves to be the most robust,
producing the lowest errors and the slowest degradation with
increasing resolution. ITU-R P.452-16 and ITU-R P.1812-6
follow nearly identical patterns, confirming their parallel evo-
lution observed earlier, but the absolute errors are consider-
ably larger in hilly terrain. PEM, while already more sensi-
tive in flat terrain than the ITU-R models, shows dramatically
higher error values in the urban, hilly case, highlighting its
strong dependence on terrain resolution and spectral com-
plexity. These tendencies are also clearly reflected in Fig. 17,
where the graphical representation of the error growth em-
phasizes the contrasting slopes across the different models
and terrains.

A further contrast emerges when comparing line-based
flat terrain results (Tab. 9) with the corresponding test point-
based outcomes (Tab. 5). In the test point approach, the
errors remain significantly lower across all models and reso-
lutions. For example, in ITU-R P.452-16 at 800 m resolution,
the line-based RMSE is 9.6 dB compared to only 4.6 dB in
the test point evaluation. Similarly, for PEM at 1600 m res-
olution, the RMSE reaches 12.4 dB in line-based analysis,
while it is as high as 7.7 dB in the test point-based case, con-
firming that line-based aggregation systematically produces
larger errors by amplifying the effect of unresolved terrain
fluctuations. Overall, these results demonstrate that while
flat terrain leads to lower absolute errors.

The regression results over flat terrain, summarized in
Fig. 18 and Tab. 10, show a markedly stronger fit between
spectral complexity and error growth than in urban, hilly

terrain. The exponential models achieve extremely high ex-
planatory power, with 𝑅2 values of 0.98–0.99 across all mod-
els, indicating that the saturating error increase with growing
spectral complexity is captured almost perfectly in flat en-
vironments. Even the linear regressions of ITU-R P.452-16
and P.1812-6 yield 𝑅2 ≈ 0.90, substantially higher than their
urban, hilly counterparts, while PEM maintains an accept-
able level at 𝑅2 = 0.80. By contrast, ITU-R P.1546-6 shows
weaker linear correlation (𝑅2 = 0.64), but this is fully com-
pensated by the exponential fit, which again approaches unity.

Fig. 17. Line-based error metrics of simulations over flat terrain
at varying terrain resolutions.

Fig. 18. Results of aggregated regression models for the differ-
ent models over flat terrain.
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Model Type Parameters 𝑹2

ITU-R P.452-16 Linear 𝛽0 = −54.91, 𝛽1 = 31663.02 0.90
Exp. 𝑐 = 0.42, 𝐴 = 11.03, 𝐵 = 2.51 0.99

ITU-R P.1546-6 Linear 𝛽0 = −16.85, 𝛽1 = 10196.25 0.64
Exp. 𝑐 = 0.05, 𝐴 = 3.82, 𝐵 = 7.57 0.99

ITU-R P.1812-6 Linear 𝛽0 = −53.63, 𝛽1 = 30924.70 0.90
Exp. 𝑐 = 0.42, 𝐴 = 10.78, 𝐵 = 2.50 0.99

PEM Linear 𝛽0 = −56.49, 𝛽1 = 33046.35 0.80
Exp. 𝑐 = 0.42, 𝐴 = 11.26, 𝐵 = 4.26 0.98

Tab. 10. Regression results between spectral complexity ratio
and RMSE for the evaluated models over flat terrain.

When compared with the urban, hilly results in Tab. 8,
the differences in parameter magnitudes highlight the terrain
sensitivity of the models. In hilly terrain, the intercepts 𝑐 of
the exponential models are higher (e.g., 𝑐 = 1.28 for ITU-R
P.452-16 and 𝑐 = 4.02 for PEM) than in flat terrain (𝑐 ≈ 0.42
across most models), reflecting the elevated baseline error
induced by complex topography. Similarly, the slope coef-
ficients 𝛽1 of the linear models are one order of magnitude
larger in flat terrain (e.g., 𝛽1 ≈ 31663 for P.452-16 vs. ≈ 4337
in hilly terrain), showing that once complexity increases, the
error grows more steeply but from a much lower baseline.
These results confirm that while the relative ranking of the
models remains unchanged, so the ITU-R P.1546-6 being
the most robust and PEM the most sensitive, the absolute
error dynamics differ significantly between flat and hilly en-
vironments, with flat terrain yielding lower starting errors
and tighter exponential saturation.

5.3 Mountainous Terrain
The line-based error metrics obtained for mountainous

terrain are summarised in Tab. 11 and visualised in Fig. 19.
Across all resolutions, the errors are considerably higher than
in flat (Tab. 9) and urban, hilly terrain (Tab. 7), underlining
the increased sensitivity of propagation models to rugged
topography. ITU-R P.1546-6 continues to show the lowest
error growth with resolution, with RMSE values rising from
3.5 dB at 100 m to 14.3 dB at 1600 m.

A comparison with the urban, hilly case reveals that
although the relative ranking of models remains consistent
across environments, the absolute magnitude of errors is
greatly amplified in mountainous terrain. This amplifica-
tion can be seen most clearly in the RMSE values: at 800 m
resolution, ITU-R P.452-16 increases from 9.7 dB in the ur-
ban, hilly case to 12.9 dB in the mountainous scenario, while
PEM rises from 29.0 dB to 44.8 dB. The escalation of errors
is thus not limited to the deterministic PEM but also affects
the empirical ITU-R models, albeit to a lesser extent. The
bias and variance components follow the same tendency, with
systematic deviations and random fluctuations both becom-
ing more pronounced as terrain ruggedness increases.

Line-based results: Mountainous terrain
Resolution MAE RMSE Bias 𝝈e RelErr nRMSE

[dB] [dB] [dB] [dB] [%] [–]
ITU-R P.452-16

100 m 1.063 2.775 0.619 2.705 21.51 0.0229
200 m 2.366 4.913 1.741 4.594 73.98 0.0405
400 m 4.488 8.070 3.788 7.125 262.51 0.0665
800 m 8.068 12.887 7.408 10.545 955.91 0.1062
1600 m 13.251 19.203 12.781 14.332 3158 0.1583

ITU-R P.1546-6
100 m 1.316 3.515 0.655 3.453 15.59 0.0185
200 m 2.668 5.582 1.750 5.300 38.72 0.0293
400 m 4.644 8.205 3.581 7.382 82.83 0.0431
800 m 7.183 11.133 6.073 9.331 161.14 0.0585
1600 m 9.974 14.259 8.828 11.198 320.83 0.0750

ITU-R P.1812-6
100 m 1.031 2.719 0.599 2.652 20.87 0.0220
200 m 2.288 4.804 1.683 4.500 71.21 0.0389
400 m 4.344 7.900 3.661 7.001 250.57 0.0640
800 m 7.806 12.614 7.158 10.386 899.87 0.1021
1600 m 12.830 18.791 12.356 14.157 2895.8 0.1521

PEM
100 m 12.522 17.848 4.072 17.377 455.84 0.0400
200 m 18.562 26.280 9.635 24.450 1358.2 0.0590
400 m 25.285 34.973 18.635 29.594 5068.4 0.0785
800 m 33.401 44.831 27.214 35.625 16893 0.1006
1600 m 43.877 56.798 38.365 41.883 40515 0.1274

Tab. 11. Line-based error metrics in mountainous environ-
ments.

Fig. 19. Line-based error metrics of simulations over mountain-
ous terrain at varying terrain resolutions.
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Fig. 20. Results of aggregated regression models for the differ-
ent models over mountainous terrain.

In addition to RMSE, other error metrics highlight the
severity of the mountainous environment. For example, the
mean relative error in linear field units climbs to several
thousand percent for PEM, compared to only a few hundred
percent for the ITU-R models at the coarsest resolutions.
This widening gap reflects the fundamental differences in
how the models account for terrain detail: ITU-R P.1546-6,
while still affected, shows relatively moderate growth due to
its reliance on empirical calibration, whereas PEM is partic-
ularly vulnerable to undersampling of complex topography.
Taken together, these results clearly demonstrate the limits of
deterministic approaches when terrain irregularities are in-
sufficiently resolved, and they emphasise the critical impor-
tance of terrain resolution for maintaining model reliability
in mountainous regions.

The regression analysis between spectral complexity ra-
tio and RMSE (Fig. 20, Tab. 12) provides further insight into
these behaviours. Linear models achieve 𝑅2 values around
0.9 for ITU-R P.452-16 and P.1812-6, while ITU-R P.1546-6
reaches only 0.79, consistent with its smoother error pro-
gression. Saturating exponential regressions, however, con-
sistently outperform linear fits, with 𝑅2 values of 0.95–0.98
across the ITU-R models. This indicates that error growth
with spectral complexity is nonlinear and tends to stabilise,
a behaviour captured effectively by the exponential form.

Compared to flat and urban, hilly terrains, the regres-
sion slopes and asymptotic error levels are markedly higher
in mountainous environments. For example, the exponen-
tial saturation level 𝐴 reaches 17.7 dB for ITU-R P.452-16
and 42.0 dB for PEM, compared to 12.54 dB and 29.6 dB, re-
spectively, in the urban, hilly case. These results emphasise
the strong dependence of model accuracy on spectral com-
plexity, with PEM particularly exposed to terrain ruggedness.
The consistency of regression quality across all environments
nonetheless confirms that spectral descriptors offer a reliable
predictor of error escalation, irrespective of the propagation
model considered.

Model Type Parameters 𝑹2

ITU-R P.452-16 Linear 𝛽0 = −252.93, 𝛽1 = 4881.60 0.92
Exp. 𝑐 = 1.52, 𝐴 = 17.69, 𝐵 = 2.20 0.98

ITU-R P.1546-6 Linear 𝛽0 = −182.48, 𝛽1 = 3552.33 0.79
Exp. 𝑐 = 1.52, 𝐴 = 11.59, 𝐵 = 5.16 0.95

ITU-R P.1812-6 Linear 𝛽0 = −247.66, 𝛽1 = 4779.70 0.92
Exp. 𝑐 = 1.48, 𝐴 = 17.32, 𝐵 = 2.20 0.98

PEM Linear 𝛽0 = −659.37, 𝛽1 = 12876.16 0.74
Exp. 𝑐 = 6.54, 𝐴 = 42.04, 𝐵 = 7.71 0.92

Tab. 12. Regression results between spectral complexity ratio
and RMSE for the evaluated models over mountainous
terrain.

The line-based simulations extend and refine the find-
ings obtained from the test-point-based analyses. While the
test-point simulations provided a discrete, location-specific
evaluation of the model sensitivity to terrain sampling den-
sity, the line-based computations offered a much denser sam-
pling along the entire propagation path, resulting in a more
accurate and statistically robust characterization of the mod-
els’ behavior. The larger number of calculated points en-
ables a smoother depiction of the trend between terrain res-
olution and propagation error, confirming the general ten-
dencies observed in the test-point-based approach. Further-
more, the line-based analysis introduces the concept of the
spectral complexity ratio, which establishes a quantitative
relationship between terrain characteristics and the average
RMSE. This continuous evaluation framework thus provides
deeper insight into the spatial evolution of modeling errors
and strengthens the consistency and interpretability of the
obtained results across different terrain types.

6. Conclusion
This study examined how terrain sampling density in-

fluences the accuracy of several widely used propagation
models for 5G NR-V2X communication at 3.6 GHz. By test-
ing empirical, hybrid, and deterministic models across flat,
hilly, and mountainous environments, we showed that model
sensitivity to terrain resolution strongly depends on both the
modeling approach and the complexity of the environment.
Empirical models proved relatively robust even at coarser
resolutions, while deterministic and hybrid approaches per-
formed very well with fine-grained inputs but degraded much
more rapidly as resolution decreased.

A key scientific contribution of this work is the demon-
strated link between the spectral complexity of terrain profiles
and the resulting modeling error. By defining the spectral
complexity ratio and relating it to RMSE through regres-
sion analysis, we showed that error growth can be predicted
directly from terrain spectral characteristics. Exponential
models achieved explanatory power close to 99%, proving
that spectral descriptors serve as reliable predictors of model
sensitivity. This provides a practical way to anticipate ac-
curacy losses before simulations are carried out, which can
make network planning more efficient and better informed.
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The results also highlight the trade-off between com-
putational demand and predictive fidelity, pointing to con-
ditions where terrain simplification can be applied without
major reliability risks. At the same time, the findings ex-
pose the limitations of purely deterministic approaches in
complex topographies, while showing where empirical and
hybrid models can offer more stable results.

Overall, the study underlines that terrain resolution is
not a secondary detail, but a key factor in obtaining trustwor-
thy propagation predictions. The proposed framework offers
a methodological advance for adaptive and resource-efficient
modeling, and it opens opportunities for further research such
as applying the method to higher frequency bands, experi-
menting with alternative simplification techniques, or inte-
grating machine learning into hybrid modeling approaches.

In the next phase of our research, we aim to further
extend the presented analysis by developing artificial intelli-
gence (AI)-based regression models that can approximate
the results of PEM – which is known for its high accu-
racy but considerable computational cost – using the sig-
nificantly faster and less complex empirical and hybrid ITU
propagation models. These AI-driven approaches will be
trained under specific constraints to reproduce PEM-level
precision while maintaining computational efficiency. Future
work will also include a comparative performance evaluation
of the proposed regression models and the development of
a measurement-based predictive model capable of estimating
field strength levels directly from real-world observations us-
ing AI techniques.

In conclusion, this research provides a robust method-
ological foundation for terrain-aware propagation modeling
and sets the stage for the development of AI-based regression
frameworks that combine accuracy with computational effi-
ciency. The outcomes are expected to support more adaptive,
data-driven network planning across diverse environments.
All MATLAB and Python codes developed during this re-
search, along with the simulation source files and auxiliary
scripts, are available from the corresponding author upon
reasonable request.
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