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Abstract. Cognitive Radio Networks (CRNs) allow efficient 

spectrum usage by allowing Secondary Users (SUs) to ex-

ploit underused frequency bands allocated to a Primary 

User (PU). Current channel assignment techniques only 

document real-time channel availability without knowledge 

of future activity or channel availability warnings. This work 

proposes a proactive channel allocation framework for SU 

to predict long-term stability based upon route reliability. 

The framework simulates the activities of PU by using the 

logistic map to model non-linear, time-varying PU behavior. 

The bifurcation theory is used to determine the threshold 

point at which channel behavior begins to become chaotic. 

Then, a modified Cognitive Radio Ad hoc On-Demand Dis-

tance Vector (AODV) routing protocol is incorporated that 

allows possible links in route discovery to be restricted to 

stable channels. Our simulation results show that the frame-

work improves channel allocation and routing efficiency, 

ensuring energy-efficient and reliable communication in dy-

namic CRN environments. 
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1. Introduction 

Cognitive Radio Network (CRN) has recently attracted 

the most attention from researchers due to their ability to al-

low multiple active devices to share spectrally allocated 

bandwidth in a secure and authenticated manner [1]. Tradi-

tional static spectrum allocation strategies are no longer suf-

ficient for modern commercial applications [2]. CRNs miti-

gate these challenges by enabling Secondary Users (SUs) to 

use under-utilized spectrum bands while ensuring no inter-

fere with Primary Users (PUs). Many public and commercial 

applications rely on the radio spectrum for their applications, 

including emergency services, television broadcasting, mo-

bile telephony, weather monitoring, medical healthcare, and 

transportation [3], [4]. CR technology therefore improves 

spectrum usage and eliminates spectrum scarcity. Spectrum 

scarcity arises from increasing data transmission in addition 

to improved communication and high-speed multimedia ap-

plications [5]. In CRNs, PUs are licensed users who have 

priority on certain frequencies for wireless transmission, are 

protected from interference by other users. Their common 

applications include television broadcasting, mobile teleph-

ony, emergency communications, satellite links, and 

weather monitoring. Secondary users (SUs) are unlicensed 

users who share spectrum opportunistically but must follow 

coordinate mechanisms, such as a Spectrum Access System 

(SAS), to legally transmit when frequencies are idle [6], [7]. 

Typical SU applications include IoT devices, smart grid and 

smart home systems, health monitoring, intelligent transpor-

tation, and wireless sensor networks in industry. By oppor-

tunistically accessing unutilized spectrum, SUs can achieve 

higher data transmission rates, shorter communication de-

lays, and greater Quality of Service (QoS). Regulatory au-

thorities use varied methods to reduce interference, similar 

to fixed frequency networks [8]. 

In recent years, various algorithms for spectrum sens-

ing have been developed, which include energy detection al-

gorithm, matched filter algorithm, cyclic stationary detec-

tion algorithm, among many others. These algorithms are 

model-driven and depend on prior information. However in-

correct assumption or inaccurate estimation can degrade 

their performance [9], [10]. More sophisticated schemes 

have been proposed to address the shortcomings. An optimal 

Cooperative Spectrum Sensing (CSS) was performed based 

on an offset quadrature amplitude modulation and non-or-

thogonal multiple access method to enhance bandwidth uti-

lization in 5G wireless communication [11]. Similarly, 
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a Component-Specific Cooperative Spectrum Sensing 

Model (CSCSSM) was developed to detect and access un-

occupied spectrum bands without disturbing PUs [12]. 

Queuing-based spectrum allocation has also been developed 

to optimize channel sharing among SUs [13]. Despite these 

improvements, existing approaches mainly rely on current 

channel availability and do not predict future PU activity. 

This often results in unforeseen interference, retransmis-

sions, and transmission failures. Since PU activity is irregu-

lar and nonlinear, linear or time-fixed models fail to capture 

long-term patterns [14]. Moreover, no early warning mech-

anisms exist to proactively identify unstable channels, forc-

ing SUs into multiple trials, increasing energy consumption, 

access delay, and packet loss [15]. In addition, most routing 

protocols also ignore path stability, leading to route breaks 

from PU activity and SU behavior [16]. To address these 

challenges, the proposed work formulates an active channel 

assignment framework for SUs in CRNs that evaluates long-

term stability by analyzing PU activity patterns and inte-

grates this with a modified routing protocol. This approach 

improves the reliability and efficiency of spectrum access in 

dynamic CRN environments. 

The key contribution of the suggested proactive 

channel allocation framework is as follows: 

 Chaos Theory-based PU Behavior Modeling: The 

study presents a new empirical method to simulate PU-

behavior in CRN with a nonlinear dynamical system 

from chaos theory, the logistic map. This allows cap-

turing stable and chaotic features that regular linear or 

probabilistic models cannot capture. 

 Bifurcation-Theoretic Channel Stability Detection: 
A bifurcation theory-based mechanism is proposed to 

identify the critical point of transition from stable to 

chaotic behavior of the channel. This is the first ap-

proach to use the Feigenbaum constant r ≈ 3.56995 as 

a mathematically-calculated threshold in filtering out 

the unstable channel so that the SU may only access 

predictably idle channels. 

 Stability-Aware Filtering and Priority-Based Chan-

nel Allocation: A two-step framework for filtering and 

ranking is introduced that combines analysis of vari-

ance and longer-term idle behavior to calculate a sta-

bility score for each channel. This proactive channel 

assignment concept allows SUs to admit channels 

based on the long-term predictability and not instanta-

neous access in the changing CRN. 

 Stability-Integrated Routing through Modified CR-

AODV: A modified Cognitive Radio Ad hoc On-De-

mand Distance Vector (CR-AODV) routing protocol is 

proposed that uses channel stability during route dis-

covery. Unlike conventional approaches, CR-AODV 

would only form links over chaos-theoretically stable 

channels are constructed as multi-hop paths to improve 

end-to-end delivery, reduce packet loss, and minimize 

energy consumption in dynamic CRN environments.  

The paper’s remaining sections are organized as fol-
lows: Section 2 provides a comprehensive overview of re-

cent research on spectrum sensing and spectrum sharing 

among the SUs in CRN. The proposed proactive channel as-

signment and stability-aware routing framework is outlined 

in Sec. 3. Section 4 detailed the findings and discussion of 

our experiments. In Sec. 5, the paper is concluded. 

2. Related Work 

This section explores literature on spectrum sensing 

and spectrum sharing among the SUs in CRN. Li et al. [17] 

developed a CSS model based on the parallel connection of 

a Convolutional Neural Network (CNN) and a Long-Short 

Term Memory (LSTM) network. The model demonstrated 

high detection accuracy at a low signal-to-noise ratio. Alt-

hough the model performed well with up to 11 SUs, it still 

encountered scalability issues for larger networks. Yalçın 

Sercan [18] developed a hybrid Artificial Intelligence (AI)-

based spectrum sensing method using a Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) to en-

hance spectrum sensing in Long Range (LoRa)-based CRN. 

This method optimized bandwidth use and reduced error 

rates. Although the hybrid approach optimizes decision-

making, it can be challenged by real-time response systems 

in very dynamic contexts. For this, Kannan et al. [19] com-

bined Grey Wolf Optimization with the Cuckoo Search 

(GWO-CS) algorithm for periodic sensing and data transfer. 

The Fractional Optimization Model (FOM) allowed the SU 

to perform periodic sensing and data transfer. The model en-

hanced the energy utilization capacity of the spectrum holes. 

However, the increasing throughput impacted the level of 

growing power, and as a result, the energy efficiency func-

tion similarly arises. To overcome this, Raghavendra et al. 

[20] developed an energy-efficient optimization method for 

CRN by using a two-stage fuzzy-logic-based sensing strat-

egy including both PU and SU. While this work decreased 

energy dissipation and reduced the utilization of available 

spectrum resources, exploring Deep Learning (DL) or Rein-

forcement Learning (RL) could further enhance the accuracy 

and efficiency of spectrum sensing. 

To enhance this, Gao et al. [21] developed a Multi-

Agent Deep Reinforcement Learning (MADRL)-based CSS 

method for efficiently identifying a free channel for SUs. 

The model highly reduces the synchronization and commu-

nication overhead caused by cooperative spectrum sensing. 

However, it only considers the reliability and ignores the ge-

ographical distribution of SUs. Mughal et al. [22] created 

a tree-centric approach for SU to maintain a tree of available 

channels in a centralized base station and allocate the chan-

nels based on real-time availability. This approach achieved 

average throughput and average delay. However, it required 

4 attempts to send a request for acquiring free channels. To 

improve this, Gopalan et al. [23] introduced a mathematical 

model that optimizes multiple network selection goals to 

maximize the overall bandwidth and the total cost using the 

Fuzzy Ant Colony Optimization-based Multiple Scheduling 

Resource Selection Algorithm (FAMSRSA). The model im-

proved bandwidth, network efficiency, relative error, and 

spectrum utilization efficiency.  
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However, increasing the SUs in the same stationary re-

gion leads to additional interference limitations. Thus, by an-

alyzing the existing models, we identified several issues. 

The CRN channel assignment for SU is almost always based 

on real-time availability, ignoring future PU activity. This 

often leads to unexpected interference, higher access delay, 

several repeated attempts and lost communication. In addi-

tion, the complex and irregular activity patterns of PUs are 

difficult to predict using conventional models, making it 

challenging to assess the long-term reliability of a channel. 

There is also no early warning system to predict when 

a channel will be unreliable. Thus, an SU often repeatedly 

attempts to connect to a channel that is unstable, wasting 

both energy and packets. In addition, existing routing proto-

cols in CRNs do not even bother to monitor the stability of 

paths for data transmission. The continuous changes stimu-

lated by the dynamic nature of PU activity and SU access 

behaviors, can frequently break routes and add control over-

head, duration, and ineffective communication. To over-

come this, the proposed work develops a proactive channel 

assignment and stability-aware routing approach that priori-

tizes predictably idle channels and forms multi-hop paths us-

ing chaos-theoretically stable links, enhancing reliability 

and energy efficiency in CRNs. The summarization is de-

picted in Tab. 1.  

3. Network Model 

We consider a CRN consisting of sets of PUs and SUs 

whose spectrum area is shared. Let the total number of li-

censed channels available as C = {c1,c2,…,cn}, in which 

each channel ci is licensed to a PU but is made available op-

portunistically to SUs when the PU is idle, we describe the 

network model in Fig. 1. Each PU will send information 

through their base station, within a predetermined coverage 

 

Reference Technique Advantages Limitations 

Li et al. [17]  CNN-LSTM High detection accuracy at low SNR. Scalability issue for a larger network. 

Yalçın Sercan [18]  PSO-GA 
Optimized bandwidth usage and 

reduced error rates. 

High complexity, slower response in 

a dynamic environment 

Kannan et al. [19]  GWO-CS Better energy utilization.  
Increasing throughput impacted the level 

of growing power. 

Raghavendra et al. [20]  
Two-stage fuzzy-logic-based 

sensing strategy  
Reduce energy dissipation.  

Need better accuracy under high PU 

dynamics. 

Gao et al. [21]  MADRL 
Efficient channel detection and 

reduced sync overhead. 
Ignore the SU distribution.  

Mughal et al. [22] Tree-centric approach  Maintain the channel list centrally. 
Require multiple attempts to acquire 

channels. 

Gopalan et al. [23]  FAMSRSA Maximize bandwidth and efficiency. More interference with dense SU. 

Proposed framework 
Chaos theory + Bifurcation + 

Modified CR-AODV  

Predicts long-term stability and 

reduces the number of attempts. 

Verified only through simulation and 

logistic-map-based PU activity model 

may not capture all real-world dynamics. 

Tab. 1.  Summarization of existing work. 
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Fig. 1.  The overall architecture of a cognitive radio network. 

PUs and SUs exist in the same spectrum under the co-

ordination of base stations. PU communications occur 

within licensed zones, while SUs opportunistically ac-

cess idle channels and form multi-hop routes through 

stable links using the modified routing protocol, ena-

bling reliable spectrum access and routing. 

range, and produce activity over time. SUs exist throughout 

the network and employ spectrum sensing units to actively 

identify available channels in their surroundings. To im-

prove the efficiency and reliability of channel selection, the 

proposed framework models the temporal dynamics of PUs 

by using a nonlinear mapping.  

This analysis categorizes channels as stable or chaotic 

depending on the long-term predictability of the PU's pat-

terns of activity. These channels are not allocated when the 

PU usage patterns are unstable and unpredictable, while sta-

ble channels are allocated for SU access. Additionally, to 

promote reliable communication among multiple SUs, the 

scheme will contain a routing mechanism that favors stable 

channels for communication. Route formation and path dis-

covery are limited to links that are considered reliable upon 

channel behavior, such that multi-hop paths are formed 

through consistently available connections. This integrated 

approach enables SUs to make informed channel selection 

decisions and routing formation, thereby improving spec-

trum utilization, reducing interference, energy consumption, 

access delay, and enhancing overall network reliability. 

3.1  Proposed Proactive Channel Assignment 

and Stability-Aware Routing Framework  

The proposed model introduces a proactive channel as-

signment and stability-aware routing scheme for CRNs, 

which emphasizes long-term channel stability, rather than 

short-term availability. We first simulate PUs' dynamic 

spectrum behavior over multiple channels to analyze the use 

of the spectrum across time. Chaos theory is used to model 

the non-linear and time-varying characteristics of PU activ-

ity, and specifically, the logistic map was used to character-

ize the dynamics. The logistic function has a set of values 

representing the probability of PU availability on a given 

 
Fig. 2.  A high-level processing architecture showing the major 

stages of the proposed proactive channel assignment 

framework. It includes PU simulation, stability analysis, 

bifurcation filtering, channel ranking, and SU assign-

ment. 

channel. For each of these series, a channel shows predicta-

ble or random patterns.  

Further, to assist with decision-making, bifurcation 

theory is used to determine the bifurcation point, the point 

where the channel is transitioning from stability to instability 

or chaotic behavior. Channels above this threshold are 

treated as unstable and not available for channel assignment. 

Hence, only those channels with stable and predictable chan-

nel resource patterns can be used. At this point, before as-

signing channels to the SUs, we utilize a modified version 

of the CR-AODV protocol to ensure that routing instructions 

and the path formation occur only over links established on 

the chaos theoretically stable channels. This stability-aware 

routing ensures that multi-hop paths are constructed through 

reliable links, thus reducing route failures, packet loss, and 

energy consumption in dynamic CRN scenarios. The struc-

ture of the proposed framework is shown in Fig. 2. 

3.2  Background on Chaos Theory for 

Channel Modeling 

Chaos theory deals with the change of nonlinear dy-

namic systems that can be described by deterministic sys-

tems; however, the systems can have highly irregular and 

unpredictable behavior. Consider the logistic map, which il-

lustrates how a system can be stable and periodic and then 

eventually chaos behavior takes over, as the control param-

eter increases. In wireless communication, specifically in 

CRNs, the actions of PUs are frequently nonlinear and time-

varying, and their activity is not easily predicted using linear 

models or probabilistic approaches. The logistic map is 

therefore employed in our framework to simulate PU activ-

ity over time, capturing both stable and chaotic regimes. 
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Typically, CRN studies consider primary user (PU) ac-

tivity as stochastic. However, chaotic models offer a legiti-

mate proxy to model rare or unpredictable spectrum use pat-

terns. Chaotic systems are deterministic, but appear random 

for the observer, making them ideal to model long-term var-

iability in PU activity, while still maintaining a mathemati-

cally analyzable notion of stability. Unlike purely random 

models, chaos theory utilizes bifurcation diagrams and Lya-

punov exponents to determine whether a transition has taken 

place between states of predictable (stable) behavior or un-

predictable (unstable) behavior. Deterministic chaotic sys-

tems can be predicted, allowing for invalid channel moments 

to be filtered and giving you more options than conventional 

stochastic models that typically view PU activity as memor-

yless. 

Among many common chaotic discrete systems, the lo-

gistic map is used because of its mathematical simplicity, 

clear bifurcation analysis, and computational efficiency. 

Other maps available are the Tent map, the Henon map, and 

the Ikeda map also produce chaotic and random-like behav-

ior. But the clear analytical structure offered by the logistic 

map makes it easy to use with bifurcation theory and Lya-

punov exponent analysis. Therefore, it was chosen as a rep-

resentative chaotic model in our framework, while future 

work may investigate whether alternative chaotic systems 

could offer a different advantage in modeling spectrum dy-

namics for CRNs. Bifurcation theory is an important aspect 

of chaos theory and refers to the phenomenon when small 

changes in parameters cause large and sudden qualitative 

changes in behavior of the system. In our model, this prop-

erty is used to observe how channels transition from predict-

able to chaotic disordered behavior. Bifurcation allows the 

framework to avoid filtering disordered channels because of 

a known threshold, and consider only statistically reliable 

long-term available channels, which are the basis of stabil-

ity-aware spectrum allocation and routing. 

3.3  Network Simulation of Primary User 

Behavior 

In CRN, PUs activity is naturally dynamic and often 

variable and chaotic in nature. The proposed framework uses 

the logistic map, which is a classic mathematical model from 

chaos theory [24]. This model varies with time and simulates 

the likelihood of a given PU utilization channel over time. 

For each channel ci, the activity sequence is simulated using 

the following equation (1): 

  1 1t t tx rx x    (1) 

where xt  (0,1) is the normalized PU activity at time t, xt + 1 

is the normalized PU activity at time t + 1 and r  (0,4] is 

the control parameter used to drive the dynamics of the se-

ries, with a maximum r for periodically, fixed and chaotic 

behavior.  

The control parameter r is not fixed in our analysis, but 

we prescribe a random r between [2.5, 4.0] for each channel. 

This range includes both the stable regime (r < 3.57) as well 

as the chaotic regime (r  3.57). However, realistic distribu-

tions of PU behavior are expected in spectrum space. For 

a certain channel assigned a r, the value r remains constant 

throughout the simulation, as it is a reflection of the chan-

nel’s inherent long-term tendency over time, while different 

channels are assumed to exhibit different activity according 

to the random r. Therefore, this simulation reflects real-time 

activity of PUs over a range of channels. 

3.4  Predictability of Channel Behavior with 

the Logistic Map 

After simulating the behavior of PUs based on the lo-

gistic map, the overall predictability of each of the channels' 

behavior over a long-time frame is analyzed. This helps in-

dicate whether the channel usage pattern is stable and con-

sistent, or chaotic and unpredictable. Channels that demon-

strate stable or periodic behavior are deemed suitable for SU. 

To obtain a quantifiable measure of this, the time-series out-

put from the logistic map for each channel is analyzed in 

terms of its statistical variance. Variance is defined through (2) 

    
2

1

1
Var

T

t

t

x x x
T 

    (2) 

where xt is the PU activity value at time t, 𝑥̅ is the mean of 

the activity sequence over a window of T time steps, and 

Var(x) is the variance. A lower variance indicates that the 

PU behavior is fairly stable, with activity values remaining 

around the mean. These channels often display periodic or 

convergent behavior, where the PU behavior is consistent ei-

ther by stabilizing around some equilibrium point or show-

ing evidence of repeating a pattern. These are the stable 

channels that give SU a reliable option to access the channel 

without the possibility of sudden appearance of the PU. On 

the other hand, the higher variance indicates a higher degree 

of variability in PU activity, resulting in a chaotic and unsta-

ble channel behavior. The redundant unpredictable availa-

bility of channels is what ruins the SU opportunity for com-

munication, since the unpredictable behavior increases the 

risk of interference, packet loss, and excessive energy ex-

penditures from frequent failed attempts to access the chan-

nel [25].  

Based on this description, the channels are categorized 

as predictable and unpredictable. Only the predictable chan-

nels are continued into later portions of the analysis. This 

variance-based categorization is helpful to eliminate unsuc-

cessful channel ahead of time, which minimizes the energy 

wasted in PU’s approach for global spectrum access strat-

egy.  

3.5  Identification of Stability Transition using 

Bifurcation Theory 

Through examining the variance-based predictability 

of PU activity, we identify the transition point at which sta-

bility is abandoned and chaos ensues. This transition is 

mathematically represented using bifurcation theory [26], 
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which considers how the qualitative feature of a system 

changes as a function of a control parameter changes. Here, 

the control parameter r in the logistic map ranges from 0 to 

4. With increasing value of r, the logistic map displays a va-

riety of different dynamics. For values of r in the range 

0 < r ≤ 3, the system converges to a stable fixed point, indi-

cating a consistent and predictable channel state. As r is 

moved beyond 3, the system begins to oscillate periodically, 

first between two values, then four values, etc. This is termed 

as a period-doubling bifurcation to indicate an increase in 

complexity in the temporal behavior of the PU.  

While it still remains in a determinate, predictable 

schedule, this period-doubling bifurcations accumulates at 

the Feigenbaum point, approximately r = 3.56995, where 

chaotic behavior starts to emerge. Further advancement be-

yond this boundary is identified as chaotic regimes of the 

logistic maps, where the subsequent time-series values be-

come sensitive to initial conditions and do not exhibit any 

periodicity. The chaotic behavior can be numerically char-

acterized with the help of the Lyapunov exponent  as pre-

sented in (3): 

  
1

1
lim 1 2

n

n t

t

L r x
N

 



   (3) 

where n is the number of time steps, N is the normalization 

factor, which typically is equal to n, depending on context, 

and L is the logged derivative of the logistic function. A pos-

itive  indicates chaos, confirming that the channel with 

r > 3.56995 will exhibit unpredictable and unstable PU be-

havior. To use this in the channel selection process, the 

framework tracks the value of the control parameter r that 

generate PU activity on each channel, and compares it 

against the bifurcation threshold. A binary decision rule is 

used to assess channel eligibility in (4): 

 
1               if   3.57

0               otherwise

r



 


  (4) 

where  is the binary stability criterion for a communication 

channel. Channels that the logistic simulation indicates are 

in the stable range of r ≤ 3.56995 have been denoted as pre-

dictable and preserved for future ranking and assignment. 

Channels that exceed the critical value of the bifurcation 

control parameter are thus categorized as chaotic and they 

are omitted from the allocation procedure. The filtering 

function helps to ensure the proposed system does not allo-

cate channels that could become suddenly unavailable due 

to physically unstable PUs and represents a significant im-

provement to overall efficiency, reduction of retransmis-

sions, and lowered energy consumption.  

The inclusion of bifurcation theory enables a mathe-

matically principled framework for predicting stability in 

unstable dynamic spectrum environments. Rather than rely-

ing on merely short-term sensing or ensemble statistical av-

erages, the system assesses PU activity patterns contour 

structural stability to allow a more robust and future-aware 

channel assignment process. Since the system quantifies the 

exact transition from sequence to chaos, this aspect and reli-

ance on bifurcation theory increase the confidence in reliable 

communication channel for SUs. This becomes even more 

imperative in chaotic and dynamic CRN scenarios. 

In this context, “future-aware” does not mean precisely 

forecasting the long-term future trajectory of a chaotic se-

quence, which is fundamentally impossible due to sensitive 

dependence on initial conditions. Rather, it indicates the sys-

tem has the capability for detecting stability regimes and 

generating early warning when it appears that a channel is 

drifting toward chaos. This enables proactive channel as-

signment decisions that extend beyond instantaneous avail-

ability, making the process forward-looking while still re-

specting the inherent unpredictability of chaotic dynamics. 

3.6  Filtering and Ranking Channel 

After classifying channels based on their stability using 

bifurcation theory, the next step is to eliminate unstable 

channels from consideration and focus only on stable chan-

nels to provide potential information from SU. The objective 

of this phase is to consider only those channels that are 

shown stable, and coherent PU behavior for communication, 

thereby reducing the instance of unexpected interruptions, 

retransmissions, and interference. A channel is eligible if the 

variance is still below a threshold 𝜃. This excluded chaotic 

channels that could interrupt SU communication. Let Cstable 

denote the set of channels that were assessed through this 

filtering step. Each channel ci  Cstable is assigned a stability 

score Si, based on its variance and average idle duration [27]. 

The score is calculated using the following equation (5): 

 
 

   idle

1
 

Var
i

i

S T i
x

 
 

     
 

  (5) 

where Var(xi) is the variance of PU activity for channel xi, 

Tidle(i) is the mean idle time of the channel,  and  is the 

weighting factors. The channels have been ranked on the ba-

sis of Si in descending order. A high value of Si indicates 

higher stability with longer expected availability. This 

ranked list is subsequently utilized during the channel as-

signment process to assign SUs to the channels with the 

highest reliability first. By removing unstable channels and 

prioritizing ones with good long-term availability, this rank-

ing and filtering process improves communication reliability 

by reducing access delays and improving energy efficiency 

in cognitive radio environments. 

3.7  Modified CR-AODV Routing Protocol 

over Stability-Ranked Channels 

After channel filtering and ranking based on chaos-the-

oretic stability scores, the proposed framework uses a mod-

ified CR-AODV routing protocol [28]. The modification en-

sures that route discovery and path formation occur across 

stable links, leading to reliable communication and energy 

efficiency in dynamic CRNs. In traditional CR-AODV, 

Route Request (RREQ) packets are forwarded based solely 

upon the current channel availability, which makes the pro-
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tocol susceptible to instability from unpredictable PU activ-

ity. In the proposed modification, RREQ forwarding is lim-

ited to only links that use channels already deemed stable in 

the previous channel selection stage. Let C denote the total 

set of available channels and Cs  C denote the set of chan-

nels deemed stable. A channel ci belongs to Cs if stability of 

the channel S(ci) satisfies as shown in (6): 

   siS c   (6) 

where s is the stability threshold, and S(ci) is computed 

during the ranking phase using (7): 

  
   

1 2

max max

1
i i

i

c c
S c

 
 

 

 
     

 

 (7) 

where (ci) is the standard deviation of PU activity in the 

channel ci, (ci) is the average time spend idle, 1 and 2 are 

weighting factors such that 1 + 2 = 1, and max and max are 

the maximum observed normalization constants. The com-

munication link lij between two SUs SUi and SUj is valid un-

der the channel ci,j  Cs. The protocol computes the path sta-

bility score (P), where P = {l1,l2,…,ln}, during the RREQ 

propagation as shown in (8): 

    
1

1 n

k

k

S c
n 

  P  (8) 

where n is the total number of hops in the path, and S(ck) is 

the stability score of the channel used in the kth hop. Among 

various candidate paths P, the destination node selects the 

candidate path with the maximum average path stability P* 

as represented in (9): 

  * argmaxP P P . (9) 

This allows packets to transfer the most stable path and 

minimizes the path failing and retransmissions. The protocol 

also supports local path maintenance. During the process of 

the data transmission, if one or several links start to exhibit 

unstable performance, the protocol sends a local repair re-

quest as a local maintenance mechanism to repair only the 

portion of the path that has failed and does not perform a re-

discovery of the new path. The updated stability score S′(c) 

is recalculated with current observation of PU activity in 

real-time with the same stability score formulation. This ac-

tive and integrated routing approach guarantees that all com-

munication paths created are links over channels that have 

demonstrated long-term stability, which significantly im-

proves Packet Delivery Ratio (PDR), energy consumption, 

and end-to-end communication quality for CRNs. 

3.8  Assigning Channel to Secondary User 

After filtering and ranking channels according to sta-

bility, the final task in the proposed model is to assign chan-

nels to SUs based on availability and preference [29]. Each 

SU accesses the list of its stability score Si, and chooses 

an idle channel with the highest remaining rank. This assign-

ment method ensures that channels are assigned to SUs 

based on their stability and structural strength, and thus min-

imizes the likelihood of interruptions for SU’s. If the high-

ranked channel is no longer available, because a PU sud-

denly reappears, the SU simply checks the next channel in 

the list. This process continues as an iterative process until 

an acceptable channel is found. Since stable channels only 

exist in the list, the probability of encountering frequent PU 

interruptions is significantly reduced. In addition, all chan-

nels have been previously scored for long-term idle behav-

ior. This system inherently considers future availability pat-

terns in a way that does not rely on real-time sensing. The 

priority-based channel assignment not only improves SU 

transmission reliability but also reduces the number of denial 

access attempts and energy usage. Additionally, the alloca-

tion of the SUs across the most stable portions of the spec-

trum not only allows for a balanced use of spectrum, but also 

satisfies the minimum QoS requirements of the secondary 

communications. 

4. Simulation Results and Discussion 

In this section, we have detailed the network scenario 

generated and a thorough analysis of the validation of the 

proposed proactive channel assignment algorithm. The pro-

posed framework has been implemented and simulated in 

Windows 10, MATLAB R2025a, CPU Intel Core i5-6500 

CPU @3.20 GHz, Intel(R) HD Graphics 530, and 8.0 GB 

DDR3. For a network of 100 channels, 100 time slots, and 
 

Parameter Value / Description Explanation / Justification 

Number of 

Channels 
100 

Large spectrum space for 

diverse PU activity. 

Time Slots 100 
Provide sufficient duration 

to capture stability/chaos. 

Number of 

SUs 
5 

Represent a small-scale 

CRN scenario. 

Initial 

Condition 

(x₀) 

Random values  

in the range [0, 1]  

for each channel 

Avoid bias and allow 

diverse PU activity 

Logistic 

Map 

Growth 

Rate (r) 

Random values  

in the range [2.5, 4.0]  

for each channel 

Covers both stable and 

chaotic regimes.  

Bifurcation 

Threshold 
3.57  

Standard chaos threshold 

(Feigenbaum point). 

PU Activity 

Threshold 
0.5  

Common cutoff for 

busy/idle channels. 

Noise 

Simulation 
1%  

Introduces real-world uncer-

tainties in PU activity mod-

eling. 

Stability 

Criterion 

Standard deviation < 

0.25 indicates a stable 

channel. 

Empirically determined 

threshold to differentiate 

predictable channels.  

Local 

Stability 

Window 

10 time slots  

Provides a dynamic moni-

toring window to capture 

short-term stability changes. 

Fading 

Channel 

Model 

Rayleigh flat fading 

channel model 

Models real-world wireless 

channel variations due to 

multipath effects, without 

modeling distinct path de-

lays or echoes. 

Tab. 2.  Simulation parameters of the proposed framework. 
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5 SUs, each complete simulation run required approximately 

3.5 seconds, demonstrating that the proposed method is 

computationally efficient and practical on standard 

hardware. The simulated parameters are detailed in Tab. 2. 

The Rayleigh flat fading model used in our simulations 

assumes that the channel remains constant over the symbol 

duration and affects all frequency components equally, with-

out introducing frequency-selective fading. Multipath com-

ponents such as echoes, path delays, or phase shifts were not 

modeled, as the objective was to analyze performance under 

flat fading conditions without incorporating a detailed mul-

tipath environment. 

4.1  Performance Analysis of the Proposed 

Model 

The proposed system's network simulation was con-

ducted to evaluate its performance across various metrics. 

The analysis provides insights into its efficiency and effec-

tiveness in maintaining the proposed model's network per-

formance.  

4.1.1 Analysis of PU Activity Modeling and Behavior  

Figure 3 illustrates the temporal evolution of PU activ-

ity for each channel ranging from 1 to 10, determined using 

the logistic map for each channel. Each line represents the 

activity level for a channel for 100-time intervals, where ac-

tivity values closer to 1 indicate a strong PU’s presence, 

while values reaching nearly 0 indicate a channel that is not 

busy. The change in patterns indicates channel behavior sta-

bilization, with some channels being constant and periodic 

while others are highly erratic. This serves to identify which 

channels are predictably usable by SUs and which channels 

should be removed from the availability report. The differ-

ences allow the framework to provide SUs with only struc-

turally stable channels for allocation, which can reduce in-

terference, retransmissions, and ultimately wasted energy in 

CRN environments. This is why early phase removal of un-

stable channels is important, so that repeated observations of 

chaotic patterns would not produce repeated failed sensory 

time or wasted transmissions for SUs. 

Figure 4 presents the standard deviation of logistic map 

values for multiple channels at a time, serving as a statistical 

mean of quantifying the variation in PU activity for each 

channel. The higher the standard deviation, the greater the 

variability and chaotic behavior, indicating the channel is 

unreliable and less suitable for SU access. Conversely, chan-

nels with a low standard deviation indicate a more consistent 

periodic behavior, and it is more suited for SU access. The 

measures provide evidence for the proposed framework, 

linking it to the dynamic stability of each channel and allow-

ing for the exclusion of unstable channels, or channels dis-

playing rapid fluctuation in PU activity. Furthermore, as-

sessing the stability-based classification, is better than 

traditional real-time sensing approaches, as it allows the sys-

tem to identify channels with predictable behavior over the 

long term, and assures SUs are allocated only to channels 

with low risk of sudden disruption. Therefore, the system 

simultaneously filters channels and also provides an addi-

tional measure for allocating proactive assignments, where 

predictable stability directly translates into lower energy 

waste and packet loss. This statistical measure provides 

a stronger decision basis than conventional sensing, ensur-

ing channels with consistently high variation are excluded 

before allocation. 

Figure 5 depicts the empirical distribution of PU activ-

ity levels produced by the logistic map, showing the propor-

tion of different activity levels at a given time. The smooth 

rise of the curve reflects a broad spread of activity levels. On 

the other hand, the steep rise in the middle indicates that 

mid-range PU activity level frequently oscillates. This indi-

cates that the channel is neither fully stable nor fully chaotic; 

it seems to fluctuate between them. Through this pattern, the 

 

Fig. 3.  Time-series patterns of PU activity on 10 different 

channels using logistic map simulation. 

 

Fig. 4.  Standard deviation trends in PU behavior across 

channels for differentiating stable and chaotic channels. 

 

Fig. 5.  Cumulative distribution function of PU activity levels 

over time across multiple channels. 
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system can assess which channels are more stable and which 

channels are too unstable to even make available to SU. With 

these intermediate fluctuations, the framework is able to ob-

tain a more representative view of long-term channel relia-

bility, enabling proactive filtering that reduces the likelihood 

of failed transmissions compared to traditional spectrum 

sensing techniques. The detection of such intermediate in-

stability allows the framework to avoid channels that appear 

usable in the short term but are unreliable in the long term. 

4.1.2 Channel Classification and Stability Detection 

Figure 6 represents the channel classification as either 

stable or chaotic across a window of time slots, based on 

their PU behavior patterns calculated from the logistic map. 

This enables the framework to not only detect which chan-

nels can be used reliably by SUs and which channels should 

be avoided, since PU behavior is unpredictable. This figure 

serves as a visual confirmation of the bifurcation-theoretic 

filtering functionality, and shows how the proposed system 

is capable of dynamically time-varying PU usage, while also 

preserving only structurally stable channels for subsequent 

SU access. By using this, the framework filters out unrelia-

ble channels early on, it minimizes interference, reduces the 

chance of route failures, and enables communication com-

pared to conventional real-time allocation mechanisms. This 

classification improves allocation reliability directly, since 

only channels with long-term predictability remain available 

for SUs. 

Figure 7 presents the bifurcation diagram demonstrat-

ing how the logistic map evolves as the control parameter r 

increases from 2.5 to 4. When r < 3, the system settles to 

a single value and when r = 3, the system begins to oscillate 

between different values and resulting in periodic behavior. 

At approximately r = 3.56995, the system becomes chaotic, 

to the point that small changes in initial conditions lead to 

widely unpredictable outcomes. This critical point is used in 

the proposed framework to discriminate between stable and 

chaotic channels, ensuring that only predictable channels are 

selected for reliable SU communication. The framework in-

cludes mathematically- determined threshold to avoid allo-

cating unstable channels, giving it an advantage over the tra-

ditional sensing-based methods that cannot speculate about 

chaotic behavior. This threshold-based filtering provides 

a mathematically consistent way to avoid allocation to un-

stable channels, which traditional models cannot anticipate. 

 

Fig. 6.  Channel stability classification over time slots based on 

their PU activity. 

 

Fig. 7.  Bifurcation diagram highlighting stability threshold for 

primary users' behavior using logistic map parameter.  

4.1.3 Adaptive Channel Assignment Patterns 

Figure 8 shows the dynamic channel assignment of 

five SUs (SU 1 to SU 5) across 100 time slots. The changing 

channel index shows that the SUs switch channels over time 

based on real-time channel stability rankings. This visuali-

zation represents how the proposed framework processes us-

ers on multiple available spectrum resources to avoid colli-

sions and balance loading. This allows for each SU to choose 

the most stable channel at each time slot subsequently. The 

combination of dynamic stability-aware ranking and real-

time adaptive allocation ensures more reliable spectrum use 

compared to traditional allocation methods that often lead to 

channel congestion or repeated sensing attempts. This high-

lighted performance ensures fairness among SUs while 

maintaining stable communication, reducing both conges-

tion and unnecessary reassignments. 

 

Fig. 8.  Temporal dynamics of channel assignment over 100 

time slots for five SUs. 

 

Fig. 9.  Stability-aware multi-hop routing topology in CRN. 
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4.1.4 Stability-Aware Routing Path Formation using 

Modified CR-AODV 

Figure 9 illustrates a visual representation of the CRN 

topology showing PUs and SUs that had established com-

munication paths. The PUs are illustrated as red squares, 

while the SUs are represented as blue circles. The thick red 

path represents the multi-hop path selected by the frame-

work, which eliminated route paths that were not chaos-the-

oretically stable paths using channel filtering and ranking. 

The thin grey lines indicate other possible but unused paths. 

This routing method provides high reliability through the 

avoidance of unstable communication links. Furthermore, 

the use of stable, multi-hop path reduces the breaks in routes 

and packet drop rates, while offering a distinct advantage 

over traditional CR-AODV implementations that rely only 

on instantaneous channel availability. The stable multi-hop 

paths demonstrate how filtering at the channel level trans-

lates into end-to-end reliability, minimizing route breaks and 

packet drops. 

4.2  Realistic Simulation Results 

To further validate the effectiveness of the proposed 

chaos-based channel assignment framework, we simulated 

PU activity under realistic traffic profiles that mimic real-

world communication environments. The logistic map was 

used as the base generator for nonlinear dynamics, while ac-

tivity patterns were shaped to reflect four representative use 

cases: IoT (periodic ON/OFF bursts), Industrial (approxi-

mately 45% busy random activity), Public (around 70% 

busy with chaotic fluctuations), and Emergency (mostly free 

with bursts every 15 slots). These profiles ensure that the 

evaluation covers both stable and chaotic environments, 

providing a more practical validation of the proposed 

method. 

Figure 10 presents the performance of the proposed 

chaos-based framework in terms of Accuracy, F1-score, and 

PDR over the 100 time slots that reproduce realistic PU ac-

tivity patterns. As shown, all three metrics are consistently 

high, indicating the framework’s ability to maintain reliable 

detection and communication under varying traffic patterns. 

The constant performance across different time slots indi-

cates that the proposed framework is resilient to the fluctua-

tions in PU behavior, such as periodic burst from the IoT, 

random industrial traffic, chaotic public activity, and occa-

sional emergency bursts. The minimal variation across the 

various time slots and disruption scenarios indicates that the 

framework can generalize well across heterogeneous spec-

trum usage environments whilst maintaining reliable QoS 

dimensions even when they are unpredictable. 

Figure 11 illustrates the adaptive channel assignment 

behavior of 10 SUs over 100 time slots in the realistic simu-

lation environment. The different colors represent the chan-

nel index assigned to each SU, which varies over time based 

on the PU utilization patterns. The SUs were observed 

switching around channels regularly. This behavior high-

lights the ability of our framework to maximize resource al-

location whenever channels become unstable or are being 

used by PU. The framework ensures that multiple SUs can 

be accommodated without collisions, while dynamically al-

locating channels in a balanced manner across the available 

channel resources. This demonstrates that our framework 

performs a stability-aware allocation in a realistic-like-set-

ting, ensuring SUs are provided with reliable spectrum ac-

cess, even the PU behaviors are dynamic. 

Figure 12 depicts the multi-hop routing path estab-

lished by using the modified CR-AODV protocol under the 

proposed framework. Black circles denote SUs, while the 

blue connecting lines indicate the selected stable communi-

cation path. The selected path avoids nodes affected by un-

stable channels and focuses only on SUs with links sup-

ported by chaos-theoretically stable behavior. This routing 

pattern ensures long-term path reliability, reduces the risk of 

frequent route breaks, and decreases packet loss. The figure 

demonstrates the effectiveness of channel stability assess-

ment in routing and shows positively increasing end-to-end 

communication reliability. 

 

Fig. 10.  Performance metrics under realistic simulation patterns. 

 

Fig. 11.  Adaptive channel assignment for multiple secondary 

users (SUs). 

 
Fig. 12.  Stability-aware routing topology formation in CRN. 
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Configuration Channels SUs 
Time 

Slots 

SU 

Successes 

SU 

Idle 

Slots 

SU 

Collisions 

Average 

PU 

Occupancy 

Simulation 

Time 

Latency 

(ms) 

PDR 

(%) 

Throughput 

(packets/sec) 

A 100 10 1000 1600 7545 860 77.68% 15.5 12.3 82 105 

B 200 20 2000 10000 28000 2000 80.11% 46.2 18.7 80 218 

C 300 30 3000 21000 73500 5500 77.16% 95 25.4 78 315 

D 400 40 4000 30240 115680 12640 79.15% 180.8 33.2 75 420 

Tab. 3.  Performance results under different system and transmission configurations. 

4.3  Results under Different System and 

Transmission Configurations 

The scalability of the framework is evaluated by chang-

ing the number of channels, SUs, and time slots used. Ta-

ble 3 provides a summary of the results across four varying 

configurations. As demonstrated, the number of successes 

for SU will increase as we increase the number of channels 

and SUs due to more opportunities to transmit. However, in-

creasing the number of channels and SUs will also increase 

the number of collisions, especially in denser configurations 

such as configurations C and D. PU occupancy remains con-

stant at about 77–80%, indicating that most of the spectrum 

resources are still active by PU activity. The results suggest 

that the framework is scalable across system sizes while con-

tinuing to balance SU transmissions and PU transmissions, 

while recognizing the trade-offs due to more SUs. 

4.4  Validation with Real-World Spectrum 

Data 

To balance the simulation-based results, we evaluated 

the framework on a publicly available spectrum dataset [30] 

containing real-world measurements of spectrum occupancy 

across multiple frequency bands. While the dataset provides 

cleaner occupancy patterns than our stochastic simulations, 

Table 4 confirms the qualitative patterns observed in simu-

lations: SU success decreases and collisions increase with 

more SUs, while PU protection remains consistent. This 

demonstrates that the proposed framework can operate ef-

fectively under realistic measured spectrum conditions, even 

if the absolute metric values differ from simulations. 

4.5  Performance Comparison with Existing 

Methods 

Table 5 presents a comprehensive comparative analy-

sis of the proposed chaos-based framework for channel as-

signment with several state-of-the-art algorithms, such as 

CNN-LSTM [16], PSO-GA [17], GWO-CS [18], MADRL 

[20], and FAMSRSA [22], to assess their efficiency, reliabil-

ity, and predictive performance in terms of energy consump-

tion, communication overhead, throughput, and packet de-

livery ratio. The proposed chaos-based method resulted in 

a maximum energy consumption of 2.6 mJ, the minimum 

communication overhead of 7.2%, a maximum throughput 

of 0.9, and the maximum PDR, greater than 98%, signifi-

cantly outperforming other traditional models. This suggests 

that the proposed method has a deliberate channel allocation 

process to discard unstable channels, leading to a more effi-

cient use of spectrum on the reliable channels, predictable 

channel availability, as well as improvements in communi-

cation performance in CRN. In contrast to previous models 

that improved on either throughput or reliability by sacrific-

ing energy, the proposed approach not only appears to de-

liver improvements in all metrics simultaneously but also 

has confirmed its robustness in dynamically variable CRNs. 

Table 6 compares the performance of Rayleigh fading 

and AWGN channels in a CRN, both with the same PU oc-

cupancy of 0.46. The Rayleigh fading channel achieves bet-

ter results, with 845 SU successes compared to 795 in the 

AWGN channel, along with fewer idle slots, fewer colli-

sions, and slightly lower simulation time. Although AWGN 

is typically considered an ideal channel, the dynamic nature 

of Rayleigh fading offers greater advantages in CRNs. Un-

like AWGN, which represents a static channel with constant 

noise and no multipath effects, Rayleigh fading models more 

realistic wireless environments by incorporating rapid signal 

fluctuations caused by multipath propagation, Doppler 

shifts, and fast fading. These time-varying characteristics in-

troduce deep fades in the PU signal, allowing SUs to oppor-

tunistically access the spectrum during low-interference pe-

riods. This leads to more efficient spectrum utilization, 

reduced interference, and better adaptability through real-

time sensing and decision-making. In contrast, the static 

AWGN channel limits such adaptability, resulting in more 

conservative SU behavior and lower utilization. Thus, the 

Rayleigh fading model demonstrates superior SU communi-

cation efficiency and more effective spectrum use in CRNs. 

 

SUs 
Time 

Slots 

SU 

Success 

SU 

Idle 

Slots 

SU 

Collisions 

Average 

PU 

Occupancy 

per Slot 

10 500 4600 500 100 73.3% 

20 500 9200 800 250 73.6% 

30 500 13500 900 450 73.9% 

40 500 18000 1000 700 74.6% 

50 500 22500 1200 1000 74.9% 

Tab. 4.  Performance results using real-world spectrum dataset. 
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Methods Energy Consumption (mJ) Communication Overhead (%) Throughput (Mbps) Packet Delivery Ratio (%) 

CNN-LSTM [16] 4.1 13.6 70.00  95.2 

PSO-GA [17] 4.7 12.3 72.00 93.5 

GWO-CS [18] 4.4 10.9 73.00 94 

MADRL [20] 3.9 11.7 75.00  94.6 

FAMSRSA [22] 5.2 14.1 68.00 91.8 

Chaos-Based (Proposed) 2.6 7.2 88.00 98 

Tab. 5. Comparison of the proposed model with existing models. 

Tab. 6.  Performance comparison of Rayleigh fading vs AWGN channels in cognitive radio networks. 

4.6  Discussion 

CRNs face significant challenges in providing reliable 

spectrum access for SUs since PU usage patterns are often 

sporadic, volatile, and difficult to predict. Current channel 

assignment methods rely on real-time sensing and short-

term availability, which leads to unnecessary interference, 

packet losses, energy losses from repeated sensing, and high 

latencies for communications. Thus, the study presents an 

end-to-end framework that incorporates proactive channel 

assignment and stability-based routing. The efficacy of the 

proposed approach is validated and benchmarked through 

MATLAB simulations and realistic simulation results. 

Compared with benchmark approaches, the results 

demonstrate optimization-based methods such as PSO-GA 

and GWO-CS achieve good performance in specific scenar-

ios but require iterative search, which increases computa-

tional complexity and delays decision-making. In contrast, 

our framework achieves comparable or superior results with 

a linear-time (O(N  T)) complexity due to the lightweight 

logistic map and stability detection, making it highly scala-

ble. Similarly, DL models such as CNN-LSTM and 

MADRL provide accurate predictions after extensive train-

ing but are resource-intensive and less suitable for energy-

constrained CRN environments. Our chaos-based approach 

maintains highest prediction accuracy at 0.99 without requir-

ing pretraining or large datasets, which reduces overhead 

and supports real-time deployment. 

The performance comparisons highlights that the pro-

posed approach is consistently best across all parameters, 

with a minimum energy usage of 2.6 mJ, the lowest commu-

nication overhead at 7.2%, the highest throughput at approx-

imately 0.9, the highest PDR at greater than 98%, and the 

lowest average latency at 0.05 s. These improvements di-

rectly address the core challenges of CRN including inter-

ference reduction, delay minimization, and QoS enhance-

ment. Additionally, we validate our model using real-world 

spectrum data. A performance difference of approximately 

20% was observed between the simulation-based and real-

world results. This gap arises because the simulation envi-

ronment intentionally introduces noise to model the uncer-

tainty and unpredictability of PU activity, whereas the real-

world dataset used in our study was more structured and pre-

dictable, with fewer anomalies. This difference reinforces 

the robustness of the proposed framework in handling chal-

lenging and noisy environments. It also demonstrates that 

the method maintains high performance even under more 

challenging simulation conditions, further validating its reli-

ability and scalability for practical CRN deployments. Fur-

thermore, the method’s efficiency demonstrates its suitabil-

ity for large-scale dynamic environments where traditional 

sensing or optimization-based approaches may fail to adapt 

in real time. 

5. Conclusion 

This paper presented a proactive channel assignment 

framework for CRN that optimally utilizes spectrum usage 

and communication reliability by predicting the stability of 

the channel for long term, relying on chaos and bifurcation 

theory. By modeling the PU behavior based on the logistic 

map and determining transitions to chaos through the 

Feigenbaum threshold, the system provides a mechanism to 

eliminate unstable channels and allocate channels with sta-

ble availability to SUs. Furthermore, the framework inte-

grates an adapted CR-AODV routing protocol that guaran-

tees each of the established multi-hop paths that only uses 

reliable links, and thus increases end-to-end reliability and 

reduces route failure. The simulation results showed sub-

stantially better overall performance than the current state-

of-the-art techniques in terms of less energy usage, reduced 

communication overhead, increased throughput, improved 

PDR, and better prediction accuracy. These results confirm 

that the framework achieves reliable, stable, and relatively 

low-interference transmission in dynamic spectrum environ-

ments. While this work also verifies the proposed frame-

work through extensive simulations, future extensions will 

focus on measurement-based validation using testbed exper-

iments. This will allow us to verify the framework’s perfor-

mance under actual deployment conditions, ensuring even 

greater reliability and applicability in real-world CRN envi-

ronments. 

Channel Type Time Slot SU Successes SU Idle Slots SU Collisions PU Occupancy Simulation Time (s) 

Rayleigh Fading 100 845 105 12 0.46 12.4 

AWGN 100 795 145 22 0.46 13.3 
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Source code: 

https://github.com/lw9318457/project32319.git [31] 
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