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Abstract. In complex electromagnetic environments, radar 

signals intercepted by jammers often contain biased data 

due to factors such as radar mode switching, electromag-

netic interference, and receiver noise. To address this 

challenge, this paper proposes a two-stage optimization 

framework for jamming effect evaluation from the jam-

mer’s perspective. In the first stage, a pre-evaluation is 

conducted using an entropy-optimized K-means discretiza-

tion algorithm (KDEOA) to adaptively partition pulse 

descriptor word (PDW) parameters, enhancing robustness 

against noise. A GCSAO-LSSVM model is then employed 

to improve classification accuracy through optimal param-

eter tuning and a periodic oscillation mutation strategy. In 

the second stage, an improved entropy weight method 

(IEWM) integrating Tsallis entropy, kernel density stand-

ardization, and game theory is used for objective 

weighting, followed by an enhanced TOPSIS method 

(ITOPSIS) incorporating interquartile range standardiza-

tion and dynamic ideal solution fusion for quantitative 

scoring. Experimental results demonstrate that the pro-

posed framework achieves the highest pre-evaluation ac-

curacy across all noise levels (up to 50% contamination), 

with IEWM exhibiting the lowest weight variation rate 

(0.11–0.23%) and ITOPSIS showing the strongest correla-

tion (0.7290) with baseline scores under high noise. The 

main limitations include sensitivity to severe signal distor-

tion and assumption of stable radar behavior. This ap-

proach enables accurate, non-cooperative jamming as-

sessment and supports robust decision-making in cognitive 

electronic warfare. 
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1. Introduction  

Jamming effect evaluation refers to assessing the im-

pact of jamming actions on radar performance by analyzing 

changes in the radar's behavioral parameters [1], [2]. In 

cognitive electronic warfare, continuous real-time evalua-

tion of jamming effects is essential to ensure effective and 

adaptive jamming. By analyzing these effects, the jammer 

can iteratively optimize its strategies, thereby enhancing 

the efficacy of electronic countermeasures. This process is 

critical for jamming strategy formulation and represents 

a key component of modern electronic warfare [3–5]. At 

present, the common interference effect evaluation meth-

ods are mainly divided into three kinds: evaluation factor 

method, fuzzy comprehensive evaluation method and intel-

ligent evaluation method. 

The evaluation factor method is to select and deter-

mine a series of evaluation indicators that can reflect the 

effect of radar interference, and to obtain an evaluation 

factor that can objectively analyze the quality of interfer-

ence from various aspects through mathematical methods, 

so as to achieve the evaluation of interference effect [6], 

[7]. This method is relatively simple to implement, but it 

may lead to the lack of comprehensiveness of the evalua-

tion results obtained because it is difficult for the evalua-

tion factor to cover all the influencing factors in the radar 

countermeasure process. 

Fuzzy comprehensive evaluation method is a combi-

nation of fuzzy set theory and comprehensive evaluation 

method, which is used to deal with the fuzziness and uncer-

tainty between evaluation indexes [8–11]. However, 

a corresponding membership function needs to be set in the 

current fuzzy comprehensive evaluation method, and the 

construction of appropriate membership function and the 

determination of the weight of different influencing factors 

still lack clear theoretical support. At the same time, setting 

the weight artificially may introduce too many subjective 

factors, resulting in the lack of objectivity of the evaluation 

results. 

Intelligent evaluation method is a kind of interference 

effect evaluation method based on artificial intelligence 

and data mining technology. It automatically processes 

data, extracts features, and uses machine learning algo-

rithms for pattern recognition and prediction to obtain the 

laws of different influencing factors on the interference 

effect, so as to realize the intelligent evaluation of the inter-

ference effect [12], [13]. However, such methods require 
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high quality and accuracy of data. If the data is inaccurate 

or incomplete, it may affect the accuracy of the evaluation 

results. 

In the simulation research of jamming effect evalua-

tion, traditional jamming effect evaluation methods pre-

dominantly adopt a radar-centric approach [14]. These 

methods typically assume a cooperative relationship be-

tween the radar and jammer, assessing jamming effective-

ness by comparing pre- and post-jamming radar parameter 

variations. However, in practical electronic warfare scenar-

ios, the relationship is fundamentally non-cooperative, 

where the jammer must rely solely on its own observations 

to obtain limited radar information. Consequently, recent 

studies have proposed implementing online evaluation 

from the jammer's perspective. 

Huang et al. [15] investigated quantitative assessment 

and intelligent decision-making methods for multifunction-

al radar jamming, leveraging artificial intelligence to en-

hance jamming performance and battlefield survivability. 

Lei et al. [16] introduced an online evaluation framework 

based on support vector machines (SVM) and evidence 

theory, and utilized behavioral characteristics of jammers 

and radar counter-jamming features for real-time assess-

ment via SVM and basic confidence assignment. Mean-

while, Li et al. [17] proposed a data-driven evaluation 

method, which combines expert knowledge and data min-

ing to quantify the impact of jamming on radar systems in 

complex electromagnetic environments. This approach 

established a unified signal-level evaluation framework for 

a stable and quantitative jamming assessment. Zhang et al. 

[18] developed an online evaluation model from the jam-

mer's perspective, incorporating an improved class attribute 

correlation coefficient (ICACC) method and a probability 

similarity-based soft output basic belief assignment (BBA) 

correction technique to enhance evaluation efficiency and 

accuracy under asymmetric information conditions. Pei et 

al. [19] presented a radar jamming scheme decision-

making approach utilizing an SDAE-SVM algorithm, spe-

cifically designed to improve jamming decision precision 

in active radar guidance scenarios. Complementing these 

works, Hu et al. [20] investigated online evaluation tech-

niques for radar active anti-jamming effectiveness, and 

introduced a method based on time-domain criterion, 

which processes synchronized platform data including 

radar amplitude timing, parameter timing, and active jam-

ming equipment detection point parameters through buffer-

ing, fitting, and situational information generation. In [21], 

a cooperative jamming effectiveness evaluation method is 

presented, founded on the improved particle swarm optimi-

zation–extreme learning machine (IPSO-ELM). Through 

optimizing the ELM network with IPSO, the accuracy and 

real-time performance of the evaluation are significantly 

improved. 

In essence, according to different effect levels, refer-

ences [15–21] classify and label the information intercept-

ed by the interfering party and then evaluate the effect 

through the classification algorithm in order to determine 

the evaluation level. There are limitations in the following 

aspects. Firstly, there is a lack of optimization and adjust-

ment of classifier parameters. Secondly, in the actual con-

frontation environment, the interference effect evaluation 

level may not change before and after the interference 

action, but the intercepted radar behavior parameters have 

seen certain changes. Thirdly, in the process of analyzing 

the intercepted radar signal, due to the switching of radar 

working mode, electromagnetic interference and receiver 

noise, the intricate electromagnetic environment leads to 

an imbalance of radar data acquired by the jamming de-

vice, resulting in the deviation of radar information and 

affecting the accuracy of quantitative evaluation. The com-

prehensive and objective evaluation of the interference 

effect and the enhancement of the accuracy of such evalua-

tions have emerged as a focal point of research. 

The development of quantitative methods for interfer-

ence effect evaluation is deeply influenced by information 

theory and signal processing technology. The early entro-

py-based feature selection research [22] revealed the dis-

criminative ability of entropy weight in nonlinear systems. 

At the level of decision-making methods, TOPSIS and its 

variants have been widely used in mathematics, engineer-

ing, science, environment, technology, management, busi-

ness and other fields [23]. However, the sensitivity of tradi-

tional methods to outliers has limited their applicability in 

complex interference scenarios. In [24], a Hybrid Model-

Data-Driven approach is put forward, which integrates the 

merits of both to enhance the precision and practicality of 

radar jamming effectiveness evaluation. In [25], a novel 

approach integrating the Vague set and the TOPSIS meth-

od is proposed for the assessment of the jamming effec-

tiveness of impulse signals, which combines the objective 

weight method based on fuzzy set entropy and the subjec-

tive weight method based on set value statistics. Then, 

these methods are integrated through a game theory-based 

formula to obtain a comprehensive and balanced set of 

evaluation weights. An improved TOPSIS method is pro-

posed in [26] in response to the problem that the standard 

technique for order preference by similarity to ideal solu-

tion (TOPSIS) method is affected by data fluctuation and 

insufficient analysis of data law in radar jamming effect 

evaluation. This method combines TOPSIS method and 

grey correlation analysis theory to analyze the original data, 

and combines the evaluation results of the two methods as 

the final evaluation results, which makes up for the defects 

of TOPSIS method in radar jamming effect evaluation. 

However, the methods proposed in references [22–26] 

mainly are limited in three aspects. Firstly, since most of 

these methods are based on the assumption of good data 

quality, they fail to fully consider the problem of serious 

bias (Biased Data) in pulse description word (PDW) data 

caused by radar mode switching, electromagnetic interfer-

ence and receiver noise in complex electromagnetic envi-

ronment, and also their robustness is questionable. Second-

ly, these methods predominantly involve independent 

weight assignment or sorting algorithms, so they fail to 
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establish an End-to-End systematic evaluation framework 

encompassing preprocessing, feature extraction, and final 

evaluation. Consequently, it is difficult to address the chal-

lenge of online rapid evaluation from biased data within 

non-cooperative adversarial environments. Thirdly, the 

utilization of local data characteristics is insufficient due to 

the fact that the evaluation process often relies on the glob-

al ideal solution. When the data distribution changes com-

plicatedly due to interference, the accuracy and reliability 

of the evaluation results will be significantly reduced. 

In summary, the existing radar evaluation methods 

focus either on classification accuracy or on quantitative 

evaluation instead of integrating the two aspects, so they 

cannot evaluate the jamming effect comprehensively, ob-

jectively and accurately. Different from previous studies, 

this paper uniquely integrates information theory discreti-

zation, parameter optimization LSSVM, game theory 

weight fusion and clustering-based TOPSIS to build a full-

process interference effect evaluation system. Figure 1 

illustrates the two-stage jamming effect evaluation frame-

work. In the first stage (pre-evaluation), radar parameters 

are extracted from both reference databases and unknown 

radar signals. The KDEOA algorithm discretizes these 

features, which are then processed by the GCSAO-LSSVM 

classifier to output preliminary jamming effect levels. 

When pre-evaluation levels are identical, the second stage 

(quantitative evaluation) activates by applying IEWM for 

weighted analysis and ITOPSIS for refined scoring. 

The main innovations and contributions of this paper 

are as follows: 

(1) This paper proposes a discretization algorithm 

based on an improved K-means clustering in order to re-

duce the influence of deviation value on LSSVM classifi-

cation. To avoid the clustering center falling into local 

optimum, the algorithm replaces random initialization with 

probabilistic distance weighted initialization. By optimiz-

ing the number of bins through information entropy, the 

optimal number of bins can be automatically selected to 

balance the amount of information and complexity. 

Through K-means clustering and IQR, boundary adjust-

ment is carried out to enhance the inclusion of noise values 

and avoid boundary sensitive problems. Finally, the adap-

tive discretization of PDW parameters is realized. 

(2) This paper proposes a method based on GCSAO 

to optimize the parameters of LSSVM from the perspective 

of improving the accuracy of pre-assessment of interfer-

ence effects. The optimal initial value set and periodic 

oscillation mutation operator are used to prevent the pa-

rameters from entering the local optimum, so as to find the 

optimal parameters and improve the accuracy of pre-

assessment of interference effects. 

(3) IEWM is presented for subjective and objective 

weighting when the pre-evaluation level of jamming effect 

is the same. The non-normal distribution data is processed 

by the kernel density estimation of adaptive bandwidth, 

which improves the stability of weight and reduces the 

influence of deviation data. Tsallis entropy is used to cal-

culate the objective weight and enhance the adaptability  

to complex data. Through the combination of game theory,  

 

Fig. 1.  The framework of two-stage optimization framework for radar jamming effectiveness evaluation. 
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the difference between subjective and objective weights is 

minimized, and the Nash equilibrium solution is obtained 

to avoid the one-sidedness of single weighting, so that the 

combined weights are in line with the data law. 

(4) An ITOPSIS method is proposed on the basis of 

obtaining the weights after subjective and objective 

weighting. The influence of deviation value on standardi-

zation results is reduced and the robustness is improved 

through IQR standardization. The optimal clustering num-

ber is selected by the contour coefficient to avoid artificial 

setting deviation and improve the rationality of data group-

ing. By balancing the global and local ideal solutions 

through dynamic coefficients, the adaptability to complex 

interference scenarios is enhanced, and the interference 

effect is further quantitatively evaluated. 

2. Jamming Effect Pre-evaluation  

From the jammer's perspective, this section evaluates 

jamming effectiveness by monitoring operational status 

changes of the target radar. It can be seen from Fig. 1 that 

potential deviated pulse information is extracted as feature 

attributes to establish a radar knowledge base. The radar 

PDW data undergo KDEOA-based discretization for model 

training. During operation, intercepted radar signals are 

similarly discretized and processed by the trained model 

for preliminary jamming effectiveness assessment. 

2.1 K-means Discretization Algorithm Based 

on Entropy Optimization (KDEOA)  

The pre-evaluation of jamming effects in this study 

involves the determination of the radar's operational state 

by using predefined evaluation metrics from an established 

radar knowledge base, which is then followed by assessing 

jamming effectiveness through comparative analysis of 

pre- and post-jamming state variations. During radar data-

base construction, we have considered both the acquisition 

difficulty of feature attributes and their correlation with 

radar operational state changes, so five key characteristic 

attributes were selected as evaluation metrics for the radar 

knowledge base: carrier frequency (CF), bandwidth (BW), 

pulse width (PW), pulse repetition frequency (PRF), and 

peak power (PP) [27]. 

Jamming-induced perturbations in radar operating pa-

rameters serve as critical indicators of jamming effective-

ness. Carrier frequency (CF) instability reflects frequency-

domain jamming techniques, while pulse width (PW) dis-

tortion demonstrates the time-domain interference impacts 

on range resolution. Bandwidth (BW) abnormalities reveal 

signal processing degradation, and pulse repetition fre-

quency (PRF) anomalies indicate compromised Doppler 

and ranging capabilities. Peak power (PP) adjustments 

under jamming conditions expose the radar's countermeas-

ure strategies while simultaneously highlighting its vulner-

ability to detection or saturation. These five parameters 

collectively capture the multidimensional effects of elec-

tronic warfare on radar performance, spanning time, fre-

quency, and power domains. Collectively, these compo-

nents afford a comprehensive analytical framework for 

examining the manner in which electronic attacks attenuate 

detection probability, resolution, tracking accuracy, and 

operational stealth. 

Under complex electromagnetic environments, pulse 

descriptor word (PDW) data acquired by jamming systems 

frequently exhibit significant deviations caused by radar 

mode switching, electromagnetic interference, and receiver 

noise. To address this challenge, we develop an improved 

K-means clustering-based [28] discretization algorithm that 

transforms continuous PDW parameters into discrete states 

via optimal partitioning. The proposed methodology oper-

ates through the following key processes: 

(1) Using probabilistic distance weighted initializa-

tion instead of random initialization: 
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where xi is the i-th data point, ck is the k clustering center, 

D(xi) represents the minimum distance to the existing cen-

ter, and N is the total number of samples in the data set. 

(2) For each feature vector, calculate the information 

entropy [29] under different box numbers K  [Kmin, Kmax]: 
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where pk is the proportion of samples in the k box, nk is the 

number of samples in the box k, and the optimal number of 

boxes K* satisfies: 
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where  is the complexity penalty factor. 

(3) For a PDW dataset X  N  M comprising N 

pulses with M parameters, the K-means clustering is used 

to calculate the clustering center of each bin, and the 

discretization process of the i-th characteristic xi in the 

parameter m is defined as follows: 
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where C represents the cluster center. 

(4) Adjust the boundaries {e0,…,eK} based on the IQR 

introduced by the clustering center. 
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(5) Discretize mapping based on box partitioning. 

 1{ }i k i ky k e x e   ∣ . (6) 

The KDEOA replaces random initialization by proba-

bilistic distance weighted initialization to avoid the cluster 

center falling into local optimum. By optimizing the num-

ber of binning through information entropy, the optimal 

number of binning can be automatically selected to balance 

the amount of information and complexity. The boundary 

adjustment is performed by K-means clustering and IQR to 

enhance the tolerance of noise values and avoid boundary 

sensitivity problems. Finally, the adaptive discretization of 

PDW parameters is achieved with robustness, adaptability 

and physical interpretability, and is suitable for complex 

signal processing scenarios such as electronic warfare. 

2.2 Pre-evaluation Model for Jamming Effect 

Based on GCSAO-LSSVM  

The limited number of intercepted signals makes the 

pre-evaluation of jamming effectiveness a small-sample 

classification problem, for which SVM has demonstrated 

superior accuracy [30]. This work employs LSSVM for 

multifunctional radar status identification. As an SVM 

variant optimized for classification and regression tasks, 

LSSVM replaces traditional inequality constraints with 

equality constraints and adopts a squared error loss func-

tion. This formulation converts the optimization problem 

into solving linear equations, significantly reducing com-

putational complexity compared to quadratic programming 

while maintaining solution speed.  

The LSSVM implementation involves a penalty coef-

ficient r that balances classification margin and accuracy. 

Excessively high r values may lead to overfitting by pro-

hibiting classification errors, thereby restricting the classi-

fier's applicability to linearly separable samples. Converse-

ly, excessively low r values will result in excessively large 

classification margins that compromise accuracy. For line-

arly inseparable problems, the kernel parameter g governs 

the influence range of individual samples. 

Parameter selection critically influences SVM classi-

fication performance: both g and r significantly affect the 

final classification accuracy. To optimize radar threat level 

classification performance and enhance LSSVM recogni-

tion accuracy, we utilize the GCSAO algorithm, which 

identifies optimal parameter combinations to enhance SVM 

recognition accuracy. 

The SAO algorithm is biologically inspired by the 

physical processes of snow sublimation and melting phe-

nomena [31]. This metaheuristic algorithm addresses the 

common limitations of population-based optimization 

methods by effectively balancing exploration and exploita-

tion. The SAO framework comprises four distinct phases: 

(1) initialization, (2) exploration, (3) exploitation, and (4) 

 

Fig. 2. Spatial distribution mapping of optimal point set 

initialization 

a dual-population mechanism. In the present study, we 

propose several modifications to enhance the original SAO 

algorithm. 

During the initialization phase, the SAO algorithm 

conventionally employs randomly generated population 

positions. In this study, we implement optimal point set 

method for population initialization, which achieves more 

uniform spatial distribution of candidate solutions and 

expands the effective search space. This initialization strat-

egy enhances initial solution quality, mitigates the limita-

tions of random initialization, and facilitates escape from 

local optima attraction. The spatial distribution mapping 

after 200 iterations is illustrated in Fig. 2. 

This study introduces a periodic oscillatory mutation 

strategy to optimize both the exploration and exploitation 

phases of the SAO algorithm. Inspired by cyclical patterns 

in biological evolution, this strategy dynamically adjusts 

mutation rates during iterations to maintain an optimal 

balance between exploration and exploitation. The ap-

proach improves population diversity, facilitating escape 

from local optima while promoting broader search-space 

exploration. The overall process of GCSAO-LSSVM algo-

rithm is as follows: 
 

Algorithm 1: GCSAO-LSSVM 

1: Initialize the key parameters (g, r) are via the optimal point set 

approach. 

2: Recognition and classification were performed using LSSVM. 

3: Record the current best individual G(t)  

4: while (t < tmax) do 

5: Calculate the snowmelt rate M  

6: Randomly divide the whole population P into two 

subpopulations Pa and Pb 

7: for each individual do 

8: Update each individual’s position through periodic 

oscillatory mutation strategy 

9: end for 

10: Fitness evaluation 

11: Update G(t) 

12: t = t + 1 

13: end while 

14: Return G(t) 
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2.3 Complexity Analysis of Pre-evaluation 

Stage 

The computational complexity of the KDEOA dis-

cretization process is mainly governed by its probabilistic 

distance-based initialization and iterative K-means 

clustering stages. The overall time complexity is 

O(n2 + n  M  k  t), where n is the number of pulses, M is the 

number of parameters, k is the number of clusters, and t 

represents iterations. The quadratic term originates from 

the pairwise distance computations during center initializa-

tion, while the clustering operation scales linearly with 

respect to the dimensions and clusters. The space complex-

ity is O(n  M), which is required for storing the raw and 

discretized pulse data. 

The GCSAO-LSSVM model exhibits significant 

computational demand during the offline training phase, 

primarily due to the O(n3) complexity associated with solv-

ing the linear system in LSSVM training, coupled with the 

hyperparameter optimization performed by the GCSAO 

algorithm. The latter requires O(G  P  n3) operations, 

where G is the number of generations and P is the popula-

tion size. In contrast, the online prediction step is computa-

tionally efficient, with a complexity of O(nsv  M), where nsv 

is the number of support vectors, making it suitable for 

real-time jamming effect assessment. 

3. Quantitative Evaluation of 

Jamming Effects  

Effective jamming impedes radar target confirmation 

and tracking capabilities, thereby maintaining the system in 

a low-threat state. In contrast, ineffective jamming fails to 

alter radar performance, permitting gradual transition to 

a high-threat operational mode. Jamming efficacy can be 

assessed through observed radar state transitions. Never-

theless, in adversarial scenarios, the radar may sustain 

a static operational state for extended durations. In such 

cases, quantitative analysis of parameter variations be-

comes necessary to evaluate jamming effectiveness defini-

tively. 

3.1 Improved Entropy-based Weighting 

Method (IEWM) 

Excessive incorporation of evaluators' subjective 

judgments compromises objectivity in assessment, while 

biased data further degrades quantitative evaluation accu-

racy. To address these limitations, this study employs 

IEWM for objective weighting. The methodology involves: 

(i) standardizing the kernel density [32] of raw data, 

(ii) computing Tsallis entropy [33] weights, and 

(iii) integrating subjective and objective weights through 

game-theoretic synthesis [34]. This approach establishes 

weighting coefficients solely based on inter-parameter 

correlations, completely avoiding decision-maker subjec-

tivity. The mathematically rigorous framework provides 

robust theoretical foundations while effectively mitigating 

biased-induced distortions. The implementation procedure 

comprises the following key steps: 

1) The decision matrix A = (aij)N  M is constructed 

from N samples with M evaluation indicators, followed by 

computation of the sample data's skewness coefficient vi: 
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2) The Shapiro-Wilk test statistic p is computed to 

evaluate data normality, while an adaptive approach is 

employed to determine the optimal kernel density band-

width hj: 
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3) Calculate kernel density estimation zij of data. 
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where KGau is a Gaussian kernel function. 

4) Calculate probability matrix ijp : 
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5) The sensitivity of entropy to probability distribu-

tion is controlled by parameter q. And then calculate Tsal-

lis entropy Hj: 
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6) Calculate entropy weight 
entropy
jw : 
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7) Research findings demonstrate that frequency-

domain anti-jamming measures exhibit superior effective-

ness compared to time-domain approaches. Significant 

variations in carrier frequency and pulse repetition fre-

quency indicate a strong radar jamming, which suggests 

that frequency-domain countermeasures yield more pro-

nounced jamming effects. While peak power primarily 

influences radar detection probability, signal bandwidth and 
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Indicator  CF PW BW PRF PP 

score 0.3 0.1 0.1 0.3 0.2 

Tab. 1.  Subjective rating of indicators. 

pulse width predominantly affect measurement accuracy 

and resolution, indicating comparable anti-jamming effica-

cy levels. The corresponding subjective weight as-

signments are presented in Tab. 1. 

The Tsallis entropy weight and subjective weight are 

combined by game theory to obtain the final subjective and 

objective combination weight w. 

The IEWM method employs adaptive bandwidth ker-

nel density estimation to handle non-normal distribution 

data, enhancing weight stability while mitigating the im-

pact of deviated data. Tsallis entropy is utilized to compute 

objective weights to improve adaptability to complex da-

tasets. By integrating game theory, the method minimizes 

discrepancies between subjective and objective weights, 

achieving a Nash equilibrium solution to avoid bias from 

single-weighting approaches. The resulting combined 

weight not only adheres to data-driven principles but also 

preserves domain knowledge, providing a robust founda-

tion for interference effect evaluation. 

3.2 Improved TOPSIS (ITOPSIS)  

On the basis of obtaining the combined weight, in 

order to further reduce the influence of the deviation value, 

the improved TOPSIS method is used for quantitative 

evaluation. Firstly, the original data is standardized by 

IQR, and the K-means clustering method is used to select 

the optimal clustering cluster and improve the calculation 

of the ideal solution. The basic process is as follows: 

1) Calculate the median ai, median of the data and the 

difference ai, iqr between the two quartiles, and standardize 

the data using IQR to obtain B = (bij)m  n: 

 
,median

,iqr

=
ij i

ij
i

a a
b

a


. (13) 

2) Normalize the original matrix in order to stream-

line the analysis and mitigate dimensional and magnitude 

effects on computations. The standardized matrix 

C = (cij)m  n is obtained through the following procedure. If 

the evaluation index is the maximum value index, then: 

 
min( ,..., )

max( ,..., ) min( ,..., )

ij ij in
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
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
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If the evaluation index is the minimum value index, then: 

 
max( ,..., )

max( ,..., ) min( ,..., )

ij in ij

ij
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c

b b b b





. (15) 

3) Calculate the weighted matrix: 

 diag( )C V w . (16) 

4) Determine the optimal cluster number l for K-

means clustering by employing the silhouette coefficient 

method [35]. The silhouette coefficient quantifies cluster-

ing quality by evaluating both intra-cluster cohesion and 

inter-cluster separation. For each sample i, this metric s(i) 

is computed based on its dissimilarity F(i) within the clus-

ter and its dissimilarity E(i) to the nearest neighboring 

cluster, defined as: 

 
( ) ( )

( )
max{ ( ), ( )}

E i F i
s i

E i F i


 . (17) 

5) Identify the positive Zj
+ and negative Zj

– ideal solu-

tions of the weighted matrix, with the cluster exhibiting 

minimum distance to A designated as optimal. Local ideal 

solutions (Lj
+, Lj

–) are then derived from this optimal clus-

ter. Subsequent calculation of the optimal cluster's popula-

tion proportion yields a dynamic fusion coefficient , ena-

bling computation of the fused positive Di
+ and negative 

Di
– ideal solutions. 
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6) Compute the closeness coefficient Si between each 

candidate solution and the optimal solution, where higher 

values indicate superior jamming efficacy and lower values 

correspond to diminished jamming effectiveness, thereby 

enabling performance ranking: 

 , 1,2, ,i
i

i i

D
S i m

D D



 
 


. (19) 

The ITOPSIS method employs IQR standardization to 

mitigate the impact of outliers on normalization results, 

thereby improving robustness. The silhouette coefficient is 

utilized to automatically determine the optimal cluster 

number, eliminating subjective bias in data grouping and 

enhancing partitioning rationality. By dynamically balanc-

ing global and local ideal solutions through adaptive coef-

ficients, the method achieves improved adaptability to 

complex interference environments. The resulting scoring 

output provides a direct quantitative measure of interfer-

ence effectiveness, facilitating rapid decision-making in 

electronic warfare applications. 

3.3 Complexity Analysis of Quantitative 

Evaluation Stage  

In addition to empirical runtime measurements, we 

provide a theoretical analysis of the computational com-

plexity for each component of the proposed methodology. 

For the IEWM, the computational cost mainly arises 

from kernel density estimation (KDE) and entropy calcula-

tion. Let n be the number of samples and d the number of 

indicators. The adaptive KDE step has a time complexity 
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of O(n2d) due to pairwise distance computations. The Tsal-

lis entropy calculation requires O(nd) operations. The 

game-theoretic integration of subjective and objective 

weights is O(d2). Therefore, the overall complexity of 

IEWM is dominated by KDE, and then yields O(n2d). 

For the ITOPSIS method, the IQR standardization 

step is O(nd). The K-means clustering, applied to deter-

mine the ideal solutions, has a time complexity of O(ndkt), 

where k is the number of clusters and t the number of itera-

tions. The silhouette coefficient calculation used to choose 

the optimal k requires O(n2d) per candidate k. The dynamic 

ideal solution fusion and distance computations are both 

O(nd). Hence, the overall complexity of ITOPSIS is 

O(n2d + ndkt). 

The space complexity of the IEWM algorithm is pre-

dominantly dictated by the storage requirements for kernel 

density estimates and weight vectors, which collectively 

entail a space complexity of O(nd). Meanwhile, the ITOP-

SIS algorithm necessitates the storage of clustering out-

comes, distance matrices, and ideal solutions. These stor-

age demands also culminate in a space complexity of 

O(nd). 

4. Experiment 

4.1 Data Preparation  

This simulation adopts the "Mercury" multifunction 

radar (MFR) case study published by Dr. Fred A [32]. To 

ensure realistic parameterization, all radar parameters are 

constrained by established pulse compression ratios and 

duty cycle requirements. The Mercury MFR operates in 

five distinct modes with escalating threat levels: search, 

acquisition, non-adaptive tracking, range resolution, and 

track-while-scan. Radar linear frequency modulation 

(LFM) pulse signals were generated for each operational 

state, with independent additive noise levels of 10%, 30%, 

and 50% applied to each condition. The complete dataset 

consists of 200 samples per noise level, yielding a total of 

4000 distinct signal realizations for comprehensive perfor-

mance evaluation. The computer hardware parameters used 

for simulation were Intel i9-14900K CPU, 64 GB RAM, 

NVIDIA RTX 4090 GPU, and Matlab version 2024. 

To simulate jammer-based analysis and processing of 

intercepted radar signals, parameter estimation techniques 

are employed to extract pulse descriptor words (PDWs). 

The carrier frequency is determined through instantaneous 

frequency analysis, while pulse width estimation utilizes 

an adaptive pulse detection approach. Signal bandwidth is 

derived from the –3dB spectral bandwidth calculation. For 

pulse repetition interval (PRI) estimation, significant peaks 

in the time-domain auto-correlation function are identified 

to compute the average PRI, from which the pulse repeti-

tion frequency (PRF) is subsequently determined. Peak 

power estimation is achieved by calculating the average 

 

Fig. 3.  The error between the estimated value and the actual 

value. 

power within the pulse region. The error between the esti-

mated value and the actual value is shown in Fig. 3. It can 

be seen that the CF error is only 1.3%, the PP error is 

5.7%, and the overall estimation error is small, which 

meets the requirements of subsequent experiments. 

The complete dataset consists of 200 samples per 

noise level per operational mode, yielding a total of 4000 

distinct signal realizations (5 modes × 4 noise levels × 200 

samples) for model training and parameter optimization. 

To ensure a rigorous and unbiased evaluation and to pre-

vent any data leakage, an additional independent test set 

was generated using the same signal generation protocol. 

This test set comprised 1000 completely novel signal reali-

zations (5 modes × 4 noise levels × 50 samples) that were 

never used during any stage of model development. The 

hyperparameter tuning process for algorithms like GCSAO 

was conducted via cross-validation on the 4000-sample 

training set. This approach guarantees that the final per-

formance evaluation on the 1000-sample test set is entirely 

objective and reflects the model's true generalization capa-

bility to unseen data. 

4.2 Experiment of KDEOA   

To validate the effectiveness of the proposed discreti-

zation method, we conducted simulation experiments using 

a dataset comprising 4000 radar PDW samples (Sec. 4.1), 

each being characterized by five features. The experimental 

procedure involved data normalization followed by 

processing with our  improved discretization method. After 
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Fig. 4. The t-SNE visualization of discretized data across 

various noise levels. 

 

Fig. 5.  The t-SNE visualization of original data across various 

noise levels. 

cross-validation, the value of the complexity penalty factor 

  is selected to be 0.1.  

Figure 4 presents the t-SNE visualization of discre-

tized data across various noise levels, while Figure 5 shows 

the original data distribution. Comparative analysis reveals 

that increasing noise levels cause gradual dispersion of 

data points and blurring of category boundaries in the orig-

inal data. In contrast, the KDEOA-processed discrete data 

consistently preserves the original distribution characteris-

tics across all noise conditions. Notably, even under high 

noise levels (50%), the discretized data maintains distinct 

class boundaries, demonstrating its superiority in noise 

robustness. 

4.3 Experiment of GCSAO-LSSVM  

In order to verify the effectiveness of the GCSAO-

LSSVM algorithm, the 4000-sample training set was used 

for model training and hyperparameter optimization. The 

upper and lower limits of r and g were set to [0.0001, 300] 

and [0.0001, 100], respectively. The population size was 

set to 50, and the maximum number of iterations was set to 

100. 

Four optimization algorithms namely genetic 

algorithm (GA), particle swarm optimization (PSO), SAO, 

and the proposed GCSAO. were employed for support 

vector machine parameter optimization. The GA 

parameters were configured as a crossover probability of 

0.4 and a mutation probability of 0.01. In the case of PSO, 

the velocity vector was restricted to the interval [–0.2, 0.8], 

with an inertia factor ranging from [0, 2] and learning 

factors set to 1.6 and 1.7, respectively. To prevent 

premature convergence, the inertia factor decreased 

linearly during the iterative process. To assess the 

statistical reliability of the experimental outcomes, 30 

independent repeated trials were conducted under the 

aforementioned conditions. The penalty coefficient r, 

optimal parameters g, and classification accuracy (Acc) 

obtained from each trial were recorded. The mean values 

and variances of these results are summarized in Tab. 2.  

As shown in the experimental results, the proposed 

GCSAO algorithm achieves an average accuracy of 

0.9868, outperforming GA (0.9759), PSO (0.9824), and 

SAO (0.9867). Notably, the standard deviation of accuracy 

is zero, indicating excellent stability in performance. For 

the parameter g, the mean value is 0.0176 with a standard 

deviation of 0.0096, demonstrating satisfactory 

consistency. Although the mean value of the parameter r is 

higher, its standard deviation remains considerably lower 

(31.6968) compared to other algorithms. These results 

collectively confirm that the GCSAO-LSSVM algorithm 

exhibits high accuracy and strong stability, validating its 

effectiveness. 

The optimal group of 30 groups was selected for 

analysis. Figure 6 is the optimization process of GCSAO 

on parameter g and penalty coefficient r. Due to the 

periodic oscillation strategy, it can be clearly seen that the r 

value jumps out of the local optimal solution after the 21th 

iteration. Finally, the penalty coefficient r value is 

determined to be 265.6273, and the optimal parameter g 

value is 0.0179. 

The accuracy optimization curves of each algorithm 

are shown in Fig. 7. As shown in Fig. 7, comparative anal-

ysis revealed that GCSAO-LSSVM outperformed compet-

ing methods in terms of both convergence speed and 

recognition accuracy, achieving significantly higher values 

for the latter. 

 

value GA PSO SAO GCSAO 

Mean r 192.3358 170.2072 239.5829 278.7789 

Std r 102.8905 69.3068 88.7055 31.6968 

Mean g 0.1261 0.0069 0.0168 0.0176 

Std g 0.08231 0.0117 0.0103 0.0096 

Mean Acc 0.9759 0.9824 0.9867 0.9868 

Std Acc 0.0066 0.0023 0 0 

Tab. 2.  The final value of parameters g and r under different 

methods. 
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Fig. 6.  Optimization process of parameters g and r. 

 

Fig. 7.  The accuracy optimization curves of the comparison 

algorithm. 

Figure 8 compares the classification accuracy of the 

LSSVM models under various noise conditions and 

discretization strategies. The results indicate a consistent 

decline in accuracy among all methods as the noise ratio 

increases. Notably, the K-means-based discretization 

approach consistently surpasses the performance of non-

discretized data in noisy scenarios, underscoring the role of 

discretization in enhancing model robustness through 

an effective feature grouping. The proposed KDEOA 

method achieves the highest accuracy among all compared 

techniques at every noise level, demonstrating its superior 

capability in handling biased data. This performance gain  

 

Fig. 8.  Comparison of the classification accuracy of LSSVM 

under different noise conditions and different 

discretization methods. 

 

Fig. 9.  Comparison of classification accuracy of LSSVM on 

newly generated data. 

suggests that our discretization strategy facilitates more 

discriminative feature partitioning, thereby strengthening 

the model's resilience against signal contamination. 

To evaluate the model's generalization capability, an 

additional 1,000 data samples were generated for testing. 

The results, summarized in Fig. 9, indicate that although 

the accuracy of all methods declined to some extent under 

different noise conditions on the newly generated dataset, 

the proposed KDEOA consistently outperformed both the 

original data and the K-means method across all scenarios. 

This demonstrates that KDEOA not only achieves effective 

classification on the training set but also exhibits strong 

generalization ability, maintaining high classification 

accuracy on unseen data. 

4.4 Experimental of IEWM  

To validate the effectiveness of the proposed IEWM 

for subjective-objective weighting, comparative analyses 

were conducted with four alternative approaches: conven-

tional EWM, EWM with game theory, EWM with Tsallis 

entropy, and EWM with kernel density standardization. 

Through cross validation, the sensitivity coefficient q of 

entropy to probability distribution is determined to be 0.8.  

The stability of each weighting method against noise 

was quantified by using the weight variation rates (WVR). 

This metric measures the average relative change in the 

calculated weights when noise is introduced to the dataset, 

compared to the weights derived from the clean data. For 

each method, the WVR at a specific noise level is defined 

as: 

 

entropy entropy
,noise ,clean

entropy
,clean1

1
WVR 100%

M
j j

jj

w w

M w

 
  
 
 

  (20) 

where M is the number of evaluation indicators, 
entropy
,cleanjw  is 

the weight of the j-th indicator calculated from the original 
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and clean dataset, 
entropy
,noisejw  is the weight of the j-th indicator 

calculated from the noisy dataset. 

Table 3 presents the comparative results of weight 

variation rates between contaminated samples and original 

data. As evidenced in Tab. 3, the proposed IEWM achieves 

remarkable improvements in weight stability, reducing 

variation rates to just 0.11–0.23% across noise levels - a 

20× improvement over standard EWM (6.30% at 50% 

noise), and demonstrates superior performance in weight 

variation rate compared to alternative approaches. This 

advantage stems from two key considerations: (1) compre-

hensive incorporation of characteristic attributes from the 

complete radar dataset, and (2) explicit inconsistencies 

between biased samples and original data. The results con-

firm that the IEWM algorithm effectively mitigates the 

adverse impacts of biased data. 

4.5 Experimental of ITOPSIS  

To validate the efficacy of the proposed ITOPSIS 

method, through utilizing radar data from prior IEWM 

experiments, comparative analyses were performed against 

conventional TOPSIS, TOPSIS with mixed ideal solutions, 

and TOPSIS with IQR standardization.  

For each noise level, the quantitative jamming effect 

score was calculated for every sample in the test set using 

each TOPSIS variant. The "ground truth" reference score 

for each sample was defined as its score computed by the 

standard TOPSIS method on the clean and uncontaminated 

data. The effectiveness of each method was then evaluated 

by measuring how well its scores under noise correlated 

with these reference scores. This was quantified using the 

Pearson correlation coefficient between the method's out-

put scores and the reference scores across all test samples. 

A higher correlation coefficient indicates that the method's 

evaluation results are more consistent with the baseline, 

which demonstrates better robustness to noise.  

Table 4 presents the correlation coefficients between 

evaluation results and reference sample data under varying 

biased contamination levels. The results demonstrate that 

all four methods exhibit declining correlation values with 

increasing biased proportions. Notably, the proposed 

ITOPSIS demonstrates significant improvements over 

existing .methods, achieving a .49.5% .higher correlation 
 

Method 
Random Noise 

10% 30% 50% 

EWM 5.63% 6.18% 6.30% 

EWM with Tsallis entropy 3.37% 4.76% 5.35% 

EWM with game theory  2.12% 2.25% 2.35% 

EWM with kernel density standardization 0.16% 0.27% 0.31% 

IEWM 0.11% 0.22% 0.23% 

Tab. 3.  Comparison of weight variation rates under different 

method. 
 

Method 
Random Noise 

10% 30% 50% 

TOPSIS 0.5609 0.5061 0.3645 

TOPSIS with mixed ideal solutions 0.5642 0.5275 0.3700 

TOPSIS with IQR standardization 0.8277 0.7740 0.6945 

ITOPSIS 0.8382 0.7806 0.7290 

Tab. 4.  Comparison of correlation coefficient between 

different methods. 

(0.7290 vs 0.3645) than conventional TOPSIS under 50% 

noise conditions, and maintains superior robustness against 

biased perturbations, effectively mitigating their adverse 

effects on evaluation accuracy. 

4.6 Computational Complexity Analysis  

To evaluate the computational efficiency of the pro-

posed algorithm and ensure statistical significance, a total 

of 4000 samples were included in the tests. The runtime of 

different algorithmic components under various ablation 

settings is illustrated in Fig. 10. All pre-evaluation proce-

dures were kept consistent across experiments. A compari-

son was conducted among seven distinct method combina-

tions from Sec. 4.4 and 4.5, which were numbered from 1 

to 7, specifically: IEWM + ITOPSIS, EWM with Tsallis 

entropy + ITOPSIS, EWM with game theory + ITOPSIS, 

EWM with kernel density standardization + ITOPSIS, 

IEWM + TOPSIS with IQR standardization, IEWM + 

TOPSIS with mixed ideal solutions, and standard EWM + 

TOPSIS. 

As shown in Fig. 10, the computational time varies 

across different stages of each algorithm. The discretization 

stage consumes relatively little time, ranging between 

0.0121 and 0.0133 seconds. In contrast, the pre-evaluation 

stage is the most time-consuming, accounting for 81.6% to 

87.3% of the total runtime. The proposed IEWM shows 

comparable  time  consumption  to standard EWM, while 

 

Fig. 10.  The time comparison with different ablation 

experiments.  
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ITOPSIS requires approximately four times longer than 

conventional TOPSIS. This increase is mainly attributable 

to the fact that TOPSIS computes ideal solutions using 

simple global maxima and minima, whereas ITOPSIS 

incorporates more computationally intensive techniques 

such as silhouette coefficient analysis, K-means clustering, 

and dynamic fusion of ideal solutions. Despite the in-

creased time cost of ITOPSIS, its impact on the overall 

computational time remains limited. The fact that the entire 

proposed algorithm processes 4000 samples in only 0.3582 

seconds demonstrates high efficiency and meeting real-

time processing requirements. 

For the space complexity, after testing, the peak run-

ning memory space occupied by the LSSVM model in the 

pre-evaluation stage is 36.7 M, the model parameter size is 

0.87 M, and the space complexity of the remaining calcula-

tion parts is negligible. 

In summary, the proposed algorithm requires only 

0.3582 seconds to process 4000 samples, with reasonable 

memory consumption, which fully satisfies real-time appli-

cation demands. These results confirm the computational 

efficiency and practical viability of the method. 

5. Conclusion and Discussion 

This study presents a two-stage optimization frame-

work for evaluating radar jamming effectiveness under 

non-cooperative and adversarial conditions. The proposed 

methodology addresses key challenges from data devia-

tions caused by radar mode switching, electromagnetic 

interference, and receiver noise. 

In the first stage, we introduced the KDEOA algo-

rithm to discretize continuous PDW parameters, ensuring 

robustness against biased data. The GCSAO-optimized 

LSSVM further enhanced pre-evaluation accuracy by dy-

namically balancing exploration and exploitation during 

parameter optimization. 

In the second stage, the IEWM method integrated 

kernel density estimation and game-theoretic weighting to 

minimize subjective biases, while the ITOPSIS approach 

leveraged IQR standardization and adaptive clustering to 

refine quantitative evaluation under biased conditions. 

Experimental results demonstrated the framework’s supe-

riority in maintaining high accuracy across noise levels (up 

to 50% contamination), with IEWM achieving the lowest 

weight variation rate and ITOPSIS exhibiting the strongest 

correlation. 

While the proposed framework demonstrates robust 

performance in jamming evaluation, certain limitations 

should be noted as well. Firstly, the method assumes rela-

tively stable radar behavior patterns, which may not hold 

for advanced cognitive radars with which employs adaptive 

countermeasures. Secondly, the evaluation accuracy de-

pends heavily on the quality of extracted PDW parameters, 

which means that severe signal distortions in highly clut-

tered environments could degrade performance. Thirdly, 

the current implementation focuses more on single-jammer 

scenarios and does not account for coordinated jamming 

strategies or multi-radar networks, potentially limiting its 

applicability in complex electronic warfare scenarios. 

Future research will focus on three key directions: 

(i) developing real-time adaptive learning mechanisms by 

using reinforcement learning to handle dynamic radar 

countermeasures, (ii) extending the framework to multi-

jammer scenarios by modeling cooperative jamming ef-

fects and radar network interactions, and (iii) validating the 

approach through hardware-in-the-loop testing with field-

collected data to assess practical deployment feasibility. 
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