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Abstract. Cognitive Radio Networks (CRNSs) allow efficient
spectrum usage by allowing Secondary Users (SUs) to ex-
ploit underused frequency bands allocated to a Primary
User (PU). Current channel assignment techniques only
document real-time channel availability without knowledge
of future activity or channel availability warnings. This work
proposes a proactive channel allocation framework for SU
to predict long-term stability based upon route reliability.
The framework simulates the activities of PU by using the
logistic map to model non-linear, time-varying PU behavior.
The bifurcation theory is used to determine the threshold
point at which channel behavior begins to become chaaotic.
Then, a modified Cognitive Radio Ad hoc On-Demand Dis-
tance Vector (AODV) routing protocol is incorporated that
allows possible links in route discovery to be restricted to
stable channels. Our simulation results show that the frame-
work improves channel allocation and routing efficiency,
ensuring energy-efficient and reliable communication in dy-
namic CRN environments.
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1. Introduction

Cognitive Radio Network (CRN) has recently attracted
the most attention from researchers due to their ability to al-
low multiple active devices to share spectrally allocated
bandwidth in a secure and authenticated manner [1]. Tradi-
tional static spectrum allocation strategies are no longer suf-
ficient for modern commercial applications [2]. CRNs miti-
gate these challenges by enabling Secondary Users (SUs) to
use under-utilized spectrum bands while ensuring no inter-
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fere with Primary Users (PUs). Many public and commercial
applications rely on the radio spectrum for their applications,
including emergency services, television broadcasting, mo-
bile telephony, weather monitoring, medical healthcare, and
transportation [3], [4]. CR technology therefore improves
spectrum usage and eliminates spectrum scarcity. Spectrum
scarcity arises from increasing data transmission in addition
to improved communication and high-speed multimedia ap-
plications [5]. In CRNs, PUs are licensed users who have
priority on certain frequencies for wireless transmission, are
protected from interference by other users. Their common
applications include television broadcasting, mobile teleph-
ony, emergency communications, satellite links, and
weather monitoring. Secondary users (SUs) are unlicensed
users who share spectrum opportunistically but must follow
coordinate mechanisms, such as a Spectrum Access System
(SAS), to legally transmit when frequencies are idle [6], [7].
Typical SU applications include loT devices, smart grid and
smart home systems, health monitoring, intelligent transpor-
tation, and wireless sensor networks in industry. By oppor-
tunistically accessing unutilized spectrum, SUs can achieve
higher data transmission rates, shorter communication de-
lays, and greater Quality of Service (QoS). Regulatory au-
thorities use varied methods to reduce interference, similar
to fixed frequency networks [8].

In recent years, various algorithms for spectrum sens-
ing have been developed, which include energy detection al-
gorithm, matched filter algorithm, cyclic stationary detec-
tion algorithm, among many others. These algorithms are
model-driven and depend on prior information. However in-
correct assumption or inaccurate estimation can degrade
their performance [9], [10]. More sophisticated schemes
have been proposed to address the shortcomings. An optimal
Cooperative Spectrum Sensing (CSS) was performed based
on an offset quadrature amplitude modulation and non-or-
thogonal multiple access method to enhance bandwidth uti-
lization in 5G wireless communication [11]. Similarly,
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a Component-Specific Cooperative Spectrum  Sensing
Model (CSCSSM) was developed to detect and access un-
occupied spectrum bands without disturbing PUs [12].
Queuing-based spectrum allocation has also been developed
to optimize channel sharing among SUs [13]. Despite these
improvements, existing approaches mainly rely on current
channel availability and do not predict future PU activity.
This often results in unforeseen interference, retransmis-
sions, and transmission failures. Since PU activity is irregu-
lar and nonlinear, linear or time-fixed models fail to capture
long-term patterns [14]. Moreover, no early warning mech-
anisms exist to proactively identify unstable channels, forc-
ing SUs into multiple trials, increasing energy consumption,
access delay, and packet loss [15]. In addition, most routing
protocols also ignore path stability, leading to route breaks
from PU activity and SU behavior [16]. To address these
challenges, the proposed work formulates an active channel
assignment framework for SUs in CRNSs that evaluates long-
term stability by analyzing PU activity patterns and inte-
grates this with a modified routing protocol. This approach
improves the reliability and efficiency of spectrum access in
dynamic CRN environments.

The key contribution of the suggested proactive
channel allocation framework is as follows:

e Chaos Theory-based PU Behavior Modeling: The
study presents a new empirical method to simulate PU-
behavior in CRN with a nonlinear dynamical system
from chaos theory, the logistic map. This allows cap-
turing stable and chaotic features that regular linear or
probabilistic models cannot capture.

e Bifurcation-Theoretic Channel Stability Detection:
A bifurcation theory-based mechanism is proposed to
identify the critical point of transition from stable to
chaotic behavior of the channel. This is the first ap-
proach to use the Feigenbaum constant r ~ 3.56995 as
a mathematically-calculated threshold in filtering out
the unstable channel so that the SU may only access
predictably idle channels.

e Stability-Aware Filtering and Priority-Based Chan-
nel Allocation: A two-step framework for filtering and
ranking is introduced that combines analysis of vari-
ance and longer-term idle behavior to calculate a sta-
bility score for each channel. This proactive channel
assignment concept allows SUs to admit channels
based on the long-term predictability and not instanta-
neous access in the changing CRN.

e Stability-Integrated Routing through Modified CR-
AODV: A modified Cognitive Radio Ad hoc On-De-
mand Distance Vector (CR-AODV) routing protocol is
proposed that uses channel stability during route dis-
covery. Unlike conventional approaches, CR-AODV
would only form links over chaos-theoretically stable
channels are constructed as multi-hop paths to improve
end-to-end delivery, reduce packet loss, and minimize
energy consumption in dynamic CRN environments.

The paper’s remaining sections are organized as fol-
lows: Section 2 provides a comprehensive overview of re-

cent research on spectrum sensing and spectrum sharing
among the SUs in CRN. The proposed proactive channel as-
signment and stability-aware routing framework is outlined
in Sec. 3. Section 4 detailed the findings and discussion of
our experiments. In Sec. 5, the paper is concluded.

2. Related Work

This section explores literature on spectrum sensing
and spectrum sharing among the SUs in CRN. Li et al. [17]
developed a CSS model based on the parallel connection of
a Convolutional Neural Network (CNN) and a Long-Short
Term Memory (LSTM) network. The model demonstrated
high detection accuracy at a low signal-to-noise ratio. Alt-
hough the model performed well with up to 11 SUs, it still
encountered scalability issues for larger networks. Yal¢mn
Sercan [18] developed a hybrid Artificial Intelligence (Al)-
based spectrum sensing method using a Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) to en-
hance spectrum sensing in Long Range (LoRa)-based CRN.
This method optimized bandwidth use and reduced error
rates. Although the hybrid approach optimizes decision-
making, it can be challenged by real-time response systems
in very dynamic contexts. For this, Kannan et al. [19] com-
bined Grey Wolf Optimization with the Cuckoo Search
(GWO-CS) algorithm for periodic sensing and data transfer.
The Fractional Optimization Model (FOM) allowed the SU
to perform periodic sensing and data transfer. The model en-
hanced the energy utilization capacity of the spectrum holes.
However, the increasing throughput impacted the level of
growing power, and as a result, the energy efficiency func-
tion similarly arises. To overcome this, Raghavendra et al.
[20] developed an energy-efficient optimization method for
CRN by using a two-stage fuzzy-logic-based sensing strat-
egy including both PU and SU. While this work decreased
energy dissipation and reduced the utilization of available
spectrum resources, exploring Deep Learning (DL) or Rein-
forcement Learning (RL) could further enhance the accuracy
and efficiency of spectrum sensing.

To enhance this, Gao et al. [21] developed a Multi-
Agent Deep Reinforcement Learning (MADRL)-based CSS
method for efficiently identifying a free channel for SUs.
The model highly reduces the synchronization and commu-
nication overhead caused by cooperative spectrum sensing.
However, it only considers the reliability and ignores the ge-
ographical distribution of SUs. Mughal et al. [22] created
a tree-centric approach for SU to maintain a tree of available
channels in a centralized base station and allocate the chan-
nels based on real-time availability. This approach achieved
average throughput and average delay. However, it required
4 attempts to send a request for acquiring free channels. To
improve this, Gopalan et al. [23] introduced a mathematical
model that optimizes multiple network selection goals to
maximize the overall bandwidth and the total cost using the
Fuzzy Ant Colony Optimization-based Multiple Scheduling
Resource Selection Algorithm (FAMSRSA). The model im-
proved bandwidth, network efficiency, relative error, and
spectrum utilization efficiency.
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However, increasing the SUs in the same stationary re-
gion leads to additional interference limitations. Thus, by an-
alyzing the existing models, we identified several issues.
The CRN channel assignment for SU is almost always based
on real-time availability, ignoring future PU activity. This
often leads to unexpected interference, higher access delay,
several repeated attempts and lost communication. In addi-
tion, the complex and irregular activity patterns of PUs are
difficult to predict using conventional models, making it
challenging to assess the long-term reliability of a channel.
There is also no early warning system to predict when
a channel will be unreliable. Thus, an SU often repeatedly
attempts to connect to a channel that is unstable, wasting
both energy and packets. In addition, existing routing proto-
cols in CRNs do not even bother to monitor the stability of
paths for data transmission. The continuous changes stimu-
lated by the dynamic nature of PU activity and SU access
behaviors, can frequently break routes and add control over-

head, duration, and ineffective communication. To over-
come this, the proposed work develops a proactive channel
assignment and stability-aware routing approach that priori-
tizes predictably idle channels and forms multi-hop paths us-
ing chaos-theoretically stable links, enhancing reliability
and energy efficiency in CRNs. The summarization is de-
picted in Tab. 1.

3. Network Model

We consider a CRN consisting of sets of PUs and SUs
whose spectrum area is shared. Let the total number of li-
censed channels available as C = {ci,Ca,...,Cn}, in which
each channel c; is licensed to a PU but is made available op-
portunistically to SUs when the PU is idle, we describe the
network model in Fig. 1. Each PU will send information
through their base station, within a predetermined coverage

Reference Technique Advantages Limitations

Lietal. [17] CNN-LSTM High detection accuracy at low SNR. | Scalability issue for a larger network.

Yalgin Sercan [18] PSO-GA Optimized bandwidth usage and | High cqmple)_(lty, slower response in
reduced error rates. a dynamic environment

Kannan et al. [19] GWO-CS Better energy utilization. Increasing throughput impacted the level

of growing power.

Raghavendra et al. [20]

Two-stage fuzzy-logic-based
sensing strategy

Reduce energy dissipation.

Need better accuracy under high PU
dynamics.

Gao et al. [21]

MADRL

Efficient channel detection and
reduced sync overhead.

Ignore the SU distribution.

Mughal et al. [22]

Tree-centric approach

Maintain the channel list centrally.

Require multiple attempts to acquire
channels.

Gopalan et al. [23]

FAMSRSA

Maximize bandwidth and efficiency.

More interference with dense SU.

Proposed framework

Chaos theory + Bifurcation +
Modified CR-AODV

Predicts long-term stability and
reduces the number of attempts.

Verified only through simulation and
logistic-map-based PU activity model
may not capture all real-world dynamics.

Tab. 1. Summarization of existing work.
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Fig. 1. The overall architecture of a cognitive radio network.
PUs and SUs exist in the same spectrum under the co-
ordination of base stations. PU communications occur
within licensed zones, while SUs opportunistically ac-
cess idle channels and form multi-hop routes through
stable links using the modified routing protocol, ena-
bling reliable spectrum access and routing.

range, and produce activity over time. SUs exist throughout
the network and employ spectrum sensing units to actively
identify available channels in their surroundings. To im-
prove the efficiency and reliability of channel selection, the
proposed framework models the temporal dynamics of PUs
by using a nonlinear mapping.

This analysis categorizes channels as stable or chaotic
depending on the long-term predictability of the PU's pat-
terns of activity. These channels are not allocated when the
PU usage patterns are unstable and unpredictable, while sta-
ble channels are allocated for SU access. Additionally, to
promote reliable communication among multiple SUs, the
scheme will contain a routing mechanism that favors stable
channels for communication. Route formation and path dis-
covery are limited to links that are considered reliable upon
channel behavior, such that multi-hop paths are formed
through consistently available connections. This integrated
approach enables SUs to make informed channel selection
decisions and routing formation, thereby improving spec-
trum utilization, reducing interference, energy consumption,
access delay, and enhancing overall network reliability.

3.1 Proposed Proactive Channel Assignment
and Stability-Aware Routing Framework

The proposed model introduces a proactive channel as-
signment and stability-aware routing scheme for CRNSs,
which emphasizes long-term channel stability, rather than
short-term availability. We first simulate PUs' dynamic
spectrum behavior over multiple channels to analyze the use
of the spectrum across time. Chaos theory is used to model
the non-linear and time-varying characteristics of PU activ-
ity, and specifically, the logistic map was used to character-
ize the dynamics. The logistic function has a set of values
representing the probability of PU availability on a given

X
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Analyze Predictability of
Channel Behavior

Identifying Stability Transition
using Bifurcation Theory
|

|
8 g 203
Q l[l[ll.o_

Filtering and
Ranking Channels

Simulating PU Behavior
using Logistic Map

Modified CRAODV
Routing Protocol over
Stability-Ranked Channels

Assigning Channels to

Secondary Users

Fig. 2. A high-level processing architecture showing the major
stages of the proposed proactive channel assignment
framework. It includes PU simulation, stability analysis,
bifurcation filtering, channel ranking, and SU assign-
ment.

channel. For each of these series, a channel shows predicta-
ble or random patterns.

Further, to assist with decision-making, bifurcation
theory is used to determine the bifurcation point, the point
where the channel is transitioning from stability to instability
or chaotic behavior. Channels above this threshold are
treated as unstable and not available for channel assignment.
Hence, only those channels with stable and predictable chan-
nel resource patterns can be used. At this point, before as-
signing channels to the SUs, we utilize a modified version
of the CR-AODV protocol to ensure that routing instructions
and the path formation occur only over links established on
the chaos theoretically stable channels. This stability-aware
routing ensures that multi-hop paths are constructed through
reliable links, thus reducing route failures, packet loss, and
energy consumption in dynamic CRN scenarios. The struc-
ture of the proposed framework is shown in Fig. 2.

3.2 Background on Chaos Theory for
Channel Modeling

Chaos theory deals with the change of nonlinear dy-
namic systems that can be described by deterministic sys-
tems; however, the systems can have highly irregular and
unpredictable behavior. Consider the logistic map, which il-
lustrates how a system can be stable and periodic and then
eventually chaos behavior takes over, as the control param-
eter increases. In wireless communication, specifically in
CRNeE, the actions of PUs are frequently nonlinear and time-
varying, and their activity is not easily predicted using linear
models or probabilistic approaches. The logistic map is
therefore employed in our framework to simulate PU activ-
ity over time, capturing both stable and chaotic regimes.
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Typically, CRN studies consider primary user (PU) ac-
tivity as stochastic. However, chaotic models offer a legiti-
mate proxy to model rare or unpredictable spectrum use pat-
terns. Chaotic systems are deterministic, but appear random
for the observer, making them ideal to model long-term var-
iability in PU activity, while still maintaining a mathemati-
cally analyzable notion of stability. Unlike purely random
models, chaos theory utilizes bifurcation diagrams and Lya-
punov exponents to determine whether a transition has taken
place between states of predictable (stable) behavior or un-
predictable (unstable) behavior. Deterministic chaotic sys-
tems can be predicted, allowing for invalid channel moments
to be filtered and giving you more options than conventional
stochastic models that typically view PU activity as memor-
yless.

Among many common chaotic discrete systems, the lo-
gistic map is used because of its mathematical simplicity,
clear bifurcation analysis, and computational efficiency.
Other maps available are the Tent map, the Henon map, and
the Tkeda map also produce chaotic and random-like behav-
ior. But the clear analytical structure offered by the logistic
map makes it easy to use with bifurcation theory and Lya-
punov exponent analysis. Therefore, it was chosen as a rep-
resentative chaotic model in our framework, while future
work may investigate whether alternative chaotic systems
could offer a different advantage in modeling spectrum dy-
namics for CRNs. Bifurcation theory is an important aspect
of chaos theory and refers to the phenomenon when small
changes in parameters cause large and sudden qualitative
changes in behavior of the system. In our model, this prop-
erty is used to observe how channels transition from predict-
able to chaotic disordered behavior. Bifurcation allows the
framework to avoid filtering disordered channels because of
a known threshold, and consider only statistically reliable
long-term available channels, which are the basis of stabil-
ity-aware spectrum allocation and routing.

3.3 Network Simulation of Primary User
Behavior

In CRN, PUs activity is naturally dynamic and often
variable and chaotic in nature. The proposed framework uses
the logistic map, which is a classic mathematical model from
chaos theory [24]. This model varies with time and simulates
the likelihood of a given PU utilization channel over time.
For each channel c;, the activity sequence is simulated using
the following equation (1):

X1 =% (1-%) (1)

where x; € (0,1) is the normalized PU activity at time t, X;+1
is the normalized PU activity at time t+ 1and r € (0,4] is
the control parameter used to drive the dynamics of the se-
ries, with a maximum r for periodically, fixed and chaotic
behavior.

The control parameter 7 is not fixed in our analysis, but
we prescribe a random r between [2.5, 4.0] for each channel.
This range includes both the stable regime (r < 3.57) as well

as the chaotic regime (r > 3.57). However, realistic distribu-
tions of PU behavior are expected in spectrum space. For
a certain channel assigned a r, the value » remains constant
throughout the simulation, as it is a reflection of the chan-
nel’s inherent long-term tendency over time, while different
channels are assumed to exhibit different activity according
to the random 7. Therefore, this simulation reflects real-time
activity of PUs over a range of channels.

3.4 Predictability of Channel Behavior with
the Logistic Map

After simulating the behavior of PUs based on the lo-
gistic map, the overall predictability of each of the channels'
behavior over a long-time frame is analyzed. This helps in-
dicate whether the channel usage pattern is stable and con-
sistent, or chaotic and unpredictable. Channels that demon-
strate stable or periodic behavior are deemed suitable for SU.
To obtain a quantifiable measure of this, the time-series out-
put from the logistic map for each channel is analyzed in
terms of its statistical variance. Variance is defined through (2)

Var(x):_l%é(xt—x)z @

where X is the PU activity value at time t, x is the mean of
the activity sequence over a window of T time steps, and
Var(x) is the variance. A lower variance indicates that the
PU behavior is fairly stable, with activity values remaining
around the mean. These channels often display periodic or
convergent behavior, where the PU behavior is consistent ei-
ther by stabilizing around some equilibrium point or show-
ing evidence of repeating a pattern. These are the stable
channels that give SU a reliable option to access the channel
without the possibility of sudden appearance of the PU. On
the other hand, the higher variance indicates a higher degree
of variability in PU activity, resulting in a chaotic and unsta-
ble channel behavior. The redundant unpredictable availa-
bility of channels is what ruins the SU opportunity for com-
munication, since the unpredictable behavior increases the
risk of interference, packet loss, and excessive energy ex-
penditures from frequent failed attempts to access the chan-
nel [25].

Based on this description, the channels are categorized
as predictable and unpredictable. Only the predictable chan-
nels are continued into later portions of the analysis. This
variance-based categorization is helpful to eliminate unsuc-
cessful channel ahead of time, which minimizes the energy
wasted in PU’s approach for global spectrum access strat-

egy.

3.5 Identification of Stability Transition using
Bifurcation Theory

Through examining the variance-based predictability
of PU activity, we identify the transition point at which sta-
bility is abandoned and chaos ensues. This transition is
mathematically represented using bifurcation theory [26],



RADIOENGINEERING, VOL. 34, NO. 4, DECEMBER 2025

679

which considers how the qualitative feature of a system
changes as a function of a control parameter changes. Here,
the control parameter r in the logistic map ranges from 0 to
4. With increasing value of r, the logistic map displays a va-
riety of different dynamics. For values of r in the range
0 < r < 3, the system converges to a stable fixed point, indi-
cating a consistent and predictable channel state. As r is
moved beyond 3, the system begins to oscillate periodically,
first between two values, then four values, etc. This is termed
as a period-doubling bifurcation to indicate an increase in
complexity in the temporal behavior of the PU.

While it still remains in a determinate, predictable
schedule, this period-doubling bifurcations accumulates at
the Feigenbaum point, approximately r = 3.56995, where
chaotic behavior starts to emerge. Further advancement be-
yond this boundary is identified as chaotic regimes of the
logistic maps, where the subsequent time-series values be-
come sensitive to initial conditions and do not exhibit any
periodicity. The chaotic behavior can be numerically char-
acterized with the help of the Lyapunov exponent A as pre-
sented in (3):

}L:Iimn%izn:L‘r(l—th)‘ 3)
N t=1

where n is the number of time steps, N is the normalization
factor, which typically is equal to n, depending on context,
and L is the logged derivative of the logistic function. A pos-
itive A indicates chaos, confirming that the channel with
r > 3.56995 will exhibit unpredictable and unstable PU be-
havior. To use this in the channel selection process, the
framework tracks the value of the control parameter r that
generate PU activity on each channel, and compares it
against the bifurcation threshold. A binary decision rule is
used to assess channel eligibility in (4):

{l if r <3.57
5 =
0

otherwise

where ¢J'is the binary stability criterion for a communication
channel. Channels that the logistic simulation indicates are
in the stable range of r < 3.56995 have been denoted as pre-
dictable and preserved for future ranking and assignment.
Channels that exceed the critical value of the bifurcation
control parameter are thus categorized as chaotic and they
are omitted from the allocation procedure. The filtering
function helps to ensure the proposed system does not allo-
cate channels that could become suddenly unavailable due
to physically unstable PUs and represents a significant im-
provement to overall efficiency, reduction of retransmis-
sions, and lowered energy consumption.

(4)

The inclusion of bifurcation theory enables a mathe-
matically principled framework for predicting stability in
unstable dynamic spectrum environments. Rather than rely-
ing on merely short-term sensing or ensemble statistical av-
erages, the system assesses PU activity patterns contour
structural stability to allow a more robust and future-aware
channel assignment process. Since the system quantifies the
exact transition from sequence to chaos, this aspect and reli-

ance on bifurcation theory increase the confidence in reliable
communication channel for SUs. This becomes even more
imperative in chaotic and dynamic CRN scenarios.

In this context, “future-aware” does not mean precisely
forecasting the long-term future trajectory of a chaotic se-
quence, which is fundamentally impossible due to sensitive
dependence on initial conditions. Rather, it indicates the sys-
tem has the capability for detecting stability regimes and
generating early warning when it appears that a channel is
drifting toward chaos. This enables proactive channel as-
signment decisions that extend beyond instantaneous avail-
ability, making the process forward-looking while still re-
specting the inherent unpredictability of chaotic dynamics.

3.6 Filtering and Ranking Channel

After classifying channels based on their stability using
bifurcation theory, the next step is to eliminate unstable
channels from consideration and focus only on stable chan-
nels to provide potential information from SU. The objective
of this phase is to consider only those channels that are
shown stable, and coherent PU behavior for communication,
thereby reducing the instance of unexpected interruptions,
retransmissions, and interference. A channel is eligible if the
variance is still below a threshold 6. This excluded chaotic
channels that could interrupt SU communication. Let Cstaple
denote the set of channels that were assessed through this
filtering step. Each channel ¢; € Ciapie is assigned a stability
score S;, based on its variance and average idle duration [27].
The score is calculated using the following equation (5):

s, :a.[v;(xif ﬁ-Tid,e(i)] (5)

where Var(x;) is the variance of PU activity for channel x;,
Tiae(i) is the mean idle time of the channel, & and g is the
weighting factors. The channels have been ranked on the ba-
sis of S; in descending order. A high value of S; indicates
higher stability with longer expected availability. This
ranked list is subsequently utilized during the channel as-
signment process to assign SUs to the channels with the
highest reliability first. By removing unstable channels and
prioritizing ones with good long-term availability, this rank-
ing and filtering process improves communication reliability
by reducing access delays and improving energy efficiency
in cognitive radio environments.

3.7 Modified CR-AODV Routing Protocol
over Stability-Ranked Channels

After channel filtering and ranking based on chaos-the-
oretic stability scores, the proposed framework uses a mod-
ified CR-AODV routing protocol [28]. The modification en-
sures that route discovery and path formation occur across
stable links, leading to reliable communication and energy
efficiency in dynamic CRNs. In traditional CR-AODV,
Route Request (RREQ) packets are forwarded based solely
upon the current channel availability, which makes the pro-
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tocol susceptible to instability from unpredictable PU activ-
ity. In the proposed modification, RREQ forwarding is lim-
ited to only links that use channels already deemed stable in
the previous channel selection stage. Let C denote the total
set of available channels and C; < C denote the set of chan-
nels deemed stable. A channel c; belongs to Cs if stability of
the channel S(ci) satisfies as shown in (6):

S(c)=6, (6)

where & is the stability threshold, and S(ci) is computed
during the ranking phase using (7):

s(c.)=w1-(1—a(c‘)J+w2-T(Ci) )

1
O-max Tmax

where o(c;) is the standard deviation of PU activity in the
channel ¢i, 7(c;) is the average time spend idle, o and a, are
weighting factors such that an + @, = 1, and omax and zmax are
the maximum observed normalization constants. The com-
munication link l;; between two SUs SU; and SU; is valid un-
der the channel ¢ij € Cs. The protocol computes the path sta-
bility score ¥(P), where P = {l,l5,...,In}, during the RREQ
propagation as shown in (8):

(P)-235(c) ®

where n is the total number of hops in the path, and S(cx) is
the stability score of the channel used in the k" hop. Among
various candidate paths P, the destination node selects the
candidate path with the maximum average path stability P*
as represented in (9):

P" =argmax, ¥ (P). ©)

This allows packets to transfer the most stable path and
minimizes the path failing and retransmissions. The protocol
also supports local path maintenance. During the process of
the data transmission, if one or several links start to exhibit
unstable performance, the protocol sends a local repair re-
quest as a local maintenance mechanism to repair only the
portion of the path that has failed and does not perform a re-
discovery of the new path. The updated stability score S'(c)
is recalculated with current observation of PU activity in
real-time with the same stability score formulation. This ac-
tive and integrated routing approach guarantees that all com-
munication paths created are links over channels that have
demonstrated long-term stability, which significantly im-
proves Packet Delivery Ratio (PDR), energy consumption,
and end-to-end communication quality for CRNs.

3.8 Assigning Channel to Secondary User

After filtering and ranking channels according to sta-
bility, the final task in the proposed model is to assign chan-
nels to SUs based on availability and preference [29]. Each
SU accesses the list of its stability score S;, and chooses
an idle channel with the highest remaining rank. This assign-
ment method ensures that channels are assigned to SUs

based on their stability and structural strength, and thus min-
imizes the likelihood of interruptions for SU’s. If the high-
ranked channel is no longer available, because a PU sud-
denly reappears, the SU simply checks the next channel in
the list. This process continues as an iterative process until
an acceptable channel is found. Since stable channels only
exist in the list, the probability of encountering frequent PU
interruptions is significantly reduced. In addition, all chan-
nels have been previously scored for long-term idle behav-
ior. This system inherently considers future availability pat-
terns in a way that does not rely on real-time sensing. The
priority-based channel assignment not only improves SU
transmission reliability but also reduces the number of denial
access attempts and energy usage. Additionally, the alloca-
tion of the SUs across the most stable portions of the spec-
trum not only allows for a balanced use of spectrum, but also
satisfies the minimum QoS requirements of the secondary
communications.

4. Simulation Results and Discussion

In this section, we have detailed the network scenario
generated and a thorough analysis of the validation of the
proposed proactive channel assignment algorithm. The pro-
posed framework has been implemented and simulated in
Windows 10, MATLAB R2025a, CPU Intel Core i5-6500
CPU @3.20 GHz, Intel(R) HD Graphics 530, and 8.0 GB
DDR3. For a network of 100 channels, 100 time slots, and

Parameter Value / Description Explanation / Justification
Number of 100 Large spectrum space for
Channels diverse PU activity.

. Provide sufficient duration
Time Slots 100 to capture stability/chaos.
Number of Represent a small-scale

SUs 5 CRN scenario.

Initial Random values Avoid bias and  allow
Condition in the range [0, 1] diverse PU activit
(Xo0) for each channel Yy
Logistic
Map Random values Covers both stable and

in the range [2.5, 4.0]

Growth chaotic regimes.

Rate (r) for each channel
Bifurcation 357 Standard chaos threshold
Threshold ' (Feigenbaum point).
PU Activity 05 Common cutoff for
Threshold ' busy/idle channels.

Noise Introduces real-world uncer-

. - 1% tainties in PU activity mod-
Simulation -
eling.
Stabilit Standard deviation < Empirically determined
Criterio}r/1 0.25 indicates a stable | threshold to differentiate
channel. predictable channels.

Local Provides a dynamic moni-
Stability 10 time slots toring window to capture
Window short-term stability changes.

Models real-world wireless

Fading . . channel variations due to
Channel Ra():/rlgr?[:leflﬁgc:‘dagllng multipath effects, without

Model modeling distinct path de-

lays or echoes.

Tab. 2. Simulation parameters of the proposed framework.
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5 SUs, each complete simulation run required approximately
3.5 seconds, demonstrating that the proposed method is
computationally efficient and practical on standard
hardware. The simulated parameters are detailed in Tab. 2.

The Rayleigh flat fading model used in our simulations
assumes that the channel remains constant over the symbol
duration and affects all frequency components equally, with-
out introducing frequency-selective fading. Multipath com-
ponents such as echoes, path delays, or phase shifts were not
modeled, as the objective was to analyze performance under
flat fading conditions without incorporating a detailed mul-
tipath environment.

4.1 Performance Analysis of the Proposed
Model

The proposed system's network simulation was con-
ducted to evaluate its performance across various metrics.
The analysis provides insights into its efficiency and effec-
tiveness in maintaining the proposed model's network per-
formance.

4.1.1 Analysis of PU Activity Modeling and Behavior

Figure 3 illustrates the temporal evolution of PU activ-
ity for each channel ranging from 1 to 10, determined using
the logistic map for each channel. Each line represents the
activity level for a channel for 100-time intervals, where ac-
tivity values closer to 1 indicate a strong PU’s presence,
while values reaching nearly 0 indicate a channel that is not
busy. The change in patterns indicates channel behavior sta-
bilization, with some channels being constant and periodic
while others are highly erratic. This serves to identify which
channels are predictably usable by SUs and which channels
should be removed from the availability report. The differ-
ences allow the framework to provide SUs with only struc-
turally stable channels for allocation, which can reduce in-
terference, retransmissions, and ultimately wasted energy in
CRN environments. This is why early phase removal of un-
stable channels is important, so that repeated observations of
chaotic patterns would not produce repeated failed sensory
time or wasted transmissions for SUs.

Figure 4 presents the standard deviation of logistic map
values for multiple channels at a time, serving as a statistical
mean of quantifying the variation in PU activity for each
channel. The higher the standard deviation, the greater the
variability and chaotic behavior, indicating the channel is
unreliable and less suitable for SU access. Conversely, chan-
nels with a low standard deviation indicate a more consistent
periodic behavior, and it is more suited for SU access. The
measures provide evidence for the proposed framework,
linking it to the dynamic stability of each channel and allow-
ing for the exclusion of unstable channels, or channels dis-
playing rapid fluctuation in PU activity. Furthermore, as-
sessing the stability-based classification, is better than
traditional real-time sensing approaches, as it allows the sys-
tem to identify channels with predictable behavior over the
long term, and assures SUs are allocated only to channels

with low risk of sudden disruption. Therefore, the system
simultaneously filters channels and also provides an addi-
tional measure for allocating proactive assignments, where
predictable stability directly translates into lower energy
waste and packet loss. This statistical measure provides
a stronger decision basis than conventional sensing, ensur-
ing channels with consistently high variation are excluded
before allocation.

Figure 5 depicts the empirical distribution of PU activ-
ity levels produced by the logistic map, showing the propor-
tion of different activity levels at a given time. The smooth
rise of the curve reflects a broad spread of activity levels. On
the other hand, the steep rise in the middle indicates that
mid-range PU activity level frequently oscillates. This indi-
cates that the channel is neither fully stable nor fully chaotic;
it seems to fluctuate between them. Through this pattern, the
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Fig. 3. Time-series patterns of PU activity on 10 different
channels using logistic map simulation.
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Fig. 4. Standard deviation trends in PU behavior across
channels for differentiating stable and chaotic channels.
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Fig. 5. Cumulative distribution function of PU activity levels
over time across multiple channels.
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system can assess which channels are more stable and which
channels are too unstable to even make available to SU. With
these intermediate fluctuations, the framework is able to ob-
tain a more representative view of long-term channel relia-
bility, enabling proactive filtering that reduces the likelihood
of failed transmissions compared to traditional spectrum
sensing techniques. The detection of such intermediate in-
stability allows the framework to avoid channels that appear
usable in the short term but are unreliable in the long term.

4.1.2 Channel Classification and Stability Detection

Figure 6 represents the channel classification as either
stable or chaotic across a window of time slots, based on
their PU behavior patterns calculated from the logistic map.
This enables the framework to not only detect which chan-
nels can be used reliably by SUs and which channels should
be avoided, since PU behavior is unpredictable. This figure
serves as a visual confirmation of the bifurcation-theoretic
filtering functionality, and shows how the proposed system
is capable of dynamically time-varying PU usage, while also
preserving only structurally stable channels for subsequent
SU access. By using this, the framework filters out unrelia-
ble channels early on, it minimizes interference, reduces the
chance of route failures, and enables communication com-
pared to conventional real-time allocation mechanisms. This
classification improves allocation reliability directly, since
only channels with long-term predictability remain available
for SUs.

Figure 7 presents the bifurcation diagram demonstrat-
ing how the logistic map evolves as the control parameter r
increases from 2.5 to 4. When r < 3, the system settles to
a single value and when r = 3, the system begins to oscillate
between different values and resulting in periodic behavior.
At approximately r = 3.56995, the system becomes chaotic,
to the point that small changes in initial conditions lead to
widely unpredictable outcomes. This critical point is used in
the proposed framework to discriminate between stable and
chaotic channels, ensuring that only predictable channels are
selected for reliable SU communication. The framework in-
cludes mathematically- determined threshold to avoid allo-
cating unstable channels, giving it an advantage over the tra-
ditional sensing-based methods that cannot speculate about
chaotic behavior. This threshold-based filtering provides
a mathematically consistent way to avoid allocation to un-
stable channels, which traditional models cannot anticipate.
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Fig. 6. Channel stability classification over time slots based on
their PU activity.
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Fig. 7. Bifurcation diagram highlighting stability threshold for
primary users' behavior using logistic map parameter.

4.1.3 Adaptive Channel Assignment Patterns

Figure 8 shows the dynamic channel assignment of
five SUs (SU 1 to SU 5) across 100 time slots. The changing
channel index shows that the SUs switch channels over time
based on real-time channel stability rankings. This visuali-
zation represents how the proposed framework processes us-
ers on multiple available spectrum resources to avoid colli-
sions and balance loading. This allows for each SU to choose
the most stable channel at each time slot subsequently. The
combination of dynamic stability-aware ranking and real-
time adaptive allocation ensures more reliable spectrum use
compared to traditional allocation methods that often lead to
channel congestion or repeated sensing attempts. This high-
lighted performance ensures fairness among SUs while
maintaining stable communication, reducing both conges-
tion and unnecessary reassignments.
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Fig. 8. Temporal dynamics of channel assignment over 100
time slots for five SUs.
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Fig. 9. Stability-aware multi-hop routing topology in CRN.



RADIOENGINEERING, VOL. 34, NO. 4, DECEMBER 2025

683

4.1.4 Stability-Aware Routing Path Formation using
Modified CR-AODV

Figure 9 illustrates a visual representation of the CRN
topology showing PUs and SUs that had established com-
munication paths. The PUs are illustrated as red squares,
while the SUs are represented as blue circles. The thick red
path represents the multi-hop path selected by the frame-
work, which eliminated route paths that were not chaos-the-
oretically stable paths using channel filtering and ranking.
The thin grey lines indicate other possible but unused paths.
This routing method provides high reliability through the
avoidance of unstable communication links. Furthermore,
the use of stable, multi-hop path reduces the breaks in routes
and packet drop rates, while offering a distinct advantage
over traditional CR-AODV implementations that rely only
on instantaneous channel availability. The stable multi-hop
paths demonstrate how filtering at the channel level trans-
lates into end-to-end reliability, minimizing route breaks and
packet drops.

4.2 Realistic Simulation Results

To further validate the effectiveness of the proposed
chaos-based channel assignment framework, we simulated
PU activity under realistic traffic profiles that mimic real-
world communication environments. The logistic map was
used as the base generator for nonlinear dynamics, while ac-
tivity patterns were shaped to reflect four representative use
cases: 10T (periodic ON/OFF bursts), Industrial (approxi-
mately 45% busy random activity), Public (around 70%
busy with chaotic fluctuations), and Emergency (mostly free
with bursts every 15 slots). These profiles ensure that the
evaluation covers both stable and chaotic environments,
providing a more practical validation of the proposed
method.

Figure 10 presents the performance of the proposed
chaos-based framework in terms of Accuracy, F1-score, and
PDR over the 100 time slots that reproduce realistic PU ac-
tivity patterns. As shown, all three metrics are consistently
high, indicating the framework’s ability to maintain reliable
detection and communication under varying traffic patterns.
The constant performance across different time slots indi-
cates that the proposed framework is resilient to the fluctua-
tions in PU behavior, such as periodic burst from the IoT,
random industrial traffic, chaotic public activity, and occa-
sional emergency bursts. The minimal variation across the
various time slots and disruption scenarios indicates that the
framework can generalize well across heterogeneous spec-
trum usage environments whilst maintaining reliable QoS
dimensions even when they are unpredictable.

Figure 11 illustrates the adaptive channel assignment
behavior of 10 SUs over 100 time slots in the realistic simu-
lation environment. The different colors represent the chan-
nel index assigned to each SU, which varies over time based
on the PU utilization patterns. The SUs were observed
switching around channels regularly. This behavior high-
lights the ability of our framework to maximize resource al-
location whenever channels become unstable or are being

used by PU. The framework ensures that multiple SUs can
be accommodated without collisions, while dynamically al-
locating channels in a balanced manner across the available
channel resources. This demonstrates that our framework
performs a stability-aware allocation in a realistic-like-set-
ting, ensuring SUs are provided with reliable spectrum ac-
cess, even the PU behaviors are dynamic.

Figure 12 depicts the multi-hop routing path estab-
lished by using the modified CR-AODV protocol under the
proposed framework. Black circles denote SUs, while the
blue connecting lines indicate the selected stable communi-
cation path. The selected path avoids nodes affected by un-
stable channels and focuses only on SUs with links sup-
ported by chaos-theoretically stable behavior. This routing
pattern ensures long-term path reliability, reduces the risk of
frequent route breaks, and decreases packet loss. The figure
demonstrates the effectiveness of channel stability assess-
ment in routing and shows positively increasing end-to-end
communication reliability.
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Fig. 10. Performance metrics under realistic simulation patterns.
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contraion | crame | sus| S0 | S0 | e | o i | RO | smuon | Ly | 0% | Tt
A 100 10 1000 1600 7545 860 77.68% 155 12.3 82 105
B 200 20 2000 10000 28000 2000 80.11% 46.2 18.7 80 218
C 300 30 3000 21000 73500 5500 77.16% 95 25.4 78 315
D 400 40 4000 30240 115680 12640 79.15% 180.8 33.2 75 420

Tab. 3. Performance results under different system and transmission configurations.

4.3 Results under Different System and
Transmission Configurations

The scalability of the framework is evaluated by chang-
ing the number of channels, SUs, and time slots used. Ta-
ble 3 provides a summary of the results across four varying
configurations. As demonstrated, the number of successes
for SU will increase as we increase the number of channels
and SUs due to more opportunities to transmit. However, in-
creasing the number of channels and SUs will also increase
the number of collisions, especially in denser configurations
such as configurations C and D. PU occupancy remains con-
stant at about 77-80%, indicating that most of the spectrum
resources are still active by PU activity. The results suggest
that the framework is scalable across system sizes while con-
tinuing to balance SU transmissions and PU transmissions,
while recognizing the trade-offs due to more SUs.

4.4 Validation with Real-World Spectrum
Data

To balance the simulation-based results, we evaluated
the framework on a publicly available spectrum dataset [30]
containing real-world measurements of spectrum occupancy
across multiple frequency bands. While the dataset provides
cleaner occupancy patterns than our stochastic simulations,
Table 4 confirms the qualitative patterns observed in simu-
lations: SU success decreases and collisions increase with
more SUs, while PU protection remains consistent. This
demonstrates that the proposed framework can operate ef-
fectively under realistic measured spectrum conditions, even
if the absolute metric values differ from simulations.

4.5 Performance Comparison with Existing
Methods

Table 5 presents a comprehensive comparative analy-
sis of the proposed chaos-based framework for channel as-
signment with several state-of-the-art algorithms, such as
CNN-LSTM [16], PSO-GA [17], GWO-CS [18], MADRL
[20], and FAMSRSA [22], to assess their efficiency, reliabil-
ity, and predictive performance in terms of energy consump-
tion, communication overhead, throughput, and packet de-
livery ratio. The proposed chaos-based method resulted in
a maximum energy consumption of 2.6 mJ, the minimum
communication overhead of 7.2%, a maximum throughput

of 0.9, and the maximum PDR, greater than 98%, signifi-
cantly outperforming other traditional models. This suggests
that the proposed method has a deliberate channel allocation
process to discard unstable channels, leading to a more effi-
cient use of spectrum on the reliable channels, predictable
channel availability, as well as improvements in communi-
cation performance in CRN. In contrast to previous models
that improved on either throughput or reliability by sacrific-
ing energy, the proposed approach not only appears to de-
liver improvements in all metrics simultaneously but also
has confirmed its robustness in dynamically variable CRNs.

Table 6 compares the performance of Rayleigh fading
and AWGN channels in a CRN, both with the same PU oc-
cupancy of 0.46. The Rayleigh fading channel achieves bet-
ter results, with 845 SU successes compared to 795 in the
AWGN channel, along with fewer idle slots, fewer colli-
sions, and slightly lower simulation time. Although AWGN
is typically considered an ideal channel, the dynamic nature
of Rayleigh fading offers greater advantages in CRNs. Un-
like AWGN, which represents a static channel with constant
noise and no multipath effects, Rayleigh fading models more
realistic wireless environments by incorporating rapid signal
fluctuations caused by multipath propagation, Doppler
shifts, and fast fading. These time-varying characteristics in-
troduce deep fades in the PU signal, allowing SUs to oppor-
tunistically access the spectrum during low-interference pe-
riods. This leads to more efficient spectrum utilization,
reduced interference, and better adaptability through real-
time sensing and decision-making. In contrast, the static
AWGN channel limits such adaptability, resulting in more
conservative SU behavior and lower utilization. Thus, the
Rayleigh fading model demonstrates superior SU communi-
cation efficiency and more effective spectrum use in CRNs.

suU Average
Time SU SuU PU
SUs Idle L
Slots Success Slots Collisions | Occupancy
per Slot
10 500 4600 500 100 73.3%
20 500 9200 800 250 73.6%
30 500 13500 900 450 73.9%
40 500 18000 1000 700 74.6%
50 500 22500 1200 1000 74.9%

Tab. 4. Performance results using real-world spectrum dataset.
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Methods Energy Consumption (mJ) | Communication Overhead (%) | Throughput (Mbps) Packet Delivery Ratio (%)
CNN-LSTM [16] 4.1 13.6 70.00 95.2
PSO-GA [17] 4.7 12.3 72.00 93.5
GWO-CS [18] 4.4 10.9 73.00 94
MADRL [20] 3.9 11.7 75.00 94.6
FAMSRSA [22] 5.2 141 68.00 91.8
Chaos-Based (Proposed) 2.6 7.2 88.00 98

Tab. 5. Comparison of the proposed model with existing models.

Channel Type Time Slot SU Successes SU Idle Slots SU Collisions | PU Occupancy | Simulation Time (s)
Rayleigh Fading 100 845 105 12 0.46 124
AWGN 100 795 145 22 0.46 13.3

Tab. 6. Performance comparison of Rayleigh fading vs AWGN channels in cognitive radio networks.

4.6 Discussion

CRNSs face significant challenges in providing reliable
spectrum access for SUs since PU usage patterns are often
sporadic, volatile, and difficult to predict. Current channel
assignment methods rely on real-time sensing and short-
term availability, which leads to unnecessary interference,
packet losses, energy losses from repeated sensing, and high
latencies for communications. Thus, the study presents an
end-to-end framework that incorporates proactive channel
assignment and stability-based routing. The efficacy of the
proposed approach is validated and benchmarked through
MATLAB simulations and realistic simulation results.

Compared with benchmark approaches, the results
demonstrate optimization-based methods such as PSO-GA
and GWO-CS achieve good performance in specific scenar-
ios but require iterative search, which increases computa-
tional complexity and delays decision-making. In contrast,
our framework achieves comparable or superior results with
a linear-time (O(N x T)) complexity due to the lightweight
logistic map and stability detection, making it highly scala-
ble. Similarly, DL models such as CNN-LSTM and
MADRL provide accurate predictions after extensive train-
ing but are resource-intensive and less suitable for energy-
constrained CRN environments. Our chaos-based approach
maintains highest prediction accuracy at 0.99 without requir-
ing pretraining or large datasets, which reduces overhead
and supports real-time deployment.

The performance comparisons highlights that the pro-
posed approach is consistently best across all parameters,
with a minimum energy usage of 2.6 mJ, the lowest commu-
nication overhead at 7.2%, the highest throughput at approx-
imately 0.9, the highest PDR at greater than 98%, and the
lowest average latency at 0.05s. These improvements di-
rectly address the core challenges of CRN including inter-
ference reduction, delay minimization, and QoS enhance-
ment. Additionally, we validate our model using real-world
spectrum data. A performance difference of approximately
20% was observed between the simulation-based and real-
world results. This gap arises because the simulation envi-
ronment intentionally introduces noise to model the uncer-

tainty and unpredictability of PU activity, whereas the real-
world dataset used in our study was more structured and pre-
dictable, with fewer anomalies. This difference reinforces
the robustness of the proposed framework in handling chal-
lenging and noisy environments. It also demonstrates that
the method maintains high performance even under more
challenging simulation conditions, further validating its reli-
ability and scalability for practical CRN deployments. Fur-
thermore, the method’s efficiency demonstrates its suitabil-
ity for large-scale dynamic environments where traditional
sensing or optimization-based approaches may fail to adapt
in real time.

5. Conclusion

This paper presented a proactive channel assignment
framework for CRN that optimally utilizes spectrum usage
and communication reliability by predicting the stability of
the channel for long term, relying on chaos and bifurcation
theory. By modeling the PU behavior based on the logistic
map and determining transitions to chaos through the
Feigenbaum threshold, the system provides a mechanism to
eliminate unstable channels and allocate channels with sta-
ble availability to SUs. Furthermore, the framework inte-
grates an adapted CR-AODV routing protocol that guaran-
tees each of the established multi-hop paths that only uses
reliable links, and thus increases end-to-end reliability and
reduces route failure. The simulation results showed sub-
stantially better overall performance than the current state-
of-the-art techniques in terms of less energy usage, reduced
communication overhead, increased throughput, improved
PDR, and better prediction accuracy. These results confirm
that the framework achieves reliable, stable, and relatively
low-interference transmission in dynamic spectrum environ-
ments. While this work also verifies the proposed frame-
work through extensive simulations, future extensions will
focus on measurement-based validation using testbed exper-
iments. This will allow us to verify the framework’s perfor-
mance under actual deployment conditions, ensuring even
greater reliability and applicability in real-world CRN envi-
ronments.
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Source code:
https://github.com/Iw9318457/project32319.git [31]
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