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Abstract. In complex electromagnetic environments, radar
signals intercepted by jammers often contain biased data
due to factors such as radar mode switching, electromag-
netic interference, and receiver noise. To address this
challenge, this paper proposes a two-stage optimization
framework for jamming effect evaluation from the jam-
mer’s perspective. In the first stage, a pre-evaluation is
conducted using an entropy-optimized K-means discretiza-
tion algorithm (KDEOA) to adaptively partition pulse
descriptor word (PDW) parameters, enhancing robustness
against noise. A GCSAO-LSSVM model is then employed
to improve classification accuracy through optimal param-
eter tuning and a periodic oscillation mutation strategy. In
the second stage, an improved entropy weight method
(IEWM) integrating Tsallis entropy, kernel density stand-
ardization, and game theory is used for objective
weighting, followed by an enhanced TOPSIS method
(ITOPSIS) incorporating interquartile range standardiza-
tion and dynamic ideal solution fusion for quantitative
scoring. Experimental results demonstrate that the pro-
posed framework achieves the highest pre-evaluation ac-
curacy across all noise levels (up to 50% contamination),
with IEWM exhibiting the lowest weight variation rate
(0.11-0.23%) and ITOPSIS showing the strongest correla-
tion (0.7290) with baseline scores under high noise. The
main limitations include sensitivity to severe signal distor-
tion and assumption of stable radar behavior. This ap-
proach enables accurate, non-cooperative jamming as-
sessment and supports robust decision-making in cognitive
electronic warfare.
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1. Introduction

Jamming effect evaluation refers to assessing the im-
pact of jamming actions on radar performance by analyzing
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changes in the radar's behavioral parameters [1], [2]. In
cognitive electronic warfare, continuous real-time evalua-
tion of jamming effects is essential to ensure effective and
adaptive jamming. By analyzing these effects, the jammer
can iteratively optimize its strategies, thereby enhancing
the efficacy of electronic countermeasures. This process is
critical for jamming strategy formulation and represents
a key component of modern electronic warfare [3-5]. At
present, the common interference effect evaluation meth-
ods are mainly divided into three kinds: evaluation factor
method, fuzzy comprehensive evaluation method and intel-
ligent evaluation method.

The evaluation factor method is to select and deter-
mine a series of evaluation indicators that can reflect the
effect of radar interference, and to obtain an evaluation
factor that can objectively analyze the quality of interfer-
ence from various aspects through mathematical methods,
so as to achieve the evaluation of interference effect [6],
[7]. This method is relatively simple to implement, but it
may lead to the lack of comprehensiveness of the evalua-
tion results obtained because it is difficult for the evalua-
tion factor to cover all the influencing factors in the radar
countermeasure process.

Fuzzy comprehensive evaluation method is a combi-
nation of fuzzy set theory and comprehensive evaluation
method, which is used to deal with the fuzziness and uncer-
tainty between evaluation indexes [8-11]. However,
a corresponding membership function needs to be set in the
current fuzzy comprehensive evaluation method, and the
construction of appropriate membership function and the
determination of the weight of different influencing factors
still lack clear theoretical support. At the same time, setting
the weight artificially may introduce too many subjective
factors, resulting in the lack of objectivity of the evaluation
results.

Intelligent evaluation method is a kind of interference
effect evaluation method based on artificial intelligence
and data mining technology. It automatically processes
data, extracts features, and uses machine learning algo-
rithms for pattern recognition and prediction to obtain the
laws of different influencing factors on the interference
effect, so as to realize the intelligent evaluation of the inter-
ference effect [12], [13]. However, such methods require



RADIOENGINEERING, VOL. 34, NO. 4, DECEMBER 2025

661

high quality and accuracy of data. If the data is inaccurate
or incomplete, it may affect the accuracy of the evaluation
results.

In the simulation research of jamming effect evalua-
tion, traditional jamming effect evaluation methods pre-
dominantly adopt a radar-centric approach [14]. These
methods typically assume a cooperative relationship be-
tween the radar and jammer, assessing jamming effective-
ness by comparing pre- and post-jamming radar parameter
variations. However, in practical electronic warfare scenar-
ios, the relationship is fundamentally non-cooperative,
where the jammer must rely solely on its own observations
to obtain limited radar information. Consequently, recent
studies have proposed implementing online evaluation
from the jammer's perspective.

Huang et al. [15] investigated quantitative assessment
and intelligent decision-making methods for multifunction-
al radar jamming, leveraging artificial intelligence to en-
hance jamming performance and battlefield survivability.
Lei et al. [16] introduced an online evaluation framework
based on support vector machines (SVM) and evidence
theory, and utilized behavioral characteristics of jammers
and radar counter-jamming features for real-time assess-
ment via SVM and basic confidence assignment. Mean-
while, Li et al. [17] proposed a data-driven evaluation
method, which combines expert knowledge and data min-
ing to quantify the impact of jamming on radar systems in
complex electromagnetic environments. This approach
established a unified signal-level evaluation framework for
a stable and quantitative jamming assessment. Zhang et al.
[18] developed an online evaluation model from the jam-
mer's perspective, incorporating an improved class attribute
correlation coefficient (ICACC) method and a probability
similarity-based soft output basic belief assignment (BBA)
correction technique to enhance evaluation efficiency and
accuracy under asymmetric information conditions. Pei et
al. [19] presented a radar jamming scheme decision-
making approach utilizing an SDAE-SVM algorithm, spe-
cifically designed to improve jamming decision precision
in active radar guidance scenarios. Complementing these
works, Hu et al. [20] investigated online evaluation tech-
niques for radar active anti-jamming effectiveness, and
introduced a method based on time-domain criterion,
which processes synchronized platform data including
radar amplitude timing, parameter timing, and active jam-
ming equipment detection point parameters through buffer-
ing, fitting, and situational information generation. In [21],
a cooperative jamming effectiveness evaluation method is
presented, founded on the improved particle swarm optimi-
zation—extreme learning machine (IPSO-ELM). Through
optimizing the ELM network with IPSO, the accuracy and
real-time performance of the evaluation are significantly
improved.

In essence, according to different effect levels, refer-
ences [15-21] classify and label the information intercept-
ed by the interfering party and then evaluate the effect
through the classification algorithm in order to determine

the evaluation level. There are limitations in the following
aspects. Firstly, there is a lack of optimization and adjust-
ment of classifier parameters. Secondly, in the actual con-
frontation environment, the interference effect evaluation
level may not change before and after the interference
action, but the intercepted radar behavior parameters have
seen certain changes. Thirdly, in the process of analyzing
the intercepted radar signal, due to the switching of radar
working mode, electromagnetic interference and receiver
noise, the intricate electromagnetic environment leads to
an imbalance of radar data acquired by the jamming de-
vice, resulting in the deviation of radar information and
affecting the accuracy of quantitative evaluation. The com-
prehensive and objective evaluation of the interference
effect and the enhancement of the accuracy of such evalua-
tions have emerged as a focal point of research.

The development of quantitative methods for interfer-
ence effect evaluation is deeply influenced by information
theory and signal processing technology. The early entro-
py-based feature selection research [22] revealed the dis-
criminative ability of entropy weight in nonlinear systems.
At the level of decision-making methods, TOPSIS and its
variants have been widely used in mathematics, engineer-
ing, science, environment, technology, management, busi-
ness and other fields [23]. However, the sensitivity of tradi-
tional methods to outliers has limited their applicability in
complex interference scenarios. In [24], a Hybrid Model-
Data-Driven approach is put forward, which integrates the
merits of both to enhance the precision and practicality of
radar jamming effectiveness evaluation. In [25], a novel
approach integrating the Vague set and the TOPSIS meth-
od is proposed for the assessment of the jamming effec-
tiveness of impulse signals, which combines the objective
weight method based on fuzzy set entropy and the subjec-
tive weight method based on set value statistics. Then,
these methods are integrated through a game theory-based
formula to obtain a comprehensive and balanced set of
evaluation weights. An improved TOPSIS method is pro-
posed in [26] in response to the problem that the standard
technique for order preference by similarity to ideal solu-
tion (TOPSIS) method is affected by data fluctuation and
insufficient analysis of data law in radar jamming effect
evaluation. This method combines TOPSIS method and
grey correlation analysis theory to analyze the original data,
and combines the evaluation results of the two methods as
the final evaluation results, which makes up for the defects
of TOPSIS method in radar jamming effect evaluation.

However, the methods proposed in references [22—26]
mainly are limited in three aspects. Firstly, since most of
these methods are based on the assumption of good data
quality, they fail to fully consider the problem of serious
bias (Biased Data) in pulse description word (PDW) data
caused by radar mode switching, electromagnetic interfer-
ence and receiver noise in complex electromagnetic envi-
ronment, and also their robustness is questionable. Second-
ly, these methods predominantly involve independent
weight assignment or sorting algorithms, so they fail to
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establish an End-to-End systematic evaluation framework
encompassing preprocessing, feature extraction, and final
evaluation. Consequently, it is difficult to address the chal-
lenge of online rapid evaluation from biased data within
non-cooperative adversarial environments. Thirdly, the
utilization of local data characteristics is insufficient due to
the fact that the evaluation process often relies on the glob-
al ideal solution. When the data distribution changes com-
plicatedly due to interference, the accuracy and reliability
of the evaluation results will be significantly reduced.

In summary, the existing radar evaluation methods
focus either on classification accuracy or on quantitative
evaluation instead of integrating the two aspects, so they
cannot evaluate the jamming effect comprehensively, ob-
jectively and accurately. Different from previous studies,
this paper uniquely integrates information theory discreti-
zation, parameter optimization LSSVM, game theory
weight fusion and clustering-based TOPSIS to build a full-
process interference effect evaluation system. Figure 1
illustrates the two-stage jamming effect evaluation frame-
work. In the first stage (pre-evaluation), radar parameters
are extracted from both reference databases and unknown
radar signals. The KDEOA algorithm discretizes these
features, which are then processed by the GCSAO-LSSVM
classifier to output preliminary jamming effect levels.
When pre-evaluation levels are identical, the second stage
(quantitative evaluation) activates by applying IEWM for
weighted analysis and ITOPSIS for refined scoring.

The main innovations and contributions of this paper
are as follows:

(1) This paper proposes a discretization algorithm
based on an improved K-means clustering in order to re-
duce the influence of deviation value on LSSVM classifi-
cation. To avoid the clustering center falling into local
optimum, the algorithm replaces random initialization with
probabilistic distance weighted initialization. By optimiz-
ing the number of bins through information entropy, the
optimal number of bins can be automatically selected to
balance the amount of information and complexity.
Through K-means clustering and IQR, boundary adjust-
ment is carried out to enhance the inclusion of noise values
and avoid boundary sensitive problems. Finally, the adap-
tive discretization of PDW parameters is realized.

(2) This paper proposes a method based on GCSAO
to optimize the parameters of LSSVM from the perspective
of improving the accuracy of pre-assessment of interfer-
ence effects. The optimal initial value set and periodic
oscillation mutation operator are used to prevent the pa-
rameters from entering the local optimum, so as to find the
optimal parameters and improve the accuracy of pre-
assessment of interference effects.

(3) IEWM is presented for subjective and objective
weighting when the pre-evaluation level of jamming effect
is the same. The non-normal distribution data is processed
by the kernel density estimation of adaptive bandwidth,
which improves the stability of weight and reduces the
influence of deviation data. Tsallis entropy is used to cal-
culate the objective weight and enhance the adaptability
to complex data. Through the combination of game theory,

The first stage : pre-evaluation of jamming effect

Feature

/ CE /]] / PW ’/ / BW I/ / PRF /7] / PP I‘/ preprocessing GCSAO
- J/ —
D Discretize LSSVM
Radar signature database radar data training Output
Jamming
effects
Unknown radar data KDEOA LSSVM
assessment .
No
Are the pre-evaluation Do 5
level the same? pre-evaluation
level
Yes
The second stage : quantitative evaluation of jamming effect
Radar 1 0.7125
Radar PDW of the same e
pre-evaluation level IEWM ITOPSIS
Radarn  0.5263

Fig. 1. The framework of two-stage optimization framework for radar jamming effectiveness evaluation.
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the difference between subjective and objective weights is
minimized, and the Nash equilibrium solution is obtained
to avoid the one-sidedness of single weighting, so that the
combined weights are in line with the data law.

(4) An ITOPSIS method is proposed on the basis of
obtaining the weights after subjective and objective
weighting. The influence of deviation value on standardi-
zation results is reduced and the robustness is improved
through IQR standardization. The optimal clustering hum-
ber is selected by the contour coefficient to avoid artificial
setting deviation and improve the rationality of data group-
ing. By balancing the global and local ideal solutions
through dynamic coefficients, the adaptability to complex
interference scenarios is enhanced, and the interference
effect is further quantitatively evaluated.

2. Jamming Effect Pre-evaluation

From the jammer's perspective, this section evaluates
jamming effectiveness by monitoring operational status
changes of the target radar. It can be seen from Fig. 1 that
potential deviated pulse information is extracted as feature
attributes to establish a radar knowledge base. The radar
PDW data undergo KDEOA-based discretization for model
training. During operation, intercepted radar signals are
similarly discretized and processed by the trained model
for preliminary jamming effectiveness assessment.

2.1 K-means Discretization Algorithm Based
on Entropy Optimization (KDEOA)

The pre-evaluation of jamming effects in this study
involves the determination of the radar's operational state
by using predefined evaluation metrics from an established
radar knowledge base, which is then followed by assessing
jamming effectiveness through comparative analysis of
pre- and post-jamming state variations. During radar data-
base construction, we have considered both the acquisition
difficulty of feature attributes and their correlation with
radar operational state changes, so five key characteristic
attributes were selected as evaluation metrics for the radar
knowledge base: carrier frequency (CF), bandwidth (BW),
pulse width (PW), pulse repetition frequency (PRF), and
peak power (PP) [27].

Jamming-induced perturbations in radar operating pa-
rameters serve as critical indicators of jamming effective-
ness. Carrier frequency (CF) instability reflects frequency-
domain jamming techniques, while pulse width (PW) dis-
tortion demonstrates the time-domain interference impacts
on range resolution. Bandwidth (BW) abnormalities reveal
signal processing degradation, and pulse repetition fre-
quency (PRF) anomalies indicate compromised Doppler
and ranging capabilities. Peak power (PP) adjustments
under jamming conditions expose the radar's countermeas-
ure strategies while simultaneously highlighting its vulner-
ability to detection or saturation. These five parameters

collectively capture the multidimensional effects of elec-
tronic warfare on radar performance, spanning time, fre-
quency, and power domains. Collectively, these compo-
nents afford a comprehensive analytical framework for
examining the manner in which electronic attacks attenuate
detection probability, resolution, tracking accuracy, and
operational stealth.

Under complex electromagnetic environments, pulse
descriptor word (PDW) data acquired by jamming systems
frequently exhibit significant deviations caused by radar
mode switching, electromagnetic interference, and receiver
noise. To address this challenge, we develop an improved
K-means clustering-based [28] discretization algorithm that
transforms continuous PDW parameters into discrete states
via optimal partitioning. The proposed methodology oper-
ates through the following key processes:

(1) Using probabilistic distance weighted initializa-
tion instead of random initialization:

P(x; :ck):M @

> D(x;)?
j=1

where x; is the i-th data point, c is the k clustering center,
D(xi) represents the minimum distance to the existing cen-
ter, and N is the total number of samples in the data set.

(2) For each feature vector, calculate the information
entropy [29] under different box numbers K e [Kmin, Kmax]:

K
n
H(K)==>" plog; py, P= @)
k=1

where py is the proportion of samples in the k box, ng is the
number of samples in the box k, and the optimal number of
boxes K" satisfies:

K™ =argmax[H (K)-4-K] 3
K

where A is the complexity penalty factor.

(3) For a PDW dataset X € RN*M comprising N
pulses with M parameters, the K-means clustering is used
to calculate the clustering center of each bin, and the
discretization process of the i-th characteristic x; in the
parameter m is defined as follows:

K
H 2
Clyeo G }= _ 4
{c,....c.} argmcanZH X — |l 4
k=1 x; €Sy
where C represents the cluster center.

(4) Adjust the boundaries {eq,...,ex} based on the IQR
introduced by the clustering center.

¢, ~15.10R, k=0
ek:%, 1<k <K )
¢ +15-1QR, k=K+1
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(5) Discretize mapping based on box partitioning.
yi ={kl e  <x <e.}. (6)

The KDEOA replaces random initialization by proba-
bilistic distance weighted initialization to avoid the cluster
center falling into local optimum. By optimizing the num-
ber of binning through information entropy, the optimal
number of binning can be automatically selected to balance
the amount of information and complexity. The boundary
adjustment is performed by K-means clustering and IQR to
enhance the tolerance of noise values and avoid boundary
sensitivity problems. Finally, the adaptive discretization of
PDW parameters is achieved with robustness, adaptability
and physical interpretability, and is suitable for complex
signal processing scenarios such as electronic warfare.

2.2 Pre-evaluation Model for Jamming Effect
Based on GCSAO-LSSVM

The limited number of intercepted signals makes the
pre-evaluation of jamming effectiveness a small-sample
classification problem, for which SVM has demonstrated
superior accuracy [30]. This work employs LSSVM for
multifunctional radar status identification. As an SVM
variant optimized for classification and regression tasks,
LSSVM replaces traditional inequality constraints with
equality constraints and adopts a squared error loss func-
tion. This formulation converts the optimization problem
into solving linear equations, significantly reducing com-
putational complexity compared to quadratic programming
while maintaining solution speed.

The LSSVM implementation involves a penalty coef-
ficient r that balances classification margin and accuracy.
Excessively high r values may lead to overfitting by pro-
hibiting classification errors, thereby restricting the classi-
fier's applicability to linearly separable samples. Converse-
ly, excessively low r values will result in excessively large
classification margins that compromise accuracy. For line-
arly inseparable problems, the kernel parameter g governs
the influence range of individual samples.

Parameter selection critically influences SVM classi-
fication performance: both g and r significantly affect the
final classification accuracy. To optimize radar threat level
classification performance and enhance LSSVM recogni-
tion accuracy, we utilize the GCSAO algorithm, which
identifies optimal parameter combinations to enhance SVM
recognition accuracy.

The SAO algorithm is biologically inspired by the
physical processes of snow sublimation and melting phe-
nomena [31]. This metaheuristic algorithm addresses the
common limitations of population-based optimization
methods by effectively balancing exploration and exploita-
tion. The SAO framework comprises four distinct phases:
(1) initialization, (2) exploration, (3) exploitation, and (4)

0.8

value

0 50 100 150 200
iterations

Fig. 2. Spatial distribution mapping of optimal point set
initialization
a dual-population mechanism. In the present study, we

propose several modifications to enhance the original SAO
algorithm.

During the initialization phase, the SAO algorithm
conventionally employs randomly generated population
positions. In this study, we implement optimal point set
method for population initialization, which achieves more
uniform spatial distribution of candidate solutions and
expands the effective search space. This initialization strat-
egy enhances initial solution quality, mitigates the limita-
tions of random initialization, and facilitates escape from
local optima attraction. The spatial distribution mapping
after 200 iterations is illustrated in Fig. 2.

This study introduces a periodic oscillatory mutation
strategy to optimize both the exploration and exploitation
phases of the SAO algorithm. Inspired by cyclical patterns
in biological evolution, this strategy dynamically adjusts
mutation rates during iterations to maintain an optimal
balance between exploration and exploitation. The ap-
proach improves population diversity, facilitating escape
from local optima while promoting broader search-space
exploration. The overall process of GCSAO-LSSVM algo-
rithm is as follows:

Algorithm 1: GCSAO-LSSVM
1: Initialize the key parameters (g, r) are via the optimal point set
approach.

2:  Recognition and classification were performed using LSSVM.
3:  Record the current best individual G(t)
4:  while (t < tma) do
5: Calculate the snowmelt rate M
6: Randomly divide the whole population P into two
subpopulations Pa and Pb
7: for each individual do
8: Update each individual’s position through periodic
oscillatory mutation strategy
9: end for
10: Fitness evaluation
11: Update G(t)
12: t=t+1
13:  end while

14:  Return G(t)
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2.3 Complexity Analysis of Pre-evaluation
Stage

The computational complexity of the KDEOA dis-
cretization process is mainly governed by its probabilistic
distance-based initialization and iterative K-means
clustering stages. The overall time complexity is
O(n?+n -M -k -t), where n is the number of pulses, M is the
number of parameters, k is the number of clusters, and t
represents iterations. The quadratic term originates from
the pairwise distance computations during center initializa-
tion, while the clustering operation scales linearly with
respect to the dimensions and clusters. The space complex-
ity is O(n -M), which is required for storing the raw and
discretized pulse data.

The GCSAO-LSSVM model exhibits significant
computational demand during the offline training phase,
primarily due to the O(n®) complexity associated with solv-
ing the linear system in LSSVM training, coupled with the
hyperparameter optimization performed by the GCSAO
algorithm. The latter requires O(G -P -n°) operations,
where G is the number of generations and P is the popula-
tion size. In contrast, the online prediction step is computa-
tionally efficient, with a complexity of O(ns, - M), where ng
is the number of support vectors, making it suitable for
real-time jamming effect assessment.

3. Quantitative Evaluation of
Jamming Effects

Effective jamming impedes radar target confirmation
and tracking capabilities, thereby maintaining the system in
a low-threat state. In contrast, ineffective jamming fails to
alter radar performance, permitting gradual transition to
a high-threat operational mode. Jamming efficacy can be
assessed through observed radar state transitions. Never-
theless, in adversarial scenarios, the radar may sustain
a static operational state for extended durations. In such
cases, quantitative analysis of parameter variations be-
comes necessary to evaluate jamming effectiveness defini-
tively.

3.1 Improved Entropy-based Weighting
Method (IEWM)

Excessive incorporation of evaluators' subjective
judgments compromises objectivity in assessment, while
biased data further degrades quantitative evaluation accu-
racy. To address these limitations, this study employs
IEWM for objective weighting. The methodology involves:
(i) standardizing the kernel density [32] of raw data,
(ii) computing  Tsallis entropy [33] weights, and
(iii) integrating subjective and objective weights through
game-theoretic synthesis [34]. This approach establishes
weighting coefficients solely based on inter-parameter
correlations, completely avoiding decision-maker subjec-

tivity. The mathematically rigorous framework provides
robust theoretical foundations while effectively mitigating
biased-induced distortions. The implementation procedure
comprises the following key steps:

1) The decision matrix A = (aj)nxm IS constructed
from N samples with M evaluation indicators, followed by
computation of the sample data's skewness coefficient v;:

V= =1 : )

(;ZN:(% -3 )2]%

i=1

2) The Shapiro-Wilk test statistic p is computed to
evaluate data normality, while an adaptive approach is
employed to determine the optimal kernel density band-
width h;:

1.06-4; N, ify; >1& p>=0.05
- ®)
" |35.4;-N, ify; >1& p<0.05
3) Calculate kernel density estimation z;; of data.
1 < a; —&;
Ly =—7—— Keau [ ©)
N-hj = h;
where Kgay is @ Gaussian kernel function.
4) Calculate probability matrix pij:
A (10)

1] N
2%

i=1

5) The sensitivity of entropy to probability distribu-
tion is controlled by parameter g. And then calculate Tsal-
lis entropy H;:

N
1_Z(pij)q
_—i:]' .

H; = 11
i 41 (12)

6) Calculate entropy weight wS™"°™ :
wentropy _ 1-H i (12)

J

. .
D a-H))
j=1

7) Research findings demonstrate that frequency-
domain anti-jamming measures exhibit superior effective-
ness compared to time-domain approaches. Significant
variations in carrier frequency and pulse repetition fre-
quency indicate a strong radar jamming, which suggests
that frequency-domain countermeasures yield more pro-
nounced jamming effects. While peak power primarily
influences radar detection probability, signal bandwidth and
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Indicator CF PW BW PRF PP

score 0.3 0.1 0.1 0.3 0.2

Tab. 1. Subjective rating of indicators.

pulse width predominantly affect measurement accuracy
and resolution, indicating comparable anti-jamming effica-
cy levels. The corresponding subjective weight as-
signments are presented in Tab. 1.

The Tsallis entropy weight and subjective weight are
combined by game theory to obtain the final subjective and
objective combination weight w.

The IEWM method employs adaptive bandwidth ker-
nel density estimation to handle non-normal distribution
data, enhancing weight stability while mitigating the im-
pact of deviated data. Tsallis entropy is utilized to compute
objective weights to improve adaptability to complex da-
tasets. By integrating game theory, the method minimizes
discrepancies between subjective and objective weights,
achieving a Nash equilibrium solution to avoid bias from
single-weighting approaches. The resulting combined
weight not only adheres to data-driven principles but also
preserves domain knowledge, providing a robust founda-
tion for interference effect evaluation.

3.2 Improved TOPSIS (ITOPSIS)

On the basis of obtaining the combined weight, in
order to further reduce the influence of the deviation value,
the improved TOPSIS method is used for quantitative
evaluation. Firstly, the original data is standardized by
IQR, and the K-means clustering method is used to select
the optimal clustering cluster and improve the calculation
of the ideal solution. The basic process is as follows:

1) Calculate the median aj median Of the data and the
difference a;, iqr between the two quartiles, and standardize
the data using IQR to obtain B = (bij)mxn:
aj; —

b. = 1] i,median. (13)
ai,iqr

1

2) Normalize the original matrix in order to stream-

line the analysis and mitigate dimensional and magnitude

effects on computations. The standardized matrix

C = (Cij)mxn is obtained through the following procedure. If
the evaluation index is the maximum value index, then:

b —min(by., ..., by,)
+Bin) —min(by ... by, )

G = max(bij . (14)

If the evaluation index is the minimum value index, then:

i = max(binaX(E?j )—::r)](_bb : bin) =
1 ™In 11 ™In
3) Calculate the weighted matrix:
V =C-diag(w). (16)

4) Determine the optimal cluster number | for K-
means clustering by employing the silhouette coefficient
method [35]. The silhouette coefficient quantifies cluster-
ing quality by evaluating both intra-cluster cohesion and
inter-cluster separation. For each sample i, this metric s(i)
is computed based on its dissimilarity F(i) within the clus-
ter and its dissimilarity E(i) to the nearest neighboring
cluster, defined as:

- EG)-F()
O = aEM F} 0

5) Identify the positive Z;* and negative Z; ideal solu-
tions of the weighted matrix, with the cluster exhibiting
minimum distance to A designated as optimal. Local ideal
solutions (Lj*, Lj") are then derived from this optimal clus-
ter. Subsequent calculation of the optimal cluster's popula-
tion proportion yields a dynamic fusion coefficient «, ena-
bling computation of the fused positive Di* and negative
D; ideal solutions.

n 2
D; :\/_z(vi. —a-L —(1—a)-zj+)
= . (18)

D :\/%(V" —a-l; —(1—o¢)~zj‘)2

6) Compute the closeness coefficient S; between each
candidate solution and the optimal solution, where higher
values indicate superior jamming efficacy and lower values
correspond to diminished jamming effectiveness, thereby
enabling performance ranking:

S ——2 _i—12..m. (19)
D +D;

The ITOPSIS method employs IQR standardization to
mitigate the impact of outliers on normalization results,
thereby improving robustness. The silhouette coefficient is
utilized to automatically determine the optimal cluster
number, eliminating subjective bias in data grouping and
enhancing partitioning rationality. By dynamically balanc-
ing global and local ideal solutions through adaptive coef-
ficients, the method achieves improved adaptability to
complex interference environments. The resulting scoring
output provides a direct quantitative measure of interfer-
ence effectiveness, facilitating rapid decision-making in
electronic warfare applications.

3.3 Complexity Analysis of Quantitative
Evaluation Stage

In addition to empirical runtime measurements, we
provide a theoretical analysis of the computational com-
plexity for each component of the proposed methodology.

For the IEWM, the computational cost mainly arises
from kernel density estimation (KDE) and entropy calcula-
tion. Let n be the number of samples and d the number of
indicators. The adaptive KDE step has a time complexity
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of O(nd) due to pairwise distance computations. The Tsal-
lis entropy calculation requires O(nd) operations. The
game-theoretic integration of subjective and objective
weights is O(d?). Therefore, the overall complexity of
IEWM is dominated by KDE, and then yields O(n?d).

For the ITOPSIS method, the IQR standardization
step is O(nd). The K-means clustering, applied to deter-
mine the ideal solutions, has a time complexity of O(ndkt),
where k is the number of clusters and t the number of itera-
tions. The silhouette coefficient calculation used to choose
the optimal k requires O(n?d) per candidate k. The dynamic
ideal solution fusion and distance computations are both
O(nd). Hence, the overall complexity of ITOPSIS is
O(n2%d + ndkt).

The space complexity of the IEWM algorithm is pre-
dominantly dictated by the storage requirements for kernel
density estimates and weight vectors, which collectively
entail a space complexity of O(nd). Meanwhile, the ITOP-
SIS algorithm necessitates the storage of clustering out-
comes, distance matrices, and ideal solutions. These stor-
age demands also culminate in a space complexity of
O(nd).

4. Experiment

4.1 Data Preparation

This simulation adopts the "Mercury” multifunction
radar (MFR) case study published by Dr. Fred A [32]. To
ensure realistic parameterization, all radar parameters are
constrained by established pulse compression ratios and
duty cycle requirements. The Mercury MFR operates in
five distinct modes with escalating threat levels: search,
acquisition, non-adaptive tracking, range resolution, and
track-while-scan. Radar linear frequency modulation
(LFM) pulse signals were generated for each operational
state, with independent additive noise levels of 10%, 30%,
and 50% applied to each condition. The complete dataset
consists of 200 samples per noise level, yielding a total of
4000 distinct signal realizations for comprehensive perfor-
mance evaluation. The computer hardware parameters used
for simulation were Intel i9-14900K CPU, 64 GB RAM,
NVIDIA RTX 4090 GPU, and Matlab version 2024.

To simulate jammer-based analysis and processing of
intercepted radar signals, parameter estimation techniques
are employed to extract pulse descriptor words (PDWs).
The carrier frequency is determined through instantaneous
frequency analysis, while pulse width estimation utilizes
an adaptive pulse detection approach. Signal bandwidth is
derived from the —3dB spectral bandwidth calculation. For
pulse repetition interval (PRI) estimation, significant peaks
in the time-domain auto-correlation function are identified
to compute the average PRI, from which the pulse repeti-
tion frequency (PRF) is subsequently determined. Peak
power estimation is achieved by calculating the average
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Fig. 3. The error between the estimated value and the actual
value.

power within the pulse region. The error between the esti-
mated value and the actual value is shown in Fig. 3. It can
be seen that the CF error is only 1.3%, the PP error is
5.7%, and the overall estimation error is small, which
meets the requirements of subsequent experiments.

The complete dataset consists of 200 samples per
noise level per operational mode, yielding a total of 4000
distinct signal realizations (5 modes x 4 noise levels x 200
samples) for model training and parameter optimization.
To ensure a rigorous and unbiased evaluation and to pre-
vent any data leakage, an additional independent test set
was generated using the same signal generation protocol.
This test set comprised 1000 completely novel signal reali-
zations (5 modes x 4 noise levels x 50 samples) that were
never used during any stage of model development. The
hyperparameter tuning process for algorithms like GCSAO
was conducted via cross-validation on the 4000-sample
training set. This approach guarantees that the final per-
formance evaluation on the 1000-sample test set is entirely
objective and reflects the model's true generalization capa-
bility to unseen data.

4.2 Experiment of KDEOA

To validate the effectiveness of the proposed discreti-
zation method, we conducted simulation experiments using
a dataset comprising 4000 radar PDW samples (Sec. 4.1),
each being characterized by five features. The experimental
procedure involved data normalization followed by
processing with our improved discretization method. After
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cross-validation, the value of the complexity penalty factor
A is selected to be 0.1.

Figure 4 presents the t-SNE visualization of discre-
tized data across various noise levels, while Figure 5 shows
the original data distribution. Comparative analysis reveals
that increasing noise levels cause gradual dispersion of
data points and blurring of category boundaries in the orig-
inal data. In contrast, the KDEOA-processed discrete data
consistently preserves the original distribution characteris-
tics across all noise conditions. Notably, even under high
noise levels (50%), the discretized data maintains distinct
class boundaries, demonstrating its superiority in noise
robustness.

4.3 Experiment of GCSAO-LSSVM

In order to verify the effectiveness of the GCSAO-
LSSVM algorithm, the 4000-sample training set was used
for model training and hyperparameter optimization. The
upper and lower limits of r and g were set to [0.0001, 300]
and [0.0001, 100], respectively. The population size was
set to 50, and the maximum number of iterations was set to
100.

Four optimization algorithms namely genetic
algorithm (GA), particle swarm optimization (PSO), SAQ,
and the proposed GCSAO. were employed for support
vector machine parameter optimization. The GA
parameters were configured as a crossover probability of
0.4 and a mutation probability of 0.01. In the case of PSO,
the velocity vector was restricted to the interval [-0.2, 0.8],
with an inertia factor ranging from [0, 2] and learning
factors set to 1.6 and 1.7, respectively. To prevent
premature convergence, the inertia factor decreased
linearly during the iterative process. To assess the
statistical reliability of the experimental outcomes, 30
independent repeated trials were conducted under the
aforementioned conditions. The penalty coefficient r,
optimal parameters g, and classification accuracy (Acc)
obtained from each trial were recorded. The mean values
and variances of these results are summarized in Tab. 2.

As shown in the experimental results, the proposed
GCSAO algorithm achieves an average accuracy of
0.9868, outperforming GA (0.9759), PSO (0.9824), and
SAO (0.9867). Notably, the standard deviation of accuracy
is zero, indicating excellent stability in performance. For
the parameter g, the mean value is 0.0176 with a standard
deviation of 0.0096, demonstrating satisfactory
consistency. Although the mean value of the parameter r is
higher, its standard deviation remains considerably lower
(31.6968) compared to other algorithms. These results
collectively confirm that the GCSAO-LSSVM algorithm
exhibits high accuracy and strong stability, validating its
effectiveness.

The optimal group of 30 groups was selected for
analysis. Figure 6 is the optimization process of GCSAO
on parameter g and penalty coefficient r. Due to the
periodic oscillation strategy, it can be clearly seen that the r
value jumps out of the local optimal solution after the 21th
iteration. Finally, the penalty coefficient r value is
determined to be 265.6273, and the optimal parameter g
value is 0.0179.

The accuracy optimization curves of each algorithm
are shown in Fig. 7. As shown in Fig. 7, comparative anal-
ysis revealed that GCSAO-LSSVM outperformed compet-
ing methods in terms of both convergence speed and
recognition accuracy, achieving significantly higher values
for the latter.

value GA PSO SAO GCSAO
Mean r 192.3358 170.2072 239.5829 278.7789
Stdr 102.8905 69.3068 88.7055 31.6968
Mean g 0.1261 0.0069 0.0168 0.0176
Stdg 0.08231 0.0117 0.0103 0.0096
Mean Acc 0.9759 0.9824 0.9867 0.9868
Std Acc 0.0066 0.0023 0 0

Tab. 2. The final value of parameters g and r under different
methods.
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Figure 8 compares the classification accuracy of the
LSSVM models under various noise conditions and
discretization strategies. The results indicate a consistent
decline in accuracy among all methods as the noise ratio
increases. Notably, the K-means-based discretization
approach consistently surpasses the performance of non-
discretized data in noisy scenarios, underscoring the role of
discretization in enhancing model robustness through
an effective feature grouping. The proposed KDEOA
method achieves the highest accuracy among all compared
techniques at every noise level, demonstrating its superior
capability in handling biased data. This performance gain
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Fig. 8. Comparison of the classification accuracy of LSSVM
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Fig. 9. Comparison of classification accuracy of LSSVM on
newly generated data.

suggests that our discretization strategy facilitates more
discriminative feature partitioning, thereby strengthening
the model's resilience against signal contamination.

To evaluate the model's generalization capability, an
additional 1,000 data samples were generated for testing.
The results, summarized in Fig. 9, indicate that although
the accuracy of all methods declined to some extent under
different noise conditions on the newly generated dataset,
the proposed KDEOA consistently outperformed both the
original data and the K-means method across all scenarios.
This demonstrates that KDEOA not only achieves effective
classification on the training set but also exhibits strong
generalization ability, maintaining high classification
accuracy on unseen data.

4.4 Experimental of IEWM

To validate the effectiveness of the proposed IEWM
for subjective-objective weighting, comparative analyses
were conducted with four alternative approaches: conven-
tional EWM, EWM with game theory, EWM with Tsallis
entropy, and EWM with kernel density standardization.
Through cross validation, the sensitivity coefficient q of
entropy to probability distribution is determined to be 0.8.

The stability of each weighting method against noise
was quantified by using the weight variation rates (WVR).
This metric measures the average relative change in the
calculated weights when noise is introduced to the dataset,
compared to the weights derived from the clean data. For
each method, the WVR at a specific noise level is defined
as:

1 M Wentropy __\pENtropy
j,noise j,clean
WWVR=| =" x100%  (20)
M <4 Wt_entropy
j=1 j,clean

entropy

where M is the number of evaluation indicators, W; ;esy IS

the weight of the j-th indicator calculated from the original
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entropy

and clean dataset, W; .. is the weight of the j-th indicator

calculated from the noisy dataset.

Table 3 presents the comparative results of weight
variation rates between contaminated samples and original
data. As evidenced in Tab. 3, the proposed IEWM achieves
remarkable improvements in weight stability, reducing
variation rates to just 0.11-0.23% across noise levels - a
20x improvement over standard EWM (6.30% at 50%
noise), and demonstrates superior performance in weight
variation rate compared to alternative approaches. This
advantage stems from two key considerations: (1) compre-
hensive incorporation of characteristic attributes from the
complete radar dataset, and (2) explicit inconsistencies
between biased samples and original data. The results con-
firm that the IEWM algorithm effectively mitigates the
adverse impacts of biased data.

4.5 Experimental of ITOPSIS

To validate the efficacy of the proposed ITOPSIS
method, through utilizing radar data from prior IEWM
experiments, comparative analyses were performed against
conventional TOPSIS, TOPSIS with mixed ideal solutions,
and TOPSIS with IQR standardization.

For each noise level, the quantitative jamming effect
score was calculated for every sample in the test set using
each TOPSIS variant. The "ground truth" reference score
for each sample was defined as its score computed by the
standard TOPSIS method on the clean and uncontaminated
data. The effectiveness of each method was then evaluated
by measuring how well its scores under noise correlated
with these reference scores. This was quantified using the
Pearson correlation coefficient between the method's out-
put scores and the reference scores across all test samples.
A higher correlation coefficient indicates that the method's
evaluation results are more consistent with the baseline,
which demonstrates better robustness to noise.

Table 4 presents the correlation coefficients between
evaluation results and reference sample data under varying
biased contamination levels. The results demonstrate that
all four methods exhibit declining correlation values with
increasing biased proportions. Notably, the proposed
ITOPSIS demonstrates significant improvements over
existing .methods, achieving a .49.5% .higher correlation

Random Noise
Method
10% 30% 50%
TOPSIS 0.5609 0.5061 0.3645
TOPSIS with mixed ideal solutions 0.5642 0.5275 0.3700
TOPSIS with IQR standardization 0.8277 0.7740 0.6945
ITOPSIS 0.8382 0.7806 0.7290

Random Noise
Method
10% 30% 50%
EWM 5.63% | 6.18% | 6.30%
EWM with Tsallis entropy 3.37% | 4.76% | 5.35%
EWM with game theory 2.12% | 2.25% | 2.35%
EWM with kernel density standardization | 0.16% | 0.27% | 0.31%
IEWM 0.11% | 0.22% | 0.23%

Tab. 3. Comparison of weight variation rates under different
method.

Tab. 4. Comparison of correlation coefficient between

different methods.

(0.7290 vs 0.3645) than conventional TOPSIS under 50%
noise conditions, and maintains superior robustness against
biased perturbations, effectively mitigating their adverse
effects on evaluation accuracy.

4.6 Computational Complexity Analysis

To evaluate the computational efficiency of the pro-
posed algorithm and ensure statistical significance, a total
of 4000 samples were included in the tests. The runtime of
different algorithmic components under various ablation
settings is illustrated in Fig. 10. All pre-evaluation proce-
dures were kept consistent across experiments. A compari-
son was conducted among seven distinct method combina-
tions from Sec. 4.4 and 4.5, which were numbered from 1
to 7, specifically: IEWM + ITOPSIS, EWM with Tsallis
entropy + ITOPSIS, EWM with game theory + ITOPSIS,
EWM with kernel density standardization + ITOPSIS,
IEWM + TOPSIS with IQR standardization, IEWM +
TOPSIS with mixed ideal solutions, and standard EWM +
TOPSIS.

As shown in Fig. 10, the computational time varies
across different stages of each algorithm. The discretization
stage consumes relatively little time, ranging between
0.0121 and 0.0133 seconds. In contrast, the pre-evaluation
stage is the most time-consuming, accounting for 81.6% to
87.3% of the total runtime. The proposed IEWM shows
comparable time consumption to standard EWM, while
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ITOPSIS requires approximately four times longer than
conventional TOPSIS. This increase is mainly attributable
to the fact that TOPSIS computes ideal solutions using
simple global maxima and minima, whereas ITOPSIS
incorporates more computationally intensive techniques
such as silhouette coefficient analysis, K-means clustering,
and dynamic fusion of ideal solutions. Despite the in-
creased time cost of ITOPSIS, its impact on the overall
computational time remains limited. The fact that the entire
proposed algorithm processes 4000 samples in only 0.3582
seconds demonstrates high efficiency and meeting real-
time processing requirements.

For the space complexity, after testing, the peak run-
ning memory space occupied by the LSSVM model in the
pre-evaluation stage is 36.7 M, the model parameter size is
0.87 M, and the space complexity of the remaining calcula-
tion parts is negligible.

In summary, the proposed algorithm requires only
0.3582 seconds to process 4000 samples, with reasonable
memory consumption, which fully satisfies real-time appli-
cation demands. These results confirm the computational
efficiency and practical viability of the method.

5. Conclusion and Discussion

This study presents a two-stage optimization frame-
work for evaluating radar jamming effectiveness under
non-cooperative and adversarial conditions. The proposed
methodology addresses key challenges from data devia-
tions caused by radar mode switching, electromagnetic
interference, and receiver noise.

In the first stage, we introduced the KDEOA algo-
rithm to discretize continuous PDW parameters, ensuring
robustness against biased data. The GCSAO-optimized
LSSVM further enhanced pre-evaluation accuracy by dy-
namically balancing exploration and exploitation during
parameter optimization.

In the second stage, the IEWM method integrated
kernel density estimation and game-theoretic weighting to
minimize subjective biases, while the ITOPSIS approach
leveraged IQR standardization and adaptive clustering to
refine quantitative evaluation under biased conditions.
Experimental results demonstrated the framework’s supe-
riority in maintaining high accuracy across noise levels (up
to 50% contamination), with IEWM achieving the lowest
weight variation rate and ITOPSIS exhibiting the strongest
correlation.

While the proposed framework demonstrates robust
performance in jamming evaluation, certain limitations
should be noted as well. Firstly, the method assumes rela-
tively stable radar behavior patterns, which may not hold
for advanced cognitive radars with which employs adaptive
countermeasures. Secondly, the evaluation accuracy de-
pends heavily on the quality of extracted PDW parameters,
which means that severe signal distortions in highly clut-

tered environments could degrade performance. Thirdly,
the current implementation focuses more on single-jammer
scenarios and does not account for coordinated jamming
strategies or multi-radar networks, potentially limiting its
applicability in complex electronic warfare scenarios.

Future research will focus on three key directions:
(i) developing real-time adaptive learning mechanisms by
using reinforcement learning to handle dynamic radar
countermeasures, (ii) extending the framework to multi-
jammer scenarios by modeling cooperative jamming ef-
fects and radar network interactions, and (iii) validating the
approach through hardware-in-the-loop testing with field-
collected data to assess practical deployment feasibility.
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